
XVT PORTABILITY TOOLKIT REFERENCE

XVT Portable Attributes
XVT Events
XVT Data Types
XVT Constants
XVT Functions
Window/Dialog/Control Creation Function Parameters
XRC Statements
Help File Statements
Tools

 Index

Copyrights

© 1992–2009 Providence Software Solutions, Inc. All rights
reserved.

The XVT application program interface, XVT manuals and
technical literature, and XVT software may not be reproduced in any
form or by any means except by permission in writing from
Providence Software Solutions, Inc.

XVT, XVT Development Solution for C, XVT Portability Toolkit,
XVT-Design, XVT Development Solution for C++, XVT-Power++,
and XVT-Architect are trademarks of Providence Software
Solutions, Inc. Other product names mentioned in this document are
trademarks or registered trademarks of their respective holders.

Published By
Providence Software Solutions, Inc.
201 Shannon Oaks Circle
Suite 200
Cary, NC 27511 USA

Conventions Used in This Reference
To accompany this release, the XVT Portability Toolkit Reference
(PTK Reference) is now online. XVT has gone to this format to
make reference information clearer, easier to find, and more usable.
XVT takes pride in its documentation, and continually seeks to
improve it. If you find a documentation error, please contact
Customer Support. They will forward your suggestion to XVT’s
documentation team.

The following typographic and code conventions indicate different
types of information.

General Conventions

code

This typestyle is used for code and code elements (names of
functions, data types and values, attributes, options, flags, events,
and so on). It also is used for environment variables and commands.

bold

Bold type is used for filenames, directory names, and program
names (utilities, compilers, and other executables).

italics

Italics are used for emphasis and the names of documents.

Tip: This marks the beginning of a procedure having one or more steps.
Tips can help you quickly locate “how-to” information.

Note: An italic heading like this marks a standard kind of information: a
Note, Caution, Example, Tip, or See Also (cross-reference).

Code Conventions

<non-literal element>, non_literal_element, or
non_literal_element

Angle brackets, bold code font, or italics indicate a non-literal
element, for which you would type a substitute.

[optional element]

Square brackets indicate an optional element.

...

Ellipses in data values and data types indicate that these values and
types are opaque. You should not depend upon the actual values and
data types that may be defined.

XVT Portable Attributes
ATTR_APP_CTL_COLORS
ATTR_APP_CTL_FONT_RID
ATTR_APPL_NAME_RID
ATTR_BACK_COLOR
ATTR_COLLATE_HOOK
ATTR_CTL_BUTTON_HEIGHT
ATTR_CTL_CHECK_BOX_HEIGHT
ATTR_CTL_EDIT_TEXT_HEIGHT
ATTR_CTL_HORZ_SBAR_HEIGHT
ATTR_CTL_RADIOBUTTON_HEIGHT
ATTR_CTL_STATIC_TEXT_HEIGHT
ATTR_CTL_VERT_SBAR_WIDTH
ATTR_DBLFRAME_HEIGHT
ATTR_DEBUG_FILENAME
ATTR_DEFAULT_PALETTE_TYPE
ATTR_DISPLAY_TYPE
ATTR_DOC_STAGGER_HORZ
ATTR_DOC_STAGGER_VERT
ATTR_DOCFRAME_HEIGHT
ATTR_DOCFRAME_HEIGHT
ATTR_ERRMSG_FILENAME
ATTR_ERRMSG_HANDLER
ATTR_EVENT_HOOK
ATTR_FONT_CACHE_SIZE
ATTR_FONT_DIALOG
ATTR_FONT_MAPPER
ATTR_FRAME_HEIGHT
ATTR_FRAME_WIDTH
ATTR_HAVE_MOUSE
ATTR_HELP_CONTEXT
ATTR_HELP_HOOK
ATTR_ICON_HEIGHT
ATTR_ICON_WIDTH
ATTR_KEY_HOOK
ATTR_MEMORY_MANAGER
ATTR_MENU_HEIGHT
ATTR_MULTIBYTE_AWARE
ATTR_NATIVE_GRAPHIC_CONTEXT
ATTR_NATIVE_WINDOW
ATTR_NUM_TIMERS
ATTR_PRINTER_HEIGHT
ATTR_PRINTER_HRES
ATTR_PRINTER_VRES
ATTR_PRINTER_WIDTH
ATTR_PROPAGATE_NAV_CHAR
ATTR_RESOURCE_FILENAME
ATTR_R40_TXEDIT_BEHAVIOR
ATTR_SCREEN_HEIGHT
ATTR_SCREEN_HRES

ATTR_SCREEN_VRES
ATTR_SCREEN_WIDTH
ATTR_SCREEN_WINDOW
ATTR_SUPPRESS_UPDATE_CHECK
ATTR_TASK_WINDOW
ATTR_TASKWIN_TITLE_RID
ATTR_TITLE_HEIGHT
ATTR_XVT_CONFIG

ATTR_APP_CTL_COLORS
Description

This attribute specifies the address of an XVT_COLOR_COMPONENT
array to use as the application default control colors. Unlike the
analogous attribute for fonts which takes a resource ID, this attribute
takes a memory address. The application can safely deallocate the
XVT_COLOR_COMPONENT array during the process of an E_DESTROY
event for the task window.

Uses win argument: No
xvt_vobj_get_attr returns: The address of the application default

control colors array (of type
XVT_COLOR_COMPONENT*), or NULL
if not set.

xvt_vobj_set_attr effect: Register the address of
XVT_COLOR_COMPONENT array to be
used as an application default for
rendering controls.

xvt_app_create use: Must use before. If the application
changes the contents of the array after
xvt_app_create has been called,
the effect is undefined.

Default value: NULL. This default value indicates
that no application default colors
have been defined.

If the application uses this attribute, the specified
XVT_COLOR_COMPONENT array will be used as the application default
control colors. An application uses this attribute as follows:

In the application source code before calling xvt_app_create:

static XVT_COLOR_COMPONENT app_colors[] = {
{XVT_COLOR_FOREGROUND, COLOR_BLACK},
{XVT_COLOR_BLEND, COLOR_WHITE},
{XVT_COLOR_BACKGROUND, COLOR_BLUE},
{XVT_COLOR_NULL, 0}

 };
xvt_vobj_set_attr(NULL_WIN, ATTR_APP_CTL_COLORS,

 (long)app_colors);

The individual colors specified in this array will be used in all
controls which do not already have corresponding colors specified
for them and whose container also does not define the corresponding
colors. No functionality is defined in this specification to allow the
application to switch the application default control colors after
xvt_app_create has been called.

See Also

XVT_COLOR_COMPONENT
xvt_ctl_set_colors
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_set_ctl_colors

The "Controls" chapter in the XVT Portability Toolkit Guide

ATTR_APP_CTL_FONT_RID
Description

This attribute specifies a font resource ID to use as the application
default control font.

Uses win argument: No
xvt_vobj_get_attr returns: The value of the application default

control font resource ID.
xvt_vobj_set_attr effect: Establish the XRC resource ID of the

font resource used as an application
default font for rendering controls. If
the application has not defined this
resource in XRC, the application
behaves as if this attribute has not
been set.

xvt_app_create use: Must use before
Default value: Zero. This default value indicates that

no application default font resource
ID has been defined.

If the application uses this attribute, the specified font resource ID
will be used as the application default control font. An application
uses this attribute as follows:

In the application header file:

#define MY_APP_CTL_FONT 10

In the application source code before calling xvt_app_create:

xvt_vobj_set_attr(NULL_WIN,
ATTR_APP_CTL_FONT_RID,
(long)MY_APP_CTL_FONT);

In the application XRC file:

font MY_APP_CTL_FONT helvetica 12

This font is used in all controls which do not already have fonts
specified for them, and whose containers do not have default control
fonts specified for them. No functionality is defined in this
specification to allow the application to switch the application
default control font after xvt_app_create has been called.

See Also

xvt_ctl_set_font
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_set_ctl_font

The "Controls" and the "Fonts and Text" chapters in the XVT
Portability Toolkit Guide

ATTR_APPL_NAME_RID
Description

This attribute can be set to the resource ID of the multibyte string
containing the value of appl_name for use in the XVT_CONFIG
structure. In xvt_app_create, this attribute is tested for non-zero by
XVT and the resource loaded into XVT_CONFIG. The existing pointer
appl_name in XVT_CONFIG will be replaced. This attribute allows the
application to externalize the application name in resources for
localization.

Uses win argument: No
xvt_vobj_get_attr returns: Gets resource ID of appl_name
xvt_vobj_set_attr effect: Sets resource ID of appl_name

See Also

ATTR_TASKWIN_TITLE_RID
ATTR_XVT_CONFIG
XVT_CONFIG
xvt_app_create
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Multibyte Character Sets and Localization" chapter in the XVT
Portability Toolkit Guide

ATTR_BACK_COLOR
Description

The system-wide window background color as set by the user.
Applications wishing to honor the user’s settings can retrieve this
color and use it in their calls to xvt_dwin_clear. Be sure not to
confuse this with the XVT drawing tools background color.

Uses win argument: No
xvt_vobj_get_attr returns: The user’s choice of window

background color
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

COLOR
xvt_dwin_clear
xvt_vobj_get_attr
xvt_vobj_set_attr

Example

xvt_dwin_clear(win, (COLOR) xvt_vobj_get_attr(NULL_WIN,
ATTR_BACK_COLOR));

xvt_app_create use: Must use before
Default value: Zero

ATTR_COLLATE_HOOK
Description

This attribute holds the pointer to the application-supplied string
collation function. It controls whether or not an application-supplied
string collation function is used when the application calls
xvt_str_collate, xvt_str_collate_ignoring_case, or
xvt_slist_add_sorted.

The value of the attribute is a pointer to the collation function. This
function receives two multibyte string pointers and then determines
their collation order for a particular locale. To register an
application-supplied string collation function with XVT, use
xvt_vobj_set_attr. To retrieve the current application-supplied
string collation function pointer, use xvt_vobj_get_attr.

If you set this attribute to NULL, or if you do not set it, XVT uses the
default string collation function when the above functions are called.
Any application-supplied string collation function must use the
XVT_COLLATE_FUNCTION signature. Your collation function must
return -1 if the first string comes before the second string, zero if
they are equal, and 1 if the first string comes after the second string.

Prototype:

typedef long (* XVT_COLLATE_FUNCTION) (const
char *mbs1, const char *mbs2)

Uses win argument: No
xvt_vobj_get_attr returns; Pointer to application-supplied string

collation function or NULL
xvt_vobj_set_attr effect: Sets the string collation function

pointer
xvt_app_create use: Can use either before or after
Default value: NULL

See Also

XVT_COLLATE_FUNCTION
xvt_slist_add_sorted
xvt_str_collate\
xvt_str_collate_ignoring_case
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Multibyte Character Sets and Localization" chapter in the XVT
Portability Toolkit Guide

ATTR_CTL_BUTTON_HEIGHT
Description

The button height (in pixels) most appropriate for a platform, based
on the system default control font. The optimal button width
depends on the width of its label.

Uses win argument: No
xvt_vobj_get_attr returns: Button height
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

WIN_DEF
xvt_ctl_create
xvt_ctl_create_def
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create_def

The "Controls" chapter in the XVT Portability Toolkit Guide

ATTR_CTL_CHECK_BOX_HEIGHT
Description

The button height (in pixels) most appropriate for a platform, based
on the system default control font. The optimal button width
depends on the width of its label.

Uses win argument: No
xvt_vobj_get_attr returns: Button height
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

WIN_DEF
xvt_ctl_create
xvt_ctl_create_def
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create_def

The "Controls" chapter in the XVT Portability Toolkit Guide

ATTR_CTL_EDIT_TEXT_HEIGHT
Description

The edit control height most appropriate for a platform, in pixels.

Uses win argument: No
xvt_vobj_get_attr returns: Edit control height
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

WIN_DEF
xvt_ctl_create
xvt_ctl_create_def
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create_def

The "Controls" chapter in the XVT Portability Toolkit Guide

ATTR_CTL_HORZ_SBAR_HEIGHT
Description

The horizontal scrollbar thickness most appropriate for a platform,
in pixels. This value is the same as the thickness of the horizontal
scrollbars that are created by specifying WSF_HSCROLL when creating
a window.

Uses win argument: No
xvt_vobj_get_attr returns: Scrollbar thickness
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_CTL_VERT_SBAR_WIDTH
WIN_DEF
WSF_* Options Flags
xvt_ctl_create
xvt_ctl_create_def
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create_def

The "Controls" chapter in the XVT Portability Toolkit Guide

ATTR_CTL_RADIOBUTTON_HEIGHT
Description

The radio button height most appropriate for a platform, in pixels.
The optimal radio button width depends on the width of its label.

Uses win argument: No
xvt_vobj_get_attr returns: Radio button height
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

WIN_DEF
xvt_ctl_create
xvt_ctl_create_def
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create_def

The "Controls" chapter in the XVT Portability Toolkit Guide

ATTR_CTL_STATIC_TEXT_HEIGHT
Description

The default static text control height most appropriate for a platform,
in pixels.

Uses win argument: No
xvt_vobj_get_attr returns: Static text
xvt_vobj_set_attr effect: Illegal

See Also

WIN_DEF
xvt_ctl_create
xvt_ctl_create_def
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create_def

The "Controls" chapter in the XVT Portability Toolkit Guide

ATTR_CTL_VERT_SBAR_WIDTH
Description

The vertical scrollbar thickness most appropriate for a platform, in
pixels. This value is the same as the thickness of vertical scrollbars
that are created by specifying WSF_VSCROLL when creating a
window.

xvt_app_create use: Can use either before or after
Default value: Varies for each platform

Uses win argument: No
xvt_vobj_get_attr returns: Scrollbar thickness
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_CTL_HORZ_SBAR_HEIGHT
WIN_DEF
WSF_* Options Flags
xvt_ctl_create
xvt_ctl_create_def
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create_def

The "Controls" chapter in the XVT Portability Toolkit Guide

ATTR_DBLFRAME_HEIGHT
Description

The thickness in pixels of a horizontal border of a double-border
window. You can use this value to calculate the outer size of a
window, given its client area.

Uses win argument: No
xvt_vobj_get_attr returns: Border thickness in pixels
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_DBLFRAME_WIDTH
WIN_DEF
xvt_ctl_create
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create_def

The "Controls" chapter in the XVT Portability Toolkit Guide

ATTR_DBLFRAME_WIDTH
Description

The thickness in pixels of a vertical border of a double-border
window. You can use this value to calculate the outer size of a
window, given its client area.

Uses win argument: No
xvt_vobj_get_attr returns: Border thickness in pixels
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_DBLFRAME_HEIGHT
WIN_DEF
xvt_ctl_create
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create_def

The "Controls" chapter in the XVT Portability Toolkit Guide

ATTR_DEBUG_FILENAME
Description

The name of the debugging output file used by XVT.

Uses win argument: No
xvt_vobj_get_attr returns: A pointer to a static buffer containing

the current debug filename, which is
"debug" by default

xvt_vobj_set_attr effect: Passing a pointer to a string
containing the new debugging
filename causes calls to
xvt_debug_printf or xvt_debug
to output to this file, if the file exists
in what the XVT application
considers to be the "current" directory

xvt_app_create use: Can use either before or after
Default value: "debug"

See Also

xvt_debug
xvt_debug_printf
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

ATTR_DEFAULT_PALETTE_TYPE
Description

The type of the default XVT_PALETTE object created during XVT
initialization (when xvt_app_create is called). This "default
palette" is the palette object used when no other palette has been
specified for the target window of a display operation (see
xvt_vobj_set_palet).

Uses win argument: No
xvt_vobj_get_attr returns: XVT_PALETTE_TYPE
xvt_vobj_set_attr effect: Changes the type of the default

palette created during XVT
initialization

xvt_app_create use: Must use before
Default value: XVT_PALETTE_STOCK; or it can be

set to any other XVT_PALETTE_TYPE
before calling xvt_app_create

See Also

XVT_PALLETE_* Values
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_vobj_set_palet

The "Portable Images" chapter in the XVT Portability Toolkit Guide

ATTR_DISPLAY_TYPE
Description

The system’s hardware display color capabilities. Check this
attribute to determine whether your application can display color or
grayscale graphics.

Uses win argument: No
xvt_vobj_get_attr returns: XVT_DISPLAY_TYPE value
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

XVT_DISPLAY_* Values
xvt_palet_create
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Portable Images" chapter in the XVT Portability Toolkit Guide

ATTR_DOC_STAGGER_HORZ
Description

Recommended horizontal document window cascading offset.

Uses win argument: No
xvt_vobj_get_attr returns: Offset in pixels
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_DOC_STAGGER_VERT
xvt_ctl_create_def
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create
xvt_win_create_def

The "Windows" chapter in the XVT Portability Toolkit Guide

ATTR_DOC_STAGGER_VERT
Description

Recommended vertical document window cascading offset.

Uses win argument: No
xvt_vobj_get_attr returns: Offset in pixels
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_DOC_STAGGER_HORZ
xvt_ctl_create_def
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create
xvt_win_create_def

The "Windows" chapter in the XVT Portability Toolkit Guide

ATTR_DOCFRAME_HEIGHT
Description

The thickness in pixels of a horizontal border of a resizable window.
You can use this value to calculate the outer size of a window, given
its client area.

Uses win argument: No
xvt_vobj_get_attr returns: Border thickness in pixels
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_DOCFRAME_WIDTH
xvt_ctl_create
xvt_ctl_create_def
xvt_vobj_get_attr
xvt_vobj_get_client_rect
xvt_vobj_get_outer_rect
xvt_vobj_set_attr
xvt_vobj_translate_points

The "Windows" chapter in the XVT Portability Toolkit Guide

ATTR_DOCFRAME_WIDTH
Description

The thickness in pixels of a vertical border of a resizable window.
You can use this value to calculate the outer size of a window, given
its client area.

Uses win argument: No
xvt_vobj_get_attr returns: Border thickness in pixels
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_DOCFRAME_HEIGHT
xvt_ctl_create
xvt_ctl_create_def
xvt_vobj_get_attr
xvt_vobj_get_client_rect
xvt_vobj_get_outer_rect
xvt_vobj_set_attr
xvt_vobj_translate_points

The "Windows" chapter in the XVT Portability Toolkit Guide

ATTR_ERRMSG_FILENAME
Description

This attribute holds the filename of the (customized) error message
file. The errscan utility creates the error message file, but you can
modify (e.g., translate) the contained text to customize messages for
a given application.

Error handlers perform message retrieval, using the XVT_ERRMSG
object interface. If no error message file is found, XVT provides
hardcoded English error messages for the basic, standard messages.
Other messages are then represented by message number.

Uses win argument: No
xvt_vobj_get_attr returns: Current message filename
xvt_vobj_set_attr effect: Replaces the message filename used

by subsequent error messaging
xvt_app_create use: Can use either before or after
Default value: ERRCODES.TXT

See Also

ATTR_ERRMSG_HANDLER
XVT_ERRMSG
xvt_errmsg_*
xvt_vobj_get_attr
xvt_vobj_set_attr
errscan

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

ATTR_ERRMSG_HANDLER
Description

This attribute holds the pointer to an application-supplied,
permanent error handler. This permanent error handler is called for
any error message signal not caught by the temporary handler
pushed using a xvt_errmsg_push_handler call, prior to the XVT-
provided "last chance" error handler.

The handler must use the XVT_ERRMSG_HANDLER signature, and return
TRUE if it handled the error, FALSE to pass this error to the "last
chance" error handler. The default value of this attribute is NULL.

Note: The XVT-provided "last chance" event handler cannot be queried or
called directly. However, you can prevent it from being invoked by
establishing an application error handler that always returns TRUE.

Prototype:

typedef BOOLEAN (* XVT_ERRMSG_HANDLER)
(XVT_ERRMSG err, DATA_PTR context)

Uses win argument: No
xvt_vobj_get_attr returns: The current permanent error handler

pointer
xvt_vobj_set_attr effect: Replaces the previous permanent

error handler pointer with a new one
xvt_app_create use: Can use either before or after
Default value: NULL

See Also

ATTR_ERRMSG_FILENAME
XVT_ERRMSG
XVT_ERRMSG_HANDLER
xvt_errmsg_push_handler
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Diagnostics and Debugging" chapter of the XVT Portability
Toolkit Guide

ATTR_EVENT_HOOK
Description

A pointer to an event-handling function for native events. The
prototype of this function varies between platforms, as do the nature
of events sent to it. Refer to your platform-specific book for proper
function prototypes and return value meaning.

Uses win argument: No
xvt_vobj_get_attr returns: The currently installed event hook

function.
xvt_vobj_set_attr effect: Sets the event hook function. Setting

this to NULL is valid, and means that
no event hook is installed.

xvt_app_create use: Can use either before or after
Default value: NULL

See Also

ATTR_HELP_HOOK
ATTR_KEY_HOOK
EVENT
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Events" chapter in the XVT Portability Toolkit Guide
The XVT Platform-Specific Books

ATTR_FONT_CACHE_SIZE
Description

This attribute controls the size of the font cache, which has a
significant impact upon text drawing performance when multiple

physical fonts are used. It takes a single long number, which is the
desired font cache size.

For each platform, the XVT Portability Toolkit establishes a
reasonable font cache size, which is in effect at system startup time.
If your application is font-intensive, you might want to increase the
cache size to increase performance.

Your application can change the default font cache size by setting
this attribute before you call xvt_app_create. Setting this attribute
after calling xvt_app_create has no effect on the cache size because
it has already been allocated.

If you don’t set this attribute, the XVT default cache size is used.
Setting it to zero resets the cache size to the default.

Uses win argument: No
xvt_vobj_get_attr returns: Current font cache size
xvt_vobj_set_attr effect: Sets size of font cache
xvt_app_create use: Must use before
Default value: Varies for each platform

See Also

xvt_vobj_get_attr
xvt_vobj_set_attr

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

ATTR_FONT_DIALOG
Description

This attribute holds the pointer to the application-supplied Font
Selection dialog. It controls whether or not an application-supplied
Font Selection dialog is used in the following situations:

• When a user invokes the Font Selection dialog from the menu

• When the application calls xvt_dm_post_font_sel

The attribute value is a pointer to the dialog-invoking function. To
register an application-customized font dialog with XVT, use
xvt_vobj_set_attr with this attribute. To retrieve the current
application font dialog function pointer, use xvt_vobj_get_attr.

If you don’t set this attribute, the XVT default Font Selection dialog
is used for both the menu-activated Font Selection dialog and
xvt_dm_post_font_sel. Setting it to NULL causes the default Font

Selection dialog to be used. Any application-supplied Font Selection
dialog must use the XVT_FONT_DIALOG signature, and return TRUE if
the font is selected, or FALSE if one is not selected.

Prototype:

typedef BOOLEAN (* XVT_FONT_DIALOG) (WINDOW
win, XVT_FNTID default_font_id, PRINT_RCD
*precp,unsigned long reserved)

Uses win argument: No
xvt_vobj_get_attr returns: Pointer to application-written Font

Selection dialog function or NULL
xvt_vobj_set_attr effect: Sets the Font Selection dialog function

pointer
xvt_app_create use: Can use either before or after
Default value: NULL

See Also

PRINT_RCD
XVT_FNTID
XVT_FONT_DIALOG
xvt_dm_post_font_sel
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Customized Font Selection Dialogs" section of the "Fonts and
Text" chapter in the XVT Portability Toolkit Guide

ATTR_FONT_MAPPER
Description

This attribute holds the pointer to the application-supplied Logical
Font mapping Function. It controls whether or not an application-
supplied font mapper is used. To register an application-supplied
font mapper with XVT, use xvt_vobj_set_attr with this attribute.

To retrieve the current application font mapper function pointer, use
xvt_vobj_get_attr. To remove a registered application-supplied
font mapper, use xvt_vobj_set_attr with this attribute, passing
NULL as the value. Any application-supplied font mapper must use
the XVT_FONT_MAPPER signature, and return TRUE if the function
maps the logical font, or FALSE if the function does not map the
logical font.

Prototype:

typedef BOOLEAN (* XVT_FONT_MAPPER)
(XVT_FNTID font_id)

Uses win argument: No
xvt_vobj_get_attr returns: Pointer to application-supplied font

mapper function or NULL
xvt_vobj_set_attr effect: Sets the font mapper function pointer
xvt_app_create use: Can use either before or

after
Default value: NULL

See Also

ATTR_FRAME_WIDTH
XVT_FNTID
XVT_FONT_MAPPER
xvt_win_create
xvt_win_create_def
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Font Mapping Example" section of the "Fonts and Text"
chapter in the XVT Portability Toolkit Guide

ATTR_FRAME_HEIGHT
Description

The thickness in pixels of a horizontal border of a non-resizable
window. You can use this value to calculate the outer size of a
window, given its client area.

Uses win argument: No
xvt_vobj_get_attr returns: Border thickness in pixels
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_FRAME_WIDTH
xvt_vobj_get_attr
xvt_vobj_get_client_rect
xvt_vobj_get_outer_rect
xvt_vobj_set_attr
xvt_vobj_translate_points
xvt_win_create
xvt_win_create_def

The "Windows" chapter in the XVT Portability Toolkit Guide

ATTR_FRAME_WIDTH
Description

The thickness in pixels of a vertical border of a non-resizable
window. You can use this value to calculate the outer size of a
window, given its client area.

Uses win argument: No
xvt_vobj_get_attr returns: Border thickness in pixels
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_FRAME_HEIGHT
xvt_vobj_get_attr
xvt_vobj_get_client_rect
xvt_vobj_get_outer_rect
xvt_vobj_set_attr
xvt_vobj_translate_points
xvt_win_create
xvt_win_create_def

The "Windows" chapter in the XVT Portability Toolkit Guide

ATTR_HAVE_MOUSE
Description

A BOOLEAN value indicating if the program is running on a system
with a mouse or other pointing device present.

Uses win argument: No
xvt_vobj_get_attr returns: TRUE if the system has a pointing

device
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

The XVT Platform-Specific Books

ATTR_HELP_CONTEXT
Description

Registers a context that is passed to the help hook function. This
attribute is used internally to pass an XVT_HELP_INFO handle to the
default help hook. You can use this attribute with the
ATTR_HELP_HOOK attribute to customize the behavior of the help
system.

Uses win argument: No
xvt_vobj_get_attr returns: The currently registered help hook

context
xvt_vobj_set_attr effect: Sets the help hook context. Setting

this to NULL is valid, and means that
NULL will be passed to the registered
help hook.

xvt_app_create use: Can use either before or after
Default value: NULL

See Also

ATTR_HELP_HOOK
XVT_HELP_INFO
xvt_help_process_event
xvt_help_open_helpfile
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

ATTR_HELP_HOOK
Description

A pointer to an event-handling function. The purpose of this
function is to pass XVT events to the help system. All XVT events
are passed through it, including those delivered via a call to
xvt_win_dispatch_event. The function may do special processing
of the events before passing them to the help system. Returning TRUE
means that the XVT Portability Toolkit should continue to process
the event. Returning FALSE means the Toolkit should not process it
further.

The context argument to the help hook function contains
programmer-specified context data. The Toolkit normally sets this
attribute when xvt_help_open_helpfile is called. The Toolkit-
provided help hook simply calls xvt_help_process_event and
returns FALSE. To customize the event delivery to the help system,
you should set this attribute to your own help hook prior to calling
xvt_help_open_helpfile.

Prototype:

BOOLEAN HelpHook (void* context, WINDOW win,
EVENT* ev);

Uses win argument: No
xvt_vobj_get_attr returns: The currently installed help hook

function.
xvt_vobj_set_attr effect: Sets the help hook function. Setting

this to NULL is valid, and means that
there is no help hook installed.

xvt_app_create use: Can use either before or after
Default value: NULL

See Also

ATTR_EVENT_HOOK
ATTR_HELP_CONTEXT
ATTR_KEY_HOOK
xvt_help_open_helpfile
xvt_help_process_event
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_dispatch_event

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

ATTR_ICON_HEIGHT
Description

The default icon height, which can be used to determine how much
vertical space is used by xvt_dwin_draw_icon. This value’s
usefulness is limited by the fact that it is possible to create variable-
size icons on some platforms.

Uses win argument: No
xvt_vobj_get_attr returns: Icon height
xvt_vobj_set_attr effect: Illegal

See Also

ATTR_ICON_WIDTH
xvt_dwin_draw_icon
xvt_vobj_get_attr
xvt_vobj_set_attr

ATTR_ICON_WIDTH
Description

The default icon width, which can be used to determine how much
horizontal space is used by xvt_dwin_draw_icon. This value’s
usefulness is limited by the fact that it is possible to create variable-
size icons on some platforms.

Uses win argument: No
xvt_vobj_get_attr returns: Icon width
cxvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_ICON_HEIGHT
xvt_dwin_draw_icon
xvt_vobj_get_attr
xvt_vobj_set_attr

ATTR_KEY_HOOK
Description

A pointer to an event-handling function for native keystroke events.
The prototype of this key hook function varies between platforms,
as do the nature of events sent to it. The protoype also depends on
whether the application is executing in single-byte mode or in
multibyte-aware mode (ATTR_MULTIBYTE_AWARE is TRUE). Refer to
your platform-specific book for proper function prototypes and
return value meaning. This pointer allows an application to
supplement XVT’s internal key translation algorithm.

xvt_app_create use: Can use either before or after
Default value: Varies for each platform

Note: If ATTR_MULTIBYTE_AWARE is set to TRUE, the application key hook
function is responsible for properly setting both the virtual_key
field and the modifiers field in the EVENT structure.

Uses win argument: No
xvt_vobj_get_attr returns: The currently installed key hook

function.
xvt_vobj_set_attr effect: Sets the key hook function. Setting

this to NULL is valid and means no
key hook is installed.

xvt_app_create use: Can use either before or after
Default value: NULL

See Also

ATTR_EVENT_HOOK
ATTR_HELP_HOOK
ATTR_MULTIBYTE_AWARE
E_CHAR
XVT_MOD_KEY
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Events" and the "Multibyte Charater Sets and Localization"
chapters in the XVT Portability Toolkit Guide
The XVT Platform-Specific Books

ATTR_MEMORY_MANAGER
Description

This attribute is the address of a structure of type XVT_MEM (defined
in xvt_type.h). This structure contains the addresses of the system-
wide memory management functions that are called when the
application invokes xvt_mem_alloc, xvt_mem_free,
xvt_mem_realloc, and xvt_mem_zalloc.

Applications wishing to set or retrieve the addresses of the
underlying memory management functions used by the system
should use this attribute.

This attribute must be set by the first call to the xvt_vobj_set_attr.
Setting any other attribute first, or calling xvt_app_create, forces
the system to use the default memory management functions, which
cannot be replaced.

Uses win argument: No
xvt_vobj_get_attr returns: Current memory management

functions in an XVT_MEM structure
xvt_vobj_set_attr effect: Sets the memory management

functions that will be used for
memory allocation, memory freeing,
memory reallocation, and allocating
and zeroing memory

xvt_app_create use: Must use before
Default value: NULL before a call to

xvt_app_create (afterwards it is
the address of an XVT_MEM structure
containing addresses of the system
default memory management
functions)

Note: Remember to use the XVT_CALLCONV1 macro in the prototypes and
headers for your memory management functions.

See Also

XVT_CALLCONV*
xvt_mem_*

The "Memory Allocation" chapter in the XVT Portability Toolkit
Guide

Example

The following code sets the memory management functions, which
must be done before xvt_app_create:

XVT_MEM my_functions = {my_alloc, my_free,
my_realloc,

 my_zmalloc};
 xvt_vobj_set_attr(NULL_WIN, ATTR_MEMORY_MANAGER,

 (long)&my_functions);

ATTR_MENU_HEIGHT
Description

The height of a menubar. You can use this value to calculate the
outer size of a window, given its client area. However, it is up to the
application to determine whether a particular window has a menu
attached to it.

Uses win argument: No
xvt_vobj_get_attr returns: Menu height in pixels
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

xvt_menu_get_tree
xvt_menu_set_tree
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create
xvt_win_create_def
xvt_win_has_menu

The "Menus" chapter in the XVT Portability Toolkit Guide

ATTR_MULTIBYTE_AWARE
Description

This attribute of type BOOLEAN must be set to TRUE before
xvt_app_create is called if and only if the application has been
internationalized to be multibyte-capable. This allows XVT to
determine which version of the application key hook interface to
invoke, whether to set the new E_CHAR event fields, as well as do
some internal performance enhancements for non-multibyte
applications.

Uses win argument: No
xvt_vobj_get_attr returns: TRUE if set
xvt_vobj_set_attr effect: Sets multibyte functionality if set to

TRUE
xvt_app_create use: Must use before
Default value: FALSE

See Also

ATTR_KEY_HOOK
E_CHAR
XVT_MOD_KEY
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Multibyte Character Set and Localization" chapter in the XVT
Portability Toolkit Guide

ATTR_NATIVE_GRAPHIC_CONTEXT
Description

This value represents the underlying graphical context for a
particular window in the native window system. While this attribute
is portable, it has a non-portable return value.

Note: On some platforms, the graphic context returned for this attribute
might not be persistent. The context should be acquired every time
it is needed. For more information, see the XVT Platform-Specific
Books.

Platform Return Value
XVT/Win32 HDC
XVT/Mac Grafport
XVT/XM GC. However, XVT does not recommend

using this GC because it has some
undocumented side-effects, and because
GCs are easy to create yourself.

Uses win argument: Yes
xvt_vobj_get_attr returns: Native context (requires casting)
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: Undefined

See Also

ATTR_NATIVE_WINDOW
xvt_vobj_get_attr
xvt_vobj_set_attr

The XVT Platform-Specific Books

ATTR_NATIVE_WINDOW
Description

This value represents the underlying window object for a particular
window in the native window system. While this attribute is
portable, it has a non-portable return value.

Platform Return Value
XVT/Win32 HWND

See Also

ATTR_NATIVE_GRAPHIC_CONTEXT
xvt_vobj_get_attr
xvt_vobj_set_attr

The XVT Platform-Specific Books

ATTR_NUM_TIMERS
Description

The number of timers in the system available to the application via
xvt_timer_create.

Uses win argument: No
xvt_vobj_get_attr returns: Number of available timers
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

E_TIMER
xvt_timer_create
xvt_vobj_get_attr
xvt_vobj_set_attr

The "E_TIMER Events" section of the "Events" chapter in the XVT
Portability Toolkit Guide

ATTR_PRINTER_HEIGHT
Description

The height of the default printer, in pixels.

XVT/Mac Windowptr
XVT/XM Window

Uses win argument: Yes
xvt_vobj_get_attr returns: Native graphical window (requires

casting)
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: Undefined

Note: The ATTR_PRINTER_* attributes return only those values appropriate
for the default printer settings. To retrieve printer metrics for a
printer setting stored in a PRINT_RCD, see XVT_ESC_*.

Uses win argument: No
xvt_vobj_get_attr returns: Printer height
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_PRINTER_HRES
ATTR_PRINTER_VRES
ATTR_PRINTER_WIDTH
XVT_ESC_*
xvt_vobj_get_attr
xvt_vobj_set_attr

The XVT Platform-Specific Books

ATTR_PRINTER_HRES
Description

The horizontal resolution of the default printer, in pixels per inch.

Note: The ATTR_PRINTER_* attributes return only those values appropriate
for the default printer settings. To retrieve printer metrics for a
printer setting stored in a PRINT_RCD, see XVT_ESC_*.

Uses win argument: No
xvt_vobj_get_attr returns: Printer horizontal resolution
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_PRINTER_HEIGHT
ATTR_PRINTER_VRES
ATTR_PRINTER_WIDTH
XVT_ESC_*
xvt_vobj_get_attr
xvt_vobj_set_attr

ATTR_PRINTER_VRES
Description

The vertical resolution of the default printer, in pixels per inch.

Note: The ATTR_PRINTER_* attributes return only those values appropriate
for the default printer settings. To retrieve printer metrics for a
printer setting stored in a PRINT_RCD, see XVT_ESC_*.

Uses win argument: No
xvt_vobj_get_attr returns: Printer vertical resolution
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_PRINTER_HEIGHT
ATTR_PRINTER_HRES
ATTR_PRINTER_WIDTH
XVT_ESC_*
xvt_vobj_get_attr
xvt_vobj_set_attr

ATTR_PRINTER_WIDTH
Description

The width of the default printer, in pixels.

Note: The ATTR_PRINTER_* attributes return only those values appropriate
for the default printer settings. To retrieve printer metrics for a
printer setting stored in a PRINT_RCD, see XVT_ESC_*.

Uses win argument: No
xvt_vobj_get_attr returns: Printer width
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: Varies for each platform

See Also

ATTR_PRINTER_HEIGHT
ATTR_PRINTER_HRES
ATTR_PRINTER_VRES
XVT_ESC_*
xvt_vobj_get_attr
xvt_vobj_set_attr

ATTR_PROPAGATE_NAV_CHARS
Description

This attribute affects the propagation of navigation character E_CHAR
events from controls to their container window’s event handler. This
attribute has no effect on dialogs. A navigation character is any
typed character capable of causing a shift in keyboard focus as
defined by platform look-and-feel. The default behavior of
navigation character propagation from controls to container window
event handlers is platform-specific. It varies with look-and-feel
issues and the type of object having focus.

This attribute (set to a value of TRUE) insures that character events
relevant to keyboard navigation are generated and sent to your
window event handler overriding any default platform-specific
behavior. This feature allows you to implement portable routines for
keyboard navigation and field validation in windows of your XVT
application.

Uses win argument: Yes
xvt_vobj_get_attr returns: TRUE or FALSE
xvt_vobj_set_attr effect: TRUE to propagate navigation

characters. FALSE for default
platform-specific navigation
character event propagation (R4.0
compatible).

xvt_app_create use: Any time after
Default value: FALSE

Navigation keys which may be affected by this attribute include the
following:

• Tab key

• Back-Tab (Shift-tab) key

• Enter or Return key (except XVT/Mac)

• Escape key (except XVT/Mac)

• Arrow keys (except XVT/Mac)

• Text character keys used for mnemonics (except XVT/Mac
and XVT/XM). Unmodified mnemonics are not affected for
list or edit controls.

Other keys that also may be affected by this attribute include the
following:

• Alt key combinations

• Control key combinations

• Virtual keys

• Function keys (K_F* function keys are distinguished
separately here from other virtual keys)

Each platform propagates E_CHAR events in a different manner
depending upon look-and-feel issues and keyboard focus.

Propagation of navigation and other key types (listed above) for
value of ATTR_PROPAGATE_NAV_CHARS:

Focus in window with no focusable control:

XVT/Mac
AttributeFALSE: All keys
AttributeTRUE: All keys

XVT/Win32
AttributeFALSE: All keys except Alt key

combinations and
virtual keys

AttributeTRUE: All keys

XVT/XM
AttributeFALSE: All keys except Alt key

combinations
AttributeTRUE: All keys except Alt key

combinations

Focus in window with focusable control:

XVT/Mac
AttributeFALSE: Only virtual keys and

function keys not
consumed by a control

AttributeTRUE: All keys except virtual keys
and function keys
consumed by a control

XVT/Win32
AttributeFALSE: All keys except Alt key

combinations
AttributeTRUE: All keys

XVT/XM
AttributeFALSE: All keys except Alt key

combinations
AttributeTRUE: All keys except Alt key

combinations

Focus in non-text entry type control:

XVT/Mac (includes list button)
AttributeFALSE: Not applicable - these controls

are non-focusable
AttributeTRUE: Not applicable - these controls

are non-focusable

XVT/Win32
AttributeFALSE: All keys except text mnemonics
AttributeTRUE: All keys

XVT/XM
AttributeFALSE: All keys except Alt key

combinations
AttributeTRUE: All keys except Alt key

combinations

Focus in text entry control (includes list button, list box):

XVT/Mac (excludes list button)
AttributeFALSE: Only virtual keys and function keys

not consumed by the control
AttributeTRUE: All keys except virtual keys and

function keys consumed by the
control

XVT/Win32
AttributeFALSE: All keys except text mnemonics
AttributeTRUE: All keys

XVT/XM
AttributeFALSE: All keys except Alt key

combinations
AttributeTRUE: All keys except Alt key

combinations

SeeAlso

ATTR_KEY_HOOK
E_CHSee AlsoAR
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Events" chapter in the XVT Portability Toolkit Guide

ATTR_RESOURCE_FILENAME
Description

This attribute can be set to a multibyte string containing a pathname
to an external resource file. On the XVT/Win32 platform, the file is
a DLL containing resources. On XVT/Mac and XVT/XM, the file is
a resource file that is external to the application. If the attribute is
NULL, XVT uses the resources bound to the application.

Uses win argument: No
xvt_vobj_get_attr returns: Name of resource file
xvt_vobj_set_attr effect: Sets application resource DLL or

resource file
xvt_app_create use: Must use before
Default value: NULL

See Also

xvt_vobj_get_attr
xvt_vobj_set_attr

The "Resources and XRC" and the "Multibyte Character Sets and
Localization" chapters in the XVT Portability Toolkit Guide
The XVT Platform-Specific Books

ATTR_R40_TXEDIT_BEHAVIOR
Description

By default, XVT encapsulates its text edit object (multiline edit
control) in a child window. This allows text edit objects to
participate fully and properly in keyboard focus and navigation as
with any other type of control or child window.

In Release 4.0x, text edit objects were merely drawn in their
container window with XVT providing functions for proper
interaction with other GUI objects. The
ATTR_R40_TXEDIT_BEHAVIOR attribute allows you to continue using
this behavior. However, XVT strongly recommends that you use the
default behavior whenever possible.

The Release 4.0x functions xvt_tx_is_scroll_update and
xvt_tx_process_event are supported only when
ATTR_R40_TXEDIT_BEHAVIOR is set to TRUE. Calling these functions
when the attribute is set to FALSE result in no operation.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: If TRUE, use text edit objects as in

Release 4.0x. If FALSE, use text
edit objects encapsulated in a
child window.

xvt_app_create use: Must use before
Default value: FALSE

See Also

The "Text Edit Object" section of the "Controls" chapter in the XVT
Portability Toolkit Guide

ATTR_SCREEN_HEIGHT
Description

The height of the screen, in pixels.

Uses win argument: No
xvt_vobj_get_attr returns: Screen height
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after, except

on XVT/XM, only use after
Default value: Varies for each platform

See Also

ATTR_SCREEN_HRES
ATTR_SCREEN_VRES
ATTR_SCREEN_WIDTH
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create
xvt_win_create_def
xvt_win_create_res

The "Coordinate Systems" chapter in the XVT Portability Toolkit
Guide

ATTR_SCREEN_HRES
Description

The horizontal resolution of the screen, in pixels per inch.

Uses win argument: No
xvt_vobj_get_attr returns: Screen horizontal resolution
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after, except

on XVT/XM, only use after
Default value: Varies for each platform

See Also

ATTR_SCREEN_HEIGHT
ATTR_SCREEN_VRES
ATTR_SCREEN_WIDTH
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create
xvt_win_create_def
xvt_win_create_res

The "Coordinate Systems" chapter in the XVT Portability Toolkit
Guide

ATTR_SCREEN_VRES
Description

The vertical resolution of the screen, in pixels per inch.

Uses win argument: No
xvt_vobj_get_attr returns: Screen vertical resolution
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after, except

on XVT/XM, only use after
Default value: Varies for each platform

See Also

ATTR_SCREEN_HEIGHT
ATTR_SCREEN_HRES
ATTR_SCREEN_WIDTH
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create
xvt_win_create_def
xvt_win_create_res

The "Coordinate Systems" chapter in the XVT Portability Toolkit
Guide

ATTR_SCREEN_WIDTH
Description

The width of the screen, in pixels.

Uses win argument: No
xvt_vobj_get_attr returns: Screen width
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after, except

on XVT/XM, only use after
Default value: Varies for each platform

See Also

ATTR_SCREEN_HEIGHT
ATTR_SCREEN_HRES
ATTR_SCREEN_VRES
xvt_vobj_get_attr
xvt_vobj_set_attr
xvt_win_create
xvt_win_create_def
xvt_win_create_res

The "Coordinate Systems" chapter in the XVT Portability Toolkit
Guide

ATTR_SCREEN_WINDOW
Description

The WINDOW value for the screen window. The screen window
corresponds to the monitor screen and might serve as a container (or
parent) for top-level windows and dialogs.

Uses win argument: No
xvt_vobj_get_attr returns: The WINDOW for the screen window
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after, except

on XVT/XM, only use after
Default value: Varies for each platform

See Also

ATTR_TASK_WINDOW
SCREEN_WIN
TASK_WIN
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Screen and Task Windows" section of the "Windows" chapter
in the XVT Portability Toolkit Guide

ATTR_SUPPRESS_UPDATE_CHECK
Description

A BOOLEAN value that controls XVT’s policing of invalid function
calls during E_UPDATE events. Normally, XVT does not allow many
function calls during an E_UPDATE, because they confuse the native
window systems and are poor programming practice. However, if
your application runs into an obscure case requiring this check to be
disabled, then you can set this attribute to TRUE.

Uses win argument: No
xvt_vobj_get_attr returns: TRUE if update checking is disabled
xvt_vobj_set_attr effect: Disables update checking if TRUE;

enables update checking if FALSE
xvt_app_create use: Can use either before or after, except

on XVT/XM, only use after
Default value: FALSE

See Also

E_UPDATE
xvt_vobj_get_attr
xvt_vobj_set_attr

The "E_UPDATE Events" section of the "Events" chapter in the XVT
Portability Toolkit Guide

ATTR_TASK_WINDOW
Description

The WINDOW value for the task window. The task window can serve
as a container (or parent) for all windows on all platforms. On XVT/
XVT/Win32, the task window corresponds to a physical container
window. On XVT/XM, the task window is represented by an
independent top-level window containing a menubar only. On other
platforms, the task window corresponds to the screen.

Uses win argument: No
xvt_vobj_get_attr returns: The WINDOW for the task window
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: NULL_WIN

See Also

ATTR_SCREEN_WINDOW
SCREEN_WIN
TASK_WIN
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Screen and Task Windows" section of the "Windows" in XVT
Portability Toolkit Guide

ATTR_TASKWIN_TITLE_RID
Description

This attribute can be set to the resource ID of the multibyte string
containing the value of taskwin_title for use in the XVT_CONFIG

structure. In xvt_app_create, this attribute is tested for non-zero by
XVT and the resource loaded into XVT_CONFIG.

Uses win argument: No
xvt_vobj_get_attr returns: Gets title RID
xvt_vobj_set_attr effect: Sets the title resource ID for taskwin
xvt_app_create use: Must use before
Default value: NULL

See Also

ATTR_APPL_NAME_RID
ATTR_XVT_CONFIG
XVT_CONFIG
xvt_app_create
xvt_vobj_get_attr
xvt_vobj_set_attr

ATTR_TITLE_HEIGHT
Description

The height of a window’s title area. You can use this value to
calculate the outer size of a window, given its client area. However,
it is up to the application to determine whether a particular window
has a title attached to it.

Uses win argument: No
xvt_vobj_get_attr returns: Menu height in pixels
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or

after
Default value: Varies for each platform

See Also

xvt_vobj_get_attr
xvt_vobj_get_client_rect
xvt_vobj_get_outer_rect
xvt_vobj_set_attr
xvt_vobj_translate_points
xvt_win_create
xvt_win_create_def

The "Windows" chapter in the XVT Portability Toolkit Guide

ATTR_XVT_CONFIG
Description

The XVT_CONFIG pointer passed to xvt_app_create.

Uses win argument: No
xvt_vobj_get_attr returns: Pointer to XVT_CONFIG
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Default value: NULL

See Also

XVT_CONFIG
xvt_app_create
xvt_vobj_get_attr
xvt_vobj_set_attr

XVT Events
EVENT_TYPE
E_CHAR
E_CLOSE
E_COMMAND
E_CONTROL
E_CREATE
E_CXO
E_DESTROY
E_FOCUS
E_FONT
E_HELP
E_HSCROLL
E_MOUSE_DBL
E_MOUSE_DOWN
E_MOUSE_MOVE
E_MOUSE_SCROLL
E_MOUSE_UP
E_QUIT
E_SIZE
E_TIMER
E_UPDATE
E_USER
E_VSCROLL

EVENT_TYPE
 Event-Type

Summary

typedef enum _event_type {
E_CREATE, /* creation */
E_DESTROY, /* destruction */
E_FOCUS, /* window focus gain/loss */
E_SIZE, /* resize */
E_UPDATE, /* update */
E_CLOSE, /* close window request */
E_MOUSE_DOWN, /* mouse down */
E_MOUSE_UP, /* mouse up */
E_MOUSE_MOVE, /* mouse move */
E_MOUSE_DBL, /* mouse double click */
E_CHAR, /* character typed */
E_VSCROLL, /* vert. window scrollbar activity */
E_HSCROLL, /* horz. window scrollbar activity */
E_COMMAND, /* menu command */
E_FONT, /* font menu selection */
E_CONTROL, /* control activity */
E_TIMER, /* timer */
E_QUIT, /* application shutdown request */
E_HELP, /* help invoked */
E_USER, /* user defined */

} EVENT_TYPE;

Description

Values of this data type identify one of the XVT events.

Implementation Note

You can’t depend on the actual value of the enumeration constants,
or on the number of event types, because these are likely to be
changed in future versions of XVT.

See Also

XVT Events

EVENT

EVENT_HANDLER

EVENT_MASK

WINDOW

XVT_CALLCONV*

The "Events" chapter in the XVT Portability Toolkit Guide

Example

This code fragment shows a typical use of EVENT_TYPEs in XVT:

long XVT_CALLCONV1 win_eh(WINDOW xdWindow,
EVENT *xdEvent)

{
switch(xdEvent->type){
case E_CREATE:

/* creation handling code */
break;

case E_DESTROY:
/* destruction handling code */
break;
...

}
}

E_CHAR
 Keyboard-Character Event

Summary

typedef struct { /* event description */
EVENT_TYPE type; /* E_CHAR */
union {
...
struct s_char {
XVT_WCHAR ch; /* wide character */
BOOLEAN shift; /* shift-key? */
BOOLEAN control; /* ctrl or option key? */
BOOLEAN virtual_key; /* virtual key? */
unsigned long modifiers; /* key bit field modifiers */
} chr;
...
} v;

} EVENT;

Description

XVT sends an E_CHAR event to the event handler for a WINDOW when
the user types a character or virtual key code into a window. The
E_CHAR event is delivered only to the event handler of the window
that has keyboard focus, and for a control that has not absorbed the
character event for its own use. When the WINDOW event handler
receives an event, the WINDOW argument specifies the window in
which the event occurred, and the EVENT pointer defines an EVENT

structure with fields in the chr union expressing event-specific
information.

If the key is held down and auto-repeat occurs, a separate event is
generated for each repetition, so repeated characters don’t require
special handling.

Processing Characters

The EVENT substructure chr contains the character code field (ch)
which is an XVT_WCHAR. Multibyte-capable applications must use the
XVT function xvt_str_convert_wc_to_mb before assigning an
XVT_WCHAR wide character to a multibyte string array or processing
the character with other XVT functions. It is recommended, but not
required, that single-byte applications also use this function. Single-
byte applications can always cast XVT_WCHAR characters to char as
long as they do not rely on the virtual key portion (high byte) of the
XVT_WCHAR (this will not port to multibyte applications).

Modifier Keys

The BOOLEAN members of the chr substructure, shift and control,
indicate whether those keys were held down while a character was
typed. However, if the user types an uppercase character or a control
character (such as ’<fct’ or ’<fcb’), the true character code value is
in ch, so it’s not necessary to look at shift or control to see what
was actually typed. In fact, your application should use the shift
and control members sparingly, because doing so may make it less
portable. (Some platforms cannot provide accurate information to be
placed in the shift and control fields.)

In addition to the shift and control fields, the modifiers field is a
general way for detecting a pressed modifier key (Control key,
Option key, Alt key, etc.). This field holds an OR’d combination of
bit-wise flags to indicate one or more modifier keys selected. All
available modifier keys are passed in the E_CHAR event for use by the
application. The following constants are defined for bit positions in
the modifiers field and indicate which corresponding key or keys
are held down:

XVT_MOD_KEY_NONE

No modifier keys are pressed.

XVT_MOD_KEY_SHIFT

Shift key is pressed (either XVT_MOD_KEY_LSHIFT bit or
XVT_MOD_KEY_RSHIFT bit also set on platforms that can detect
individual Left or Right Shift keys).

XVT_MOD_KEY_CTL

Control key is pressed.

XVT_MOD_KEY_ALT

Alt key is pressed.

XVT_MOD_KEY_LSHIFT

Left Shift key is pressed on platforms that can detect Left Shift
key (XVT_MOD_KEY_SHIFT bit also set).

XVT_MOD_KEY_RSHIFT

Right Shift key is pressed on platforms that can detect Right
Shift key (XVT_MOD_KEY_SHIFT bit also set).

XVT_MOD_KEY_CMD

Command key is pressed (available on XVT/Mac only).

XVT_MOD_KEY_OPTION

Option key is pressed (available on XVT/Mac only).

XVT_MOD_KEY_COMPOSE

Compose key is pressed (available on XVT/XM only).

Virtual Keys

XVT virtual key values are the K_* values (F1, Home key, etc.)
defined in the xvt_defs.h header file. Virtual keys in character
events may be detected by several means.

For the ASCII character code set only, values of the ch field greater
than UCHAR_MAX indicate a virtual key (except for K_DEL which is less
than UCHAR_MAX).

The virtual_key member of the chr substructure is also set to TRUE
to distinguish virtual key characters. In multibyte applications,
virtual key codes may conflict with some multibyte character
encodings. Therefore, the virtual_key field must be validated for
multibyte applications.

Alternately, the most general means for testing for a virtual key
(regardless of character code set) is to pass the EVENT structure to the
xvt_event_is_virtual_key utility function which determines if
the character in a E_CHAR event is a virtual key.

Key Hook Attribute

You can change the mapping of raw key codes (as generated by the
keyboard) to XVT virtual key codes, or add new codes, by changing
the default key hook function. This is done with the function
xvt_vobj_set_attr and the attribute ATTR_KEY_HOOK.

The parameters passed to a key hook function vary depending upon
whether your XVT application is capable of processing multibyte
characters (ATTR_MULTIBYTE_AWARE is set to TRUE). Parameters also
vary between platforms. In single-byte mode, hook functions
receive only platform-specific data. In multibyte-aware mode,
though, key hook functions on all platforms receive a pointer to the
EVENT structure (E_CHAR event) in addition to platform-specific
information. This is necessary because only the hook function
knows if it is mapping a passed character to a virtual key in a
multibyte-aware environment. Note that the interface for multibyte
hook functions is called only if ATTR_MULTIBYTE_AWARE is set to
TRUE, otherwise the single-byte (default) interface is used.

Implementation Note

In XVT/Win32, the task window’s event handler may receive
E_CHAR events only if the task window is drawable (platform-
specific attribute ATTR_WIN_PM_DRAWABLE_TWIN is set to TRUE).

On XVT/Mac, E_CHAR events also are delivered to XVT dialogs.
However, to maintain portability, you should not process character
events sent to dialogs.

Do not use the Control key for keyboard shortcuts (mnemonics),
because the native platforms for XVT/Win32 use the Control key
with menu accelerators. Also, on XVT/Mac, the Option key
generates non-ASCII characters. XVT/Mac stores these into the ch
member, and they can be handled normally but their use may not be
portable.

See Also

ATTR_KEY_HOOK

ATTR_MULTIBYTE_AWARE

ATTR_PROPAGATE_NAV_CHARS

E_FOCUS

EVENT

EVENT_TYPE

K_* Key Codes

UCHAR_MAX

XVT_WCHAR

WINDOW

XVT_CALLCONV*

XVT_MAX_MB_SIZE

XVT_MOD_KEY

xvt_event_is_virtual_key

xvt_str_convert_wc_to_mb

The "Events" chapter in the XVT Portability Toolkit Guide

The XVT Platform-Specific Books

Example

The following code processes a single character delivered in an
E_CHAR event:

long XVT_CALLCONV1 win_eh(WINDOW win, EVENT *ep)
{

static int x = LEFT_MGN, y = 0;
char mbc[XVT_MAX_MB_SIZE + 1];
int len, width;
...
switch (ep->type){

...
case E_CHAR:
if (y == 0) {
y = doc.height;
xvt_dwin_set_caret_pos(win, x, y);
xvt_dwin_set_caret_visible(win, TRUE);

}
if (xvt_event_is_virtual_key(ep)) {
/* donÂt process virtual characters */
return;len =
xvt_str_convert_wc_to_mb(mbc,

ep->v.chr.ch);
width = xvt_dwin_get_text_width(win, mbc,
1);

if ((len == 0) || ((len == 1) &&
!xvt_str_is_alnum(mbc)))

/* only process printable characters */
return;

if (x + width > doc.rct.right) {
if (++doc.xrcine >= doc.maxlines) {
xvt_dm_post_note(
"Characters donÂt fit!");

return;
}
x = LEFT_MGN;
y += doc.height;

}
xvt_dwin_draw_text(win, x, y, mbc, 1);
x += width;
xvt_dwin_set_caret_pos(win, x, y);
save_char(ep->v.chr.ch);
...
break;

...
}

}

E_CLOSE
 Close-Window Event

Summary

typedef struct { /* event description */
EVENT_TYPE type; /* event type (E_CLOSE) */
...

} EVENT;

 Description

XVT sends an E_CLOSE event to the event handler for a window or
dialog in response to the user clicking its "close box." Windows that
aren’t created with either the WSF_CLOSE or WSF_DECORATED flags
won’t have a "close box." The WINDOW argument in the application
event handler indicates which dialog or window the user has tried to
close. No additional information is needed to process this event, so
the EVENT structure contains none.

When this event is received, the window or dialog hasn’t actually
been closed, your application must call xvt_vobj_destroy to
destroy the window. If your application calls xvt_vobj_destroy,
then an E_DESTROY event is sent to the window’s event handler. The
purpose of the E_DESTROY event is to notify your application that it
needs to free the memory allocated for application data associated
with the WINDOW being destroyed. The E_DESTROY is the last event the
WINDOW will receive. Keep in mind that if your application does not
call xvt_vobj_destroy, XVT will not close the window for it.

After calling xvt_vobj_destroy for the window, you should not
attempt to call any XVT functions with the window as an argument.

If E_CLOSE is ignored, then no window is closed, and nothing in the
application changes. This distinction is important. Typically,
applications check the state of the window upon receiving an
E_CLOSE event. If the state indicates that the contents of the window
or dialog have been saved (for example), then the application can
simply call xvt_vobj_destroy. If, however, the contents have not
been saved, the application can display a dialog asking if the user
wishes to save or discard changes, so that the changes can be
preserved before calling xvt_vobj_destroy.

E_CLOSE events are generated for the task window, regular windows,
and dialogs. They are not generated for print windows, pixmaps,
controls, or screen windows.

On all platforms, if you call xvt_vobj_destroy with the task
window, an E_DESTROY event will be sent to the task event handler,
but it is not guaranteed that the children of the task window will
receive E_DESTROY events.

Note: An E_CLOSE event is not sent when the user chooses "Close" from
the file menu. Instead, an E_COMMAND event is sent with the
v.cmd.tag field of the event structure set to M_FILE_CLOSE. It is
common for applications to perform similar window closing
activities both upon the receipt of an E_COMMAND event with a tag of
M_FILE_CLOSE and upon the receipt of an E_CLOSE event.

Implementation Note

On the platforms that have a physical representation of a task
window (XVT/Win32, XVT/Win64, and XVT/XM), an E_CLOSE
event is sent to the task event handler if the user clicked on the "close
box" for the task window to shut down the application.

See Also

E_COMMAND

E_DESTROY

M_EDIT_*, M_FILE_*, M_HELP_* Menu Tags

WINDOW

WSF_* Options Flags

WSF_* Options Flags

xvt_vobj_destroy

The "Events" chapter in the XVT Portability Toolkit Guide

Example

In the following code, the application provides the function
OK_to_close elsewhere:

long XVT_CALLCONV1 a_window_eh(WINDOW win, EVENT *ep)
{

switch (ep->type) {
case E_COMMAND:

switch (ep->v.cmd.tag) {
case M_FILE_CLOSE:

if (OK_to_close(win))
xvt_vobj_destroy(win);

break;
}
break;

case E_CLOSE:
if (OK_to_close(win))

xvt_vobj_destroy(win);
break;

}
}

E_COMMAND
 Menu-Command Event

Summary

typedef struct { /* event description */
EVENT_TYPE type; /* event type */
union {
...
struct s_cmd {
MENU_TAG tag; /* menu item tag */
BOOLEAN shift; /* shift key down? */
BOOLEAN control; /* control/option key? */
} cmd;
...
} v;

} EVENT;

Description

XVT generates an E_COMMAND event when the user makes a menu
selection (or causes a menu selection by typing a menu-accelerator
key). However, selections from Font/Style menus generate E_FONT
events, not E_COMMAND events.

XVT sets the v.cmd.tag field of the event structure to the tag of the
item that was chosen (as specified in MENU_ITEM or your XRC file).
The v.cmd.shift and v.cmd.control fields are set to TRUE if the
user pressed Shift or Control while selecting the menu item.

Unless a window has a menubar, its event handler will not receive
E_COMMAND events. Therefore, E_COMMAND events will never be sent
to child windows or windows created with the WSF_NO_MENUBAR
attribute set.

It is possible for a window that does not have the focus to receive an
E_COMMAND event. It might be that the object with focus is not in the
ancestor chain for the window that received the E_COMMAND event. In
that case, calling xvt_scr_get_focus_vobj might result in a
misdirected "dispatch" of the event.

The task event handler gets E_COMMAND events under various
conditions. When no other menubar-possessing top-level windows
are visible, XVT guarantees that the user can operate a menubar and
will send E_COMMAND events to the task event handler. In addition, an
E_COMMAND event can be sent to the task handler in other
circumstances:

• On XVT/Mac, if a dialog has the focus, then the task menubar
is displayed

• On XVT/Win32, if there aren’t any visible document
windows whose parent is TASK_WIN, then the task menubar is
available

Implementation Note

On the XVT/Mac, the control member indicates whether the Option
key is held down, not the Control key, which some Macs don’t have.

See Also

EVENT_TYPE

MENU_ITEM

MENU_TAG

TASK_WIN

WSF_* Options Flags

xvt_menu_get_tree

xvt_menu_set_tree

The "Events" chapter in the XVT Portability Toolkit Guide

Example

The following code handles command events in a window event
handler. The macros M_FILE_CLOSE and M_FILE_QUIT are defined in
xvtmenu.h, which is included by xvt.h.

#include <xvt.h>static void
do_menu(WINDOW win, MENU_TAG cmd, BOOLEAN shift,

BOOLEAN control)
{

switch (cmd) {
case M_FILE_CLOSE:

do_close(win);
break;

case M_FILE_QUIT:
xvt_app_destroy();
break;

}
}
long XVT_CALLCONV1 a_window_eh(WINDOW win, EVENT *ep)
{

switch (ep->type) {
case E_COMMAND:

do_menu(win, ep->v.cmd.tag, ep->v.cmd.shift,
ep->v.cmd.control);

break;
}

}

E_CONTROL
 Control Activation Event

Summary

typedef struct { /* event description */
EVENT_TYPE type; /* type (E_CONTROL) */

union {
...
struct s_ctl {
short id; /* ID of control */
CONTROL_INFO ci; /* control info */
ctl;
...
} v;

} EVENT;

Description

XVT sends an E_CONTROL event to the event handler for a window or
dialog in response to the user operating a control in that window or
dialog. XVT also generates an E_CONTROL event when the
underlying windows system indirectly modifies the state of a
control.

The v.ctl.id field of the event contains the ID of the control that
was operated. For details on specifying control IDs at creation time,
see xvt_ctl_create, xvt_win_create_def, and
xvt_dlg_create_def. The WINDOW argument passed to the event
handler refers to the window or dialog containing the control, not the
WINDOW that represents the control itself. The CONTROL_INFO sub-
structure of the event contains information about the control. In
particular, it contains the WINDOW for the control that was operated,
and the WIN_TYPE of the control.

Implementation Note

This event is not sent to the event handler for the task window unless
the application is running on XVT/Win32, and the attribute
ATTR_WIN_PM_DRAWABLE_TWIN has been set.

See Also

CONTROL_INFO

EVENT_TYPE

WINDOW

WIN_TYPE

xvt_ctl_create

xvt_ctl_create_def

xvt_dlg_create_def

xvt_dlg_create_res

xvt_win_create_def

xvt_win_create_res

xvt_win_get_ctl

The "Controls" Chapter in the XVT Portability Toolkit Guide

E_CREATE
 Window Creation Event

Summary

typedef struct {
EVENT_TYPE type; /* type (E_CREATE) */
...

}EVENT;

Description

XVT sends an E_CREATE event to the event handler for a WINDOW
immediately after the window or dialog has been created. This event
is guaranteed to be the first event received by the event handler.
E_CREATE is also guaranteed to be the first event sent to the task
event handler. The task event handler receives the E_CREATE event
after the application calls xvt_app_create.

The WINDOW argument tells the event handler which dialog or
window has been created. No additional information is needed to
process this event, so the EVENT structure contains none.

Implementation Note

On some platforms, performing certain operations during a
window’s E_CREATE event (such as creating a dialog) might cause an
E_SIZE event to be delivered to the window before the completion
of the E_CREATE callback.

See Also

EVENT_TYPE

WINDOW

xvt_app_create

xvt_dlg_create_def

xvt_dlg_create_res

xvt_win_create_def

xvt_win_create_res

The "Event Ordering Rules" section of the "Events" chapter in the
XVT Portability Toolkit Guide

E_CXO
 Container Extension Object Event

Summary

typedef struct
{

 EVENT_TYPE type; /*E_CXO*/
union
{
...

 struct s_cxo
{

long msg_id; /* CXO message */
void * ptr; /* message data */

 }cxo;
 ...
}v:

 }EVENT;

Description

XVT sends an E_CXO event to the event handler for a CXO when a
CXO is created using xvt_cxo_create or destroyed using
xvt_cxo_destroy. Additionally, an application program can send an
E_CXO event to a CXO’s event handler by calling
xvt_cxo_dispatch_msg. The E_CXO message contains a CXO-
specific message and data associated with that message. XVT
defines two message types: XVT_CXO_CREATE_MSG and
XVT_CXO_DESTROY_MSG, which are sent to a CXO’s event handler
when it is created or destroyed.

Implementation Note

The function xvt_win_dispatch_event cannot be used to send an
E_CXO event. Additionally, E_CXO messages cannot be masked, and
XVT will never dispatch one to a window’s event handler {??if it’s
masked??].

See Also

EVENT_TYPE

XVT_CXO

XVT_CXO_*_MSG

xvt_cxo_create

xvt_cxo_destroy

xvt_cxo_dispatch_msg

E_DESTROY
 Window Destruction Event

Summary

typedef struct {
 EVENT_TYPE type /*type (E_DESTROY) */
...

}EVENT;

Description

XVT sends an E_DESTROY event to the event handler of a window or
dialog to notify your application that the WINDOW is about to be
destroyed. Typically, an event handler receives an E_DESTROY event
soon after your application has called xvt_vobj_destroy. The
purpose of the event is to give your application a chance to free
memory it has allocated for application data associated with the
WINDOW being destroyed.

An E_DESTROY event is guaranteed to be the last event an event
handler receives. An E_DESTROY event sent to the task event handler
is guaranteed to be the last event received by the application.

The WINDOW argument tells the event handler which window or
dialog has been destroyed. No additional information is needed to
process this event, so the EVENT structure contains none.

If your application is closing a top-level window, then all of the
event handlers for its child windows will receive E_DESTROY events
before the event handler for the top-level window receives its
E_DESTROY. If your application deletes a window at the top of a
hierarchy of nested windows, the E_DESTROY events for each
window in the hierarchy will be delivered in bottom-up order. This
guarantees that when a window receives its E_DESTROY, all lower-
level descendent windows will have already received E_DESTROY
events.

The only exception to this rule is the task window. If you call
xvt_vobj_destroy(TASK_WIN) or xvt_app_destroy, you cannot be
sure that the event handlers for the other WINDOWs in the application
will get E_DESTROY events before the task event handler does.

Note: At the time that the window or dialog receives an E_DESTROY, you
cannot call any functions that operate on the window or dialog
except xvt_vobj_get_data.

An E_DESTROY might be received before a call to xvt_vobj_destroy
returns. Therefore, after calling xvt_vobj_destroy, you should not
attempt to call any XVT functions with the window as an argument
except for xvt_vobj_get_data.

See Also

E_CLOSE

E_CREATE

EVENT_TYPE

E_SIZE

TASK_WIN

WINDOW

xvt_app_create

xvt_vobj_destroy

xvt_vobj_get_data

The "Event Ordering Rules" section of the "Events" chapter in the
XVT Portability Toolkit Guide

E_FOCUS
 Window Focus Gain or Loss Event

Summary

typedef struct { /* event description */
EVENT_TYPE type; /* type (E_FOCUS) */

union {
...
BOOLEAN active; /* focus gain or loss */
...
} v;

} EVENT;

Description

An E_FOCUS event is generated when a window or dialog gains or
loses the focus. A WINDOW gains or loses the focus as a result of the
following actions:

• The user clicks on a focusable area of a window

• Any active keyboard navigation occurs

• Your application calls xvt_scr_set_focus_vobj

The v.active field of the event structure is set to TRUE if the window
is gaining the focus, whereas the v.active field is set to FALSE if the
window is losing the focus. If a window does not have the focus, it
cannot receive an E_FOCUS event with v.active set to FALSE; and if
a window already has the focus, it cannot receive an E_FOCUS event
with v.active set to TRUE. After a window has gained the focus,
then it will either lose it at some point, or it will be destroyed. Also,
the window or dialog is guaranteed to get E_CHAR events only in
between a pair of E_FOCUS events indicating gain and loss.

Note: When WC_EDIT and WC_LISTEDIT controls gain and lose the focus,
they communicate that information through the CONTROL_INFO
structure accompanying the E_CONTROL event, instead of pairs of
E_FOCUS events.

Implementation Note

This event is not sent to the event handler for the task window unless
the application is running on XVT/Win32, and the attribute
ATTR_WIN_PM_DRAWABLE_TWIN has been set. Calling
xvt_scr_set_focus_vobj during an E_FOCUS event results in
undefined behavior on some platforms.

See Also

CONTROL_INFO

E_CHAR

EVENT_TYPE

WINDOW

W_*, WC_*, WD_*, Values for WIN_TYPE

W_*, WC_*, WD_*, Values for WIN_TYPE

xvt_scr_get_focus_vobj

The "Events" chapter in the XVT Portability Toolkit Guide

Example

The following code fragments illustrate how to enable and disable
items on the Edit menu when a window gains the focus:

static CB_FORMAT paste_fmt;static void
update_menus(WINDOW win)
{

 BOOLEAN paste_enable = TRUE;if
(xvt_cb_has_format(CB_APPL, APPL_FORMAT))

 paste_fmt = CB_APPL;
 else if (xvt_cb_has_format(CB_PICT, NULL))

 paste_fmt = CB_PICT;
 else if (xvt_cb_has_format(CB_TEXT, NULL))

 paste_fmt = CB_TEXT;
 else

 paste_enable = FALSE;
xvt_menu_set_item_enabled(win, M_EDIT_PASTE,

 paste_enable);
xvt_menu_set_item_enabled(win,

M_EDIT_CLIPBOARD, paste_enable);
 }

E_FONT
 Font/StyleMenu or Font-Selection-Dialog Event

Summary

typedef struct { /* event description */
EVENT_TYPE type; /* event type (E_FONT) */
union {
...
struct s_efont {
XVT_FNTID font_id; /* Font id representing selected

font */
} font;
...
} v;

} EVENT;

Description

A window’s event handler can receive an E_FONT event in these two
situations:

• If the user selects an item from the standard XVT Font/Style
menu or invokes the Font Selection dialog from the menu.
The receiving window is always a top-level window. If the
window does not have a menubar, its event handler never
receives E_FONT events in this manner. Therefore, user
interaction with the Font/Style menu or with the Font
Selection dialog never results in E_FONT events being sent to
child windows or windows created with the WSF_NO_MENUBAR

attribute set. XVT sets the v.font.font_id field of the event
structure to the user’s chosen logical font.

• If the application calls xvt_dm_post_font_sel
programmatically (instead of the user invoking it from the
menu) and the user selects a font. The window receiving the
event is the one passed as a parameter to this function. XVT
returns in the v.font.font_id field the same logical font that
was passed in as a parameter to this function.

• It is possible for a window that does not have the focus to
receive an E_FONT event. It might be that the object with focus
is not in the ancestor chain for the window that received the
E_COMMAND event. In that case, calling
xvt_scr_get_focus_vobj might result in a misdirected
"dispatch" of the event.

• The task event handler gets E_FONT events under various
conditions. When no other menubar-possessing top-level
windows are visible, XVT guarantees that the user can
operate a menubar and will send E_FONT events to the task
event handler (if the task window’s menubar has a Font/Style
menu). In addition, an E_FONT event can be sent to the task
handler in these circumstances:

• On XVT/Mac, if a dialog has the focus, then the task menubar
is displayed

• On XVT/Win32, if there aren’t any visible document
windows whose parent is TASK_WIN, then the task menubar is
available

See Also

EVENT_TYPE

TASK_WIN

WSF_* Options Flags

XVT_FNTID

xvt_dm_post_font_sel

xvt_dwin_draw_text

xvt_menu_get_font_sel

xvt_menu_set_font_sel

The "Events" chapter in theXVT Portability Toolkit Guide

Example

The following code displays four text objects, represented by this
array of structures:

#define NUM_OBJS 4static struct {
/* information about each object */
char *text; /* text */
PNT pos; /* starting position */
RCT bounds; /* bounding rectangle */
XVT_FNTID font_id; /* font */

} obj[NUM_OBJS] = {
{

"This is the first sentence.",
{50, 10}

},
{

"This is the second sentence.",
{125, 150}

 },
{

"This is the third sentence.",
{200, 100}

},
{

"This is the fourth sentence.",
{275, 200}

}
};

During application initialization, the font_id member of each
object is set and the bounding rectangle is calculated:

static void startup(void)
{

int i;
WINDOW win;win = xvt_win_create(W_DOC,
XVT_MAX_WINDOW_RECT,

"FONT", WIN_MENUBAR, TASK_WIN,
WSF_SIZE|WSF_CLOSE, EM_ALL, win_eh, 0L);

for (i = 0; i < NUM_OBJS; i++) {
obj[i].font_id = xvt_font_create();
xvt_font_set_family(obj[i].font_id,
XVT_FFN_HELVETICA);
xvt_font_set_style(obj[i].font_id,
XVT_FS_NONE);
switch (i % 3) {
case 0:

xvt_font_set_size(obj[i].font_id,
20);
break;

case 1:
xvt_font_set_size(obj[i].font_id,
10);
break;

case 2:
xvt_font_set_size(obj[i].font_id,
12);

}
set_bounds(win, i);

}
xvt_menu_set_item_enabled(win, M_FILE_NEW,
TRUE);

}
static void
set_bounds(WINDOW win, int n)
{

int ascent, descent,
width;xvt_font_map(obj[n].font_id, win);
xvt_font_get_metrics(obj[n].font_id, NULL,
&ascent, &descent);
xvt_dwin_set_font(win, obj[n].font_id);
width = xvt_dwin_get_text_width(win,
obj[n].text, -1);
xvt_rect_set(&obj[n].bounds, obj[n].pos.h,
obj[n].pos.v - ascent, obj[n].pos.h + width,
obj[n].pos.v + descent);

}

E_HELP
 Help-Request Event

Summary

typedef struct s_help {
EVENT_TYPE type; /* E_HELP */
union {
 ...
struct s_help {
WINDOW obj; /* target for help -- window,

dialog, or control */
MENU_TAG tag; /* target for help -- menu item */
XVT_HELP_TID; /* help topic, usually NULL_TID */

} help;
...

} v;
} EVENT;

Description

An E_HELP event is generated when the application user requests
online help. Usually your application does not have to handle
E_HELP explicitly, since the help system handles this event
automatically and does not pass it on to your application’s event
handlers.

You can process the help event yourself if you’re writing your own
help system or creating special-case help services for certain
containers.

Only one of the three members of the s_help structure is relevant for
any single E_HELP event, depending on the type of object for which
the user requested help.

If the user requests help for a window, dialog, or control:

• The WINDOW member of s_help contains the identifier of that
object

• The MENU_ITEM member of s_help is NULL

• The XVT_HELP_TID member of s_help contains NULL_TID

If the user requests help for a menu item:

• The MENU_ITEM member of s_help is the identifier of the
menu item for which help is requested

• The WINDOW member of s_help is NULL_WIN

• The XVT_HELP_TID member of s_help contains NULL_TID

If the user requests help for a specific topic (rather than for a specific
GUI object):

• The XVT_HELP_TID member of s_help contains the topic
identifier

• The WINDOW member of s_help is NULL_WIN

• The MENU_ITEM member of s_help is NULL

Implementation Note

Different user actions cause the E_HELP event, depending on the
conventions of the native GUI system. For example, on MS-
Windows, pressing the F1 key usually invokes help, whereas on the
Macintosh the Help key does.

See Also

EVENT_TYPE

MENU_TAG

WINDOW

XVT_HELP_TID, NULL_TID

xvt_help_process_event

The "Events" and the "Hypertext Online Help" chapters in the XVT
Portability Toolkit Guide

E_HSCROLL
 Horizontal Scrollbar Events

Summary

typedef struct { /* event description */
EVENT_TYPE type; /* type (E_HSCROLL) */
union {
...
struct {
SCROLL_CONTROL what; /* site of activity */
short pos; /* thumb position */
} scroll;
...
} v;

} EVENT;

Description

XVT sends an E_HSCROLL event to a window’s event handler to
notify your application that the user has operated the horizontal
scrollbar (which is part of the window’s frame). Only windows with
the WSF_HSCROLL or WSF_DECORATED flag set at creation time receive
these events.

The v.scroll.what field of the event contains one of the SC_*
constants, indicating which part of the scrollbar was manipulated. It
is up to your application to define the semantics for scrollbar
manipulations.

If XVT sets the v.scroll.what field to SC_THUMB or
SC_THUMBTRACK, then it also sets the v.scroll.pos field to indicate
the position to which the user dragged the thumb. For other scrollbar
manipulations, v.scroll.pos is undefined. Keep in mind that the
v.scroll.pos value always falls within the range you set by calling
xvt_sbar_set_range and xvt_sbar_set_proportion.

Note: An E_HSCROLL event is not sent for the operation of scrollbar
controls in a window; in that case, an E_CONTROL event would be
sent.

See Also

E_CONTROL

EVENT_TYPE

E_VSCROLL

SCROLL_CONTROL

SC_* Values for SCROLL_CONTROL

WSF_* Options Flags

WSF_* Options Flags

xvt_sbar_get_pos

xvt_sbar_get_proportion

xvt_sbar_get_range

xvt_sbar_set_pos

xvt_sbar_set_proportion

xvt_sbar_set_range

The "Events" and the "Controls" chapters in the XVT Portability
Toolkit Guide

E_MOUSE_DBL
 Mouse Double-Click Event

Summary

typedef struct { /* event description */
EVENT_TYPE type; /* type (E_MOUSE_DBL) */
union {
...
struct {
PNT where; /* location */
BOOLEAN shift; /* shift key down? */
BOOLEAN control; /* control/option key? */
short button; /* button */
} mouse;
...
} v;

} EVENT;

Description

XVT sends an E_MOUSE_DBL event to a window’s event handler for
an XVT window in response to the user double-clicking a mouse
button while the mouse pointer is in the client area of the window.
E_MOUSE_DBL events are not sent to dialog event handlers.

The location of the mouse pointer relative to the upper-left corner of
the window is given by the v.mouse.where field. If the user holds
down the Shift or Control key while clicking, then v.mouse.shift
or v.mouse.control is set to TRUE, indicating the status of these
keys.

The v.mouse.button field is set to "0" if it was the left button, "1"
if it was the right button, or "2" if it was the middle button on a three-
button mouse. Portable XVT programs should use buttons 0 and 1.
Events for buttons numbered 2 or greater might occur on some
XVT-supported platforms, but their use isn’t portable.

Double-Click Definition

A double-click is defined as a button-down action that rapidly
follows a button-up action. Each platform defines "rapidly"
according to its own tolerances. XVT reports the button-up action
separately as an E_MOUSE_UP event. A second E_MOUSE_UP follows
the E_MOUSE_DBL as soon as the user lets up on the button.
Hence, four events result (in this order) from a double-click:

E_MOUSE_DOWN
E_MOUSE_UP
E_MOUSE_DBL
E_MOUSE_UP

The application does not necessarily receive all four events. When
one of the events occurs, the application might take action (such as
bringing up a dialog box) that precludes receiving the other events.
See the example below.

If your application must handle single-click events but ignore
double-click events, you should either set an application flag when
an E_MOUSE_DBL event occurs and then ignore E_MOUSE_UP events
when that flag is set, or ignore E_MOUSE_UP events entirely.

Implementation Note

To emulate a right button press on XVT/Mac, the v.mouse.button
is set to "1" if the user holds down the Command key while
operating the (single) mouse button.

Mouse events are not sent to the event handler for the task window
unless the application is running on XVT/Win32, and the attribute
ATTR_WIN_PM_DRAWABLE_TWIN has been set.

See Also

EVENT_TYPE

E_MOUSE_DOWN

E_MOUSE_MOVE

E_MOUSE_UP

PNT

The "Events"chapter in the XVT Portability Toolkit Guide

Example:

In this example, when the user double-clicks within an object’s
bounding rectangle, the application makes sure that object is
selected (whether it already is or not) and then opens a dialog box
that shows its point size.

static void do_double(WINDOW win, PNT where)
{

int dbl_obj;
long size;
if ((dbl_obj = find_obj(where)) != NO_OBJ) {
if (sel_obj != dbl_obj) {
invert_selection(win);
sel_obj = dbl_obj;
invert_selection(win);
}
size = xvt_font_get_size(obj[sel_obj].font_id);
xvt_dm_post_note("%d points", size);
}

}
long XVT_CALLCONV1 win_eh(WINDOW win, EVENT *ep)
{

switch (ep->type) {
...
case E_MOUSE_DBL:
do_double(win, ep->v.mouse.where);
break;
...
}

}

E_MOUSE_DOWN
 Mouse-Down Event

Summary

typedef struct { /* event description */
EVENT_TYPE type; /* type (E_MOUSE_DOWN) */
union {
...
struct {
PNT where; /* location */
BOOLEAN shift; /* shift key down? */
BOOLEAN control; /* control/option key? */
short button; /* button */
} mouse;
...
} v;

} EVENT;

Description

XVT sends an E_MOUSE_DOWN event to a window’s event handler in
response to the user clicking a mouse button while the mouse pointer
is in the client area of the window. E_MOUSE_DOWN events are not sent
to dialog event handlers.

The location of the mouse pointer relative to the upper-left corner of
the window is given by the v.mouse.where field. If the user holds
down the Shift or Control key while clicking, then v.mouse.shift
or v.mouse.control is set to TRUE, indicating the status of these
keys.

The v.mouse.button field will be set to "0" if it was the left button,
"1" if it was the right button, or "2" if it was the middle button on a
three-button mouse. Portable XVT programs should use buttons 0
and 1. Events for buttons numbered 2 or greater might occur in some
XVT-supported platforms, but their use isn’t portable.

Implementation Note

To emulate a right button press on XVT/Mac, the v.mouse.button
is set to "1" if the user holds down the Command key while
operating the (single) mouse button.

Mouse events are not sent to the event handler for the task window
unless the application is running on XVT/Win32, and the attribute
ATTR_WIN_PM_DRAWABLE_TWIN has been set.

See Also

EVENT_TYPE
E_MOUSE_DBL
E_MOUSE_MOVE
E_MOUSE_UP
PNT

The "Events" chapter in the XVT Portability Toolkit Guide

E_MOUSE_MOVE
 Mouse-Movement Event

Summary

typedef struct { /*event description */
EVENT_TYPE type; /* type (E_MOUSE_MOVE) */
union {

 ...
struct {

PNT where; /* location */
BOOLEAN shift; /* shift key down? */
BOOLEAN control; /* control/option key? */
short button; /* button */

} mouse;
 ...

} v;
} EVENT;

Description

XVT sends an E_MOUSE_MOVE event to a window’s event handler in
response to the user moving the mouse pointer in the client area of
an XVT window. Mouse events are not sent to dialog event handlers.

The location of the mouse pointer relative to the upper-left corner of
the window is given by the v.mouse.where field. The
v.mouse.shift, v.mouse.control, and v.mouse.button fields are
not valid for this event.

E_MOUSE_MOVE events are also generated continuously when the
mouse is trapped, even if the mouse isn’t physically moved. In this
case the coordinates given by the where member remain unchanged.
This helps to implement automatic scrolling while the user drags the
mouse.

Implementation Note

E_MOUSE_MOVE events are not sent to the event handler for TASK_WIN
unless the application is running on XVT/Win32, and the attribute
ATTR_WIN_PM_DRAWABLE_TWIN has been set.

See Also

E_MOUSE_DBL
E_MOUSE_DOWN
E_MOUSE_UP
EVENT_TYPE
PNT
TASK_WIN
xvt_win_release_pointer
xvt_win_trap_pointer

The "Events" chapter in the XVT Portability Toolkit Guide

E_MOUSE_UP
 Mouse-Up Event

Summary

typedef struct { /* event description */
EVENT_TYPE type; /* type (E_MOUSE_UP) */
union {
...
struct {
PNT where; /* location */
BOOLEAN shift; /* shift key down? */
BOOLEAN control; /* control/option key? */
short button; /* button */
} mouse;
...
} v;

} EVENT;

Description

XVT sends an E_MOUSE_UP event to a window’s event handler in
response to the user releasing a mouse button while the mouse
pointer is in the client area of the window. Like other mouse events,
E_MOUSE_UP events are not sent to dialog event handlers.

The location of the mouse pointer relative to the upper-left corner of
the window is given by the v.mouse.where field. If the user holds
down the Shift or Control keys while releasing the mouse, then the
v.mouse.shift and v.mouse.control fields reflect that state. The
v.mouse.button field indicates which mouse button was released.

The v.mouse.button field is set to "0" if it was the left button, "1"
if it was the right button, or "2" if it was the middle button on a three-
button mouse. Portable XVT programs should use buttons 0 and 1.

Events for buttons numbered 2 or greater might occur in some XVT-
supported platforms, but their use isn’t portable.

Implementation Note

On the Mac, if the user releases the mouse button while holding
down the Command key, v.mouse.button is set to "1" indicating a
"right button release."

Like other mouse events, E_MOUSE_UP is not sent to the event handler
for TASK_WIN unless the application is running on XVT/Win32, and
the attribute ATTR_WIN_PM_DRAWABLE_TWIN has been set.

See Also

E_MOUSE_DBL
E_MOUSE_DOWN
E_MOUSE_MOVE
EVENT_TYPE
PNT
TASK_WIN

The "Events" chapter in the XVT Portability Toolkit Guide

E_QUIT
 Quit-Application Event

Summary

typedef struct { /* event description */
EVENT_TYPE type; /* event type (E_QUIT) */
union {
...
BOOLEAN query; /* query only? */
...
} v;

} EVENT;

Description

XVT sends an E_QUIT event to the task event handler to notify your
application that the user has initiated a system shutdown.

The v.query field is set to TRUE if the window system implements a
multi-stage shutdown to get a consensus from all running
applications that it is okay to shut down the window system.
v.query is set to FALSE if the window system gives running
applications no choice in the matter.

If your application gets an E_QUIT event with v.query set to TRUE, it
should query the user about unsaved changes (by calling
xvt_dm_post_ask, for example). If the user agrees to quit, your
application should call xvt_app_allow_quit.

If your application gets an E_QUIT with v.query set to FALSE, then it
will have already called xvt_app_allow_quit, and it should call
xvt_app_destroy. Keep in mind that calling xvt_app_destroy
closes all windows and dialogs in the application, but your
application might only get an E_DESTROY event for the task window.

Be careful not to confuse the E_QUIT event with other events that
might cause termination of your application. Specifically, E_QUIT is
not sent when the user attempts to close the task window (E_CLOSE
is sent). It is also not sent when the user chooses Quit from the File
menu (E_COMMAND is sent). E_QUIT is sent by the native operating
system to tell your application that the system is performing a
system-wide shutdown. It is not an event that the user can directly
generate.

Implementation Note

Only task window event handlers can receive E_QUIT events. E_QUIT
events are generated only on platforms that can notify applications
of a system-wide shutdown. XVT/Mac and XVT/Win32 are the only
platforms that generate E_QUIT events.

See Also

E_CLOSE
E_COMMAND
EVENT
EVENT_TYPE
WINDOW
xvt_app_allow_quit
xvt_app_destroy
xvt_dm_post_ask

The "Events" chapter in the XVT Portability Toolkit Guide

Example

This code shows how to use E_QUIT:

long XVT_CALLCONV1 task_eh(WINDOW xdWindow,
 EVENT *xdEvent)

{
switch (xdEvent->type) {
...
case E_QUIT:

if (xdEvent->v.query) {
if (is_quit_ok())

xvt_app_allow_quit();
}
else

xvt_app_destroy();
break;

}
return 0L;

}

E_SIZE
 Resize-Window Event

Summary

typedef struct { /* event description */
EVENT_TYPE type; /* event type (E_SIZE) */
union {
...
struct {
short height; /* new client height */
short width; /* new width */
} size;
...
} v;

} EVENT;

Description

The event handler for a window, dialog, or task window receives an
E_SIZE event for any of the following reasons:

• XVT sends an E_SIZE event indicating the initial size to the
event handler for a window when the user resizes the window
using the border decorations. Only windows with the
WSF_SIZE or WSF_DECORATED attribute set at creation time can
have window resizing border decorations. On XVT/Win32,
an E_SIZE might also be sent to the task window in response
to a border decoration resize.

• XVT sends an E_SIZE event to the event handler for a
window, dialog, or task window immediately following an
E_CREATE event. Recall that the E_CREATE event is sent to
notify your application that the window, dialog, or task
window has been successfully created. Note that, on some
platforms, performing certain operations during a window’s
E_CREATE (such as creating a dialog) might cause an E_SIZE
event to be delivered to the window before the completion of
the E_CREATE callback.

• XVT sends an E_SIZE event to a window or dialog event
handler as a result of your application calling
xvt_vobj_move.

• From the width and height fields of an E_SIZE event, you
can know the new width and height of a WINDOW. Use the new
size information to logically rearrange or scale the window
contents. If your application adjusts child windows and
controls to fit the new size, it should be done while processing
this event. However, if your application adjusts the client area
drawing (e.g., rewrapping text lines), then it should invalidate
the client area by calling xvt_dwin_invalidate_rect(win,
NULL), and redraw the changed contents in the E_UPDATE that
follows.

See Also

E_CREATE
E_SIZE
E_UPDATE
EVENT_TYPE
WINDOW
WSF_* Options Flags
WSF_* Options Flags
xvt_dwin_invalidate_rect
xvt_vobj_move

The "Event Ordering Rules" section of the "Events" chapter in the
XVT Portability Toolkit Guide

Example

In the following code fragments, the scrollbar proportions are
adjusted when the window is resized.

static void scroll_sync(WINDOW win, int height,
int width)

{
DOC *d;d =
get_doc_data(win);xvt_sbar_set_range(win,
VSCROLL, 0,

 d->nlines + height / d->line_height);
xvt_sbar_set_range(win, HSCROLL, 0,

 d->maxwidth + width);
xvt_sbar_set_proportion(win, VSCROLL,

 height / d->line_height);
xvt_sbar_set_proportion(win, HSCROLL, width);
xvt_sbar_set_pos(win, VSCROLL,

 d->org.v / d->line_height);
xvt_sbar_set_pos(win, HSCROLL, d->org.h);

}
long XVT_CALLCONV1 win_eh(WINDOW win, EVENT *ep)
{

switch (ep->type) {
...
case E_SIZE:

scroll_sync(win, ep->v.size.height, ep->
v.size.width);
break;

...
}

}

E_TIMER
 Interval-Elapsed Event

Summary

typedef struct {
EVENT_TYPE type; /* event type (E_TIMER) */
union {

struct {
 long id;

} timer;
...

}v;
} EVENT;

Description

XVT sends an E_TIMER event to the event handler of a window,
dialog, or task window to notify your application that a specified
time interval has elapsed. You can tell XVT to send these events and
set the time interval by calling xvt_timer_create. XVT sets the

v.timer.id field of an E_TIMER event to the identifier returned by
xvt_timer_create. By calling xvt_timer_destroy, your
application can tell XVT to stop sending timer events to the event
handler for the WINDOW.

The application program establishes timers on a per-window or per-
dialog basis. Once a timer is set, E_TIMER events are sent to the event
handler of the specified window or dialog at a specified regular time
interval. The task window can also have timers.

Implementation Note

The number of timers that can be created for a window or dialog and
the total number of timers that can be created are platform-specific.

On some platforms, it is possible that E_TIMER events will be sent
even after the timer has been destroyed with xvt_timer_destroy. To
protect your program from receiving events from recently destroyed
timers, call xvt_win_set_event_mask (to mask out E_TIMER events)
before calling xvt_timer_destroy.

See Also

EVENT_TYPE
WINDOW
xvt_timer_create
xvt_timer_destroy
xvt_win_set_event_mask

The "Events" chapter in the XVT Portability Toolkit Guide

E_UPDATE
 Window-Update Event

Summary

typedef struct { /* event description */
EVENT_TYPE type; /* event type (E_UPDATE) */
union {
struct{
RCT rct;
} update;
...
} v;

} EVENT;

Description

XVT sends an E_UPDATE event to the event handler for an XVT
window when part or all of the client area of the window needs to be
redrawn. This event might be generated as the result of window
creation, a change in the stacking order of the windows, user
manipulation of the window, or by functions such as
xvt_dwin_scroll_rect and xvt_dwin_invalidate_rect. Pending
E_UPDATE events can also be expedited by xvt_dwin_update.
E_UPDATE events are only sent to regular event handlers, not to
dialog event handlers

XVT sets the v.update.rct field to the bounding rectangle of the
area that must be redrawn. Note that, in general, the region that
needs to be redrawn might be a subset of the bounding rectangle.
Therefore, if you wish to optimize the redrawing of the damaged
area, you can either use the bounding rectangle contained in
v.update.rct, or call xvt_dwin_is_update_needed, which will
operate directly on the update region, producing better optimization
than is possible with the bounding rectangle.

Parameter Validity and Error Conditions

Some function calls cannot be made during an E_UPDATE.
Enforcement of these rules is necessary for an application to be
portable. For example, if an application developed on XVT/XM
were allowed to call xvt_vobj_move during an update, that
application would not work when moved to XVT/Win32.

If you call any of the following functions during an E_UPDATE, XVT
issues an error:

xvt_app_process_pending_events
xvt_cb_* (except xvt_cb_has_format)
xvt_ctl_check_radio_button
xvt_ctl_create_def
xvt_ctl_set_checked
xvt_ctl_set_colors
xvt_ctl_set_font
xvt_ctl_set_text_sel
xvt_dlg_create_def
xvt_dlg_create_res
xvt_dm_post_ask
xvt_dm_post_error
xvt_dm_post_file_open
xvt_dm_post_file_save
xvt_dm_post_font_sel
xvt_dm_post_message
xvt_dm_post_note
xvt_dm_post_warning
xvt_dwin_invalidate_rect
xvt_dwin_scroll_rect
xvt_dwin_update
xvt_list_* (not including "query" functions)
xvt_menu_*
xvt_pmap_destroy
xvt_print_*
xvt_sbar_set_*
xvt_scr_set_focus_vobj
xvt_tx_add_par
xvt_tx_append
xvt_tx_clear
xvt_tx_create
xvt_tx_create_def
xvt_tx_destroy
xvt_tx_rem_par
xvt_tx_reset
xvt_tx_resume
xvt_tx_scroll_hor
xvt_tx_scroll_vert
xvt_tx_set_*
xvt_tx_suspend
xvt_vobj_destroy
xvt_vobj_move
xvt_vobj_set_enabled
xvt_vobj_set_palet
xvt_vobj_set_title
xvt_vobj_set_visible
xvt_win_create
xvt_win_create_def
xvt_win_create_res
xvt_win_set_caret_pos
xvt_win_set_caret_size
xvt_win_set_caret_visible
xvt_win_set_ctl_colors
xvt_win_set_ctl_font

xvt_win_set_doc_title

Note: Although xvt_dm_post_error and xvt_dm_post_warning are in the
above list, the error signaled by calling them is posted by the XVT
"last chance" error handler after the completion of the E_UPDATE
event.

The XVT portable attribute ATTR_SUPPRESS_UPDATE_CHECK turns off
checking for the above function calls during an E_UPDATE. Use this
attribute if you absolutely must make one of these calls durning an
E_UPDATE.

See Also

ATTR_SUPPRESS_UPDATE_CHECK
EVENT_TYPE
RCT
xvt_dm_post_error
xvt_dm_post_warning
xvt_dwin_invalidate_rect
xvt_dwin_is_update_needed
xvt_dwin_scroll_rect
xvt_dwin_update

The "Events" chapter in the XVT Portability Toolkit Guide

Example

In the following code fragments, the function do_update is called
when an E_UPDATE event is received:

static void do_update(WINDOW win, RCT rct)
{

DRAW_CTOOLS t;
DOC *d;
int i, ascent, descent, y,
bottom;xvt_dwin_get_draw_ctools(win, &t);
xvt_dwin_clear(win, t.backcolor);

d = get_doc_data(win);
xvt_dwin_set_font(win, d->font_id);
xvt_dwin_get_font_metrics(win, NULL, &ascent,
&descent);
bottom = rct.bottom + d->line_height;/* start with
first visible line */
for (i = d->org.v / d->line_height, y = rct.top +
ascent;

i < d->nlines && y < bottom;
i++, y += d->line_height) {
rct.top = y - ascent;
rct.bottom = y + descent;
if (xvt_dwin_is_update_needed(win, &rct)) {

xvt_dwin_draw_text(win, MGN - d->org.h, y,
d->lines[i], -1);

}
}

}long XVT_CALLCONV1 win_eh(WINDOW win, EVENT *ep)
{

RCT rct;switch (ep->type) {
...
case E_UPDATE:

xvt_vobj_get_client_rect(win, &rct);
do_update(win, rct);
break;

...
}

}

E_USER
 Application-Generated Event

Summary

typedef struct {
EVENT_TYPE type; /* E_USER */
union {

struct {
long id;
void *ptr;

} user;
...

} v;
} EVENT;

Description

XVT will not generate an E_USER event. However, your application
can send E_USER events to itself by filling in the type, v.user.id
and v.user.ptr field of an EVENT structure, and then calling
xvt_win_dispatch_event to send that event to an event handler.

The application is free to use the v.user.id and v.user.ptr field in
whatever way it chooses. However, a useful convention is to set
v.user.id to the "sub-event type" and to set v.user.ptr to point to
a data structure that will be sent with the event.

Note: The legal range of values for the v.user.id field is zero to
SHRT_MAX. All values outside that range are reserved for future use
in XVT.

See Also

EVENT

EVENT_TYPE

SHRT_MAX

xvt_win_dispatch_event

The "Events" chapter in the XVT Portability Toolkit Guide

E_VSCROLL
 Vertical Scrollbar Event

Summary

typedef struct { /* event description */
EVENT_TYPE type; /* type (E_VSCROLL) */
union {
...
struct {
SCROLL_CONTROL what;
short pos;
} scroll;
... } v;

} EVENT;

Description

XVT sends an E_VSCROLL event to the event handler for a window in
response to the user operating the vertical scrollbar on the window
frame. Only windows with the WSF_VSCROLL or WSF_DECORATED flag
set at creation time receive these events.

The v.scroll.what field of the event contains one of the SC_*
constants, indicating what part of the scrollbar was manipulated. It
is up to your application to define the semantics for scrollbar
manipulations.

If XVT sets the v.scroll.what field to SC_THUMB or
SC_THUMBTRACK, then it will also set the v.scroll.pos field to
indicate the position to which the user dragged the thumb. For other
scrollbar manipulations, v.scroll.pos is undefined. Keep in mind
that the v.scroll.pos value always falls within the range that you
set previously by calling xvt_sbar_set_range and
xvt_sbar_set_proportion.

Note: An E_VSCROLL event is not sent for the operation of scrollbar
controls in a window. In that case, an E_CONTROL event would be
sent.

See Also

E_CONTROL

E_HSCROLL

EVENT_TYPE

SCROLL_CONTROL

SC_* Values for SCROLL_CONTROL

WSF_* Options Flags

WSF_* Options Flags

xvt_sbar_get_pos

xvt_sbar_get_proportion

xvt_sbar_get_range

xvt_sbar_set_pos

xvt_sbar_set_proportion

xvt_sbar_set_range

The "Events" and the "Controls" chapters in the XVT Portability
Toolkit Guide

XVT Data Types
far
huge
near
A_* Values for ACCESS_CMD
RESP_* Values for ASK_RESPONSE
BOOLEAN
CB_* Values for CB_FORMAT
CBRUSH
COLOR
CONTROL_INFO
CPEN
CURSOR
DATA_PTR
DIRECTORY
DRAW_CTOOLS
M_* Values for DRAW_MODE
EOL_* Values for EOL_FORMAT
EVENT
EVENT_HANDLER
EVENT_MASK
EVENT_TYPE
FILE_SPEC
FL_* Values for FL_STATUS
GHANDLE
MENU_ITEM
MENU_TAG
PAT_* Values for PAT_STYLE
P_* Values for PEN_STYLE
PICTURE
PNT
PRINT_RCD
RCT
SCROLL_CALLBACK
SC_* Values for SCROLL_CONTROL
*SCROLL Values for SCROLL_TYPE
SLIST
SLIST_ELT
T_CNUM
T_CPOS
T_LNUM
T_PNUM
TXEDIT
U_* Values for UNIT_TYPE
WIN_DEF
W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
XVT_BYTE
XVT_CODESET_MAP
XVT_COLLATE_FUNCTION
XVT_COLOR_ACTION
XVT_COLOR_COMPONENT

XVT_COLOR_TYPE
XVT_CONFIG
XVT_CXO
XVT_CXO_EVENT_HANDLER
XVT_CXO_INSERTION
XVT_ENUM_CHILDREN
XVT_ERRID
XVT_ERRMSG
XVT_ERRMSG_HANDLER
SEV_* Values for XVT_ERRSEV
XVT_FNTID
XVT_FONT_ATTR_MASK
XVT_FONT_DIALOG
XVT_FONT_MAPPER
XVT_FONT_STYLE_MASK
XVT_FORMAT_HANDLER
XVT_HELP_* Values for XVT_HELP_FLAVOR
XVT_HELP_INFO
XVT_HELP_TID, NULL_TID
XVT_HTML_XRC_INTERCEPT_HANDLER
XVT_IMAGE_* Values for XVT_IMAGE_FORMAT
XVT_IMAGE_ATTR
XVT_IOSTR_CONTEXT
XVT_IOSTR_RWFUNC
XVT_IOSTR_SZFUNC
XVT_IOSTREAM
XVT_MEM
XVT_NAV
XVT_NOTEBK_ENUM_PAGES
XVT_PALETTE
XVT_PALETTE_ATTR
XVT_PALLETE_* Values
XVT_PATTERN
XVT_PG_ORIENT
XVT_PG_SIZE
XVT_PG_UNITS
XVT_PIXMAP
XVT_PIXMAP_ATTR
XVT_PIXMAP_* Values
XVT_POPUP_ALIGNMENT
XVT_PRINT_FUNCTION
XVT_RES
XVT_UBYTE
XVT_WCHAR

far
Global-Pointer Keyword

Description

The far keyword is available on compilers for Intel-based
processors. XVT defines far on other platforms so that applications
using this keyword will compile. However, far does not appear in
the XVT API.

See Also

huge
near

huge
Global-Pointer Keyword

Description

The huge keyword is used on compilers for Intel-based processors to
declare a pointer that addresses more than 64KB of memory at a
time. XVT defines huge on other platforms so that applications
using this keyword will compile. Currently, no XVT API functions
accept or return huge pointers. This keyword exists mainly to aid
XVT in implementing XVT features.

See Also

far
near

near
Global-Pointer Keyword

Description

The near keyword is available on compilers for Intel-based
processors. XVT defines near on other platforms so that

applications using this keyword will compile. However, near does
not appear in the XVT API.

See Also

far
huge

ACCESS_CMD
CMD Parameter to xvt_tx_get_line

See Also

This topic is discussed under A_* Values for ACCESS_CMD in XVT
Constants.

ASK_RESPONSE
Response From xvt_dm_post_ask

See Also

This topic is discussed under RESP_* Values for ASK_RESPONSE in
XVT Constants.

BOOLEAN
Boolean

Summary

#define BOOLEAN short int;/* Boolean type */

Description

The type BOOLEAN and its two values, TRUE and FALSE, are used by
XVT whenever a Boolean type or Boolean value is needed.

See Also

FALSE
TRUE

Example

BOOLEAN window_is_a_checkbox(win)
WINDOW win;
{

if (xvt_vobj_get_type(win) == WC_CHECKBOX)
return TRUE;

else
return FALSE;

}

CB_FORMAT
Clipboard Format

See Also

This topic is discussed under CB_* Values for CB_FORMAT in XVT
Constants.

CBRUSH
Color Brush Tool

Summary

typedef struct {/* color brush tool */
PAT_STYLE pat;/* pattern */
COLOR color;/* color */

} CBRUSH;

Description

A CBRUSH is a pattern used for the interior of the following shapes:
rectangle, rounded rectangle, oval, pie, and polygon. (A CPEN is used
for the perimeter of shapes.) Colors are indicated by RGB values.

The pat field of a CBRUSH indicates the fill pattern used to fill the
interiors, and might include solid as well as hatched patterns. The
color field specifies the color of the hatch marks for hatched
patterns, and the color used by solid brushes.

Set the current brush with xvt_dwin_set_cbrush.

See Also

COLOR
CPEN
DRAW_CTOOLS
PAT_* Values for PAT_STYLE
xvt_dwin_draw_oval
xvt_dwin_draw_pie
xvt_dwin_draw_polygon
xvt_dwin_draw_rect
xvt_dwin_draw_roundrect
xvt_dwin_get_draw_ctools
xvt_dwin_set_cbrush
xvt_dwin_set_draw_ctools

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

Example

WINDOW win;
CBRUSH brush;
...
brush.pat = PAT_SOLID;
brush.color = COLOR_LTGRAY;
xvt_dwin_set_cbrush(win, &brush);

COLOR
Color

Summary

typedef unsigned long COLOR;

Description

Objects of this type specify an RGB color to be used in drawing
tools. Some of the commonly used colors are available as predefined
constants.

The COLOR type packs one byte each for the red, green, and blue
intensities for a 24-bit RGB color. Your application cannot use the
high byte, but XVT uses it for predefined colors. The four bytes of a
COLOR are arranged as follows:

Byte Color
byte 3 (MSB) Reserved for XVT
byte 2 RED intensity
byte 1 GREEN intensity
byte 0 (LSB) BLUE intensity

For convenience, your application can use the XVT_MAKE_COLOR
macro to construct a COLOR from its components.

See Also

CBRUSH
COLOR_*, COLOR_INVALID Constants
CPEN
DRAW_CTOOLS
XVT_COLOR_COMPONENT
XVT_MAKE_COLOR
xvt_ctl_get_colors
xvt_ctl_set_colors
xvt_dwin_clear
xvt_dwin_set_draw_ctools
xvt_dwin_set_back_color
xvt_dwin_set_cbrush
xvt_dwin_set_cpen
xvt_dwin_set_draw_ctools
xvt_dwin_set_fore_color
xvt_image_fill_rect
xvt_image_get_clut
xvt_image_get_pixel
xvt_image_set_clut
xvt_image_set_pixel
xvt_palet_add_colors
xvt_palet_get_colors
xvt_win_get_ctl_colors
xvt_win_set_ctl_colors

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

CONTROL_INFO
 Information About Activated Control

Summary

typedef struct s_ctlinfo {
WIN_TYPE type;
WINDOW win;
union {

struct s_scroll {
SCROLL_CONTROL what;
short pos;

} scroll;
struct s_edit {

BOOLEAN focus_change;
BOOLEAN active;

} edit;
struct s_lbox {

BOOLEAN dbl_click;
} lbox;
struct s_listedit {

BOOLEAN focus_change;
BOOLEAN active;

} listedit;
} v;

} CONTROL_INFO;

Description

A structure of this type is passed to a window or dialog’s event
handler as part of the event structure for E_CONTROL event.

See Also

E_CONTROL
SCROLL_CONTROL
WINDOW
WIN_TYPE

The "Controls" chapter in the XVT Portability Toolkit Guide

CPEN
 Color Pen Tool

Summary

typedef struct {/* color pen tool */
short width;/* width */
PAT_STYLE pat;/* pattern */
PEN_STYLE style;/* style */
COLOR color;/* color */

} CPEN;

Description

Objects of this type describe a color pen for drawing lines, but not
for filling in shapes that have an interior (use a CBRUSH for that).
Given a CPEN, you set it into a window’s drawing tools with
xvt_dwin_set_cpen. Each window has its own current CPEN.

The allowable values for color, pat, and style are discussed under
the topics COLOR, PAT_STYLE, and PEN_STYLE.

Implementation Note

In systems that distinguish between pen width and height, for the
logical pen point the width in pixels is used for both the height and
the width of the pen. XVT logical pens always attempt to maintain
constant aspect ratio on the actual physical pen. However, this may
not always be possible since pixel dimensions may not be equal in
height and width.

See Also

CBRUSH
COLOR
CPEN
DRAW_CTOOLS
PAT_* Values for PAT_STYLE
P_* Values for PEN_STYLE
xvt_dwin_get_draw_ctools
xvt_dwin_set_cbrush
xvt_dwin_set_cpen
xvt_dwin_set_draw_ctools
XVT_FAST_WIDTH

Example

WINDOW win;
CPEN pen;
...
pen.pat = PAT_SOLID;
pen.color = COLOR_LTGRAY;
pen.width = 2;
pen.style = P_SOLID;
xvt_dwin_set_cpen(win, &pen);

CURSOR
 Cursor Type

Summary

typedef short CURSOR;

Description

CURSOR is the type used to represent the mouse cursor. The cursor is
the pointer or other shape that indicates the current mouse position.
Each XVT window has a current cursor that you can set either to a
standard shape, described under CURSOR_* options, or to a shape
that’s defined as a resource.

You need to set the cursor for a window just once--XVT
automatically takes care of setting it to the designated shape as the
cursor moves from window to window.

See Also

CURSOR_* Options
xvt_scr_hide_cursor
xvt_scr_set_busy_cursor
xvt_win_get_cursor
xvt_win_set_cursor

DATA_PTR
 Pointer to Arbitrary Data

Summary

typedef char* DATA_PTR;

Description

This data type defines a pointer to an arbitrary data type. Typically,
this data type is used in XVT API functions that allocate and free
memory.

See Also

PTR_LONG
XVT_BYTE
xvt_mem_alloc
xvt_mem_free
xvt_mem_realloc
xvt_mem_rep
xvt_mem_zalloc

Example

{
long *tmp;

...
/* xvt_mem_alloc returns a DATA_PTR so its return

values must be cast */
tmp = (long *) xvt_mem_alloc(sizeof(long) * 10);

...
xvt_mem_free((DATA_PTR) tmp);

}

DIRECTORY
 Directory

Summary

typedef struct { ... } DIRECTORY;

Description

A DIRECTORY is an abstract object that identifies a directory on the
local file system. Its internals are hidden and are not necessarily a
character string. However, to convert between DIRECTORYs and
strings, you can call xvt_fsys_convert_dir_to_str and
xvt_fsys_convert_str_to_dir.

XVT uses DIRECTORY objects to refer to directories in order to ensure
portability across systems that differ in how they specify directories.
XVT provides various functions to manipulate directories. (For
details, see the topics listed below.)

Implementation Note

On XVT/Mac, the usage of DIRECTORYs works with hard drives,
floppies, folders, and both HFS and MFS volumes. On XVT/Win32,
it works with different drive letters.

See Also

FILE_SPEC
xvt_dm_post_file_open
xvt_dm_post_file_save
xvt_fsys_convert_dir_to_str
xvt_fsys_convert_str_to_dir
xvt_fsys_get_default_dir
xvt_fsys_get_file_attr
xvt_fsys_get_dir
xvt_fsys_set_dir
xvt_fsys_set_file_attr

Example

The topics xvt_fsys_get_default_dir and xvt_fsys_get_dir
contain examples of the use of DIRECTORYs.

DRAW_CTOOLS
 Color Drawing Tool Set

Summary

typedef struct {/* color drawing tools */
CPEN pen;/* color pen */
CBRUSH brush;/* color brush */
DRAW_MODE mode;/* drawing mode */
COLOR fore_color;/* foreground color */
COLOR back_color;/* background color */
BOOLEAN opaque_text;/* is text opaque*/

} DRAW_CTOOLS;

Description

This structure defines a set of color drawing tools: a color pen and
brush, a drawing mode, foreground and background colors, and an
indication of whether text should be opaque or not. You can get the
current color tools with xvt_dwin_get_draw_ctools, and set them
all at once with xvt_dwin_set_draw_ctools.

If the BOOLEAN member opaque_text is TRUE, text is drawn with an
opaque background that covers what’s underneath--it’s not

necessary to first clear the area with a call to xvt_dwin_draw_rect.
By default, opaque_text is FALSE.

A DRAW_CTOOLS object is position-independent--it can be written to
a file or the clipboard and read in correctly to another address space.

See Also

CBRUSH
COLOR
CPEN
DRAW_MODE
DRAW_CTOOLS
xvt_app_get_default_ctools
xvt_dwin_get_draw_ctools
xvt_dwin_set_draw_ctools

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

Example

In this example, bracketing calls to xvt_dwin_get_draw_ctools
and xvt_dwin_set_draw_ctools are used to avoid disturbing the
current tool settings for the window.

RCT rct;
DRAW_CTOOLS save_tools, t;xvt_dwin_get_draw_ctools(win,
&save_tools);
xvt_app_get_default_ctools(&t);
t.pen.width = XVT_FAST_WIDTH;
t.brush.pat = PAT_HOLLOW;
t.mode = M_XOR;
xvt_dwin_set_draw_ctools(win, &t);rct.left = 100;
rct.top = 200;
rct.right = 100;
rct.bottom = 200;
xvt_dwin_draw_rect(win, &rct);
xvt_dwin_set_draw_ctools(win, &save_tools);

DRAW_MODE
 Drawing Mode

See Also

This topic is discussed under M_* Values for DRAW_MODE in XVT
Constants.

EOL_FORMAT
 Terminator found by xvt_str_find_eol

See Also

This topic is discussed under EOL_* Values for EOL_FORMAT" in
XVT Constants.

EVENT
 Event Prototype

Summary

typedef struct s_event {
EVENT_TYPE type;
union {

struct s_mouse {
PNT where;
BOOLEAN shift;
BOOLEAN control;
short button;
XVT_INT32 scroll_x;
XVT_INT32 scroll_y;

} mouse;
struct s_char {

XVT_WCHAR ch;
BOOLEAN shift;
BOOLEAN control;
BOOLEAN virtual_key;
unsigned long modifiers;

} chr;
BOOLEAN active;
BOOLEAN query;
struct s_scroll_info {

SCROLL_CONTROL what;
short pos;

} scroll;
struct s_cmd {

MENU_TAG tag;
BOOLEAN shift;
BOOLEAN control;

} cmd;
struct s_size {

short height;
short width;

} size;
struct s_efont {

XVT_FNTID font id;
} font;
struct s_ctl {

short id;
CONTROL_INFO ci;

} ctl;
struct s_update {

RCT rct;
} update;
struct s_timer {

long id;
} timer;

struct s_user {
long id;
void *ptr;

} user;
struct s_help {

window obj;
MENU_TAG tag;
XVT_HELP_TID tid;

}help;
} v;

} EVENT;

Description

XVT sends a structure of this type as the second parameter to your
event handling functions whenever XVT generates an event. When
your event handler receives an event, it can look at the type field of
the EVENT structure to determine what kind of event it received. In
addition to that information, the following substructures of the union
also contain event-dependent information:

• mouse contains information for an E_MOUSE_DOWN,
E_MOUSE_DBL, E_MOUSE_MOVE, E_MOUSE_SCROLL, or
E_MOUSE_UP event

• chr contains information for an E_CHAR event

• active contains information for an E_FOCUS event

• query contains information for an E_QUIT event

• scroll contains information for an E_HSCROLL or E_VSCROLL
event

• cmd contains information for an E_COMMAND event

• size contains information for an E_SIZE event

• font contains information for an E_FONT event

• ctl contains information for an E_CONTROL event

• update contains information for an E_UPDATE event

• timer contains information for an E_TIMER event

• user contains information for an E_USER event

• help contains information for an E_HELP event

The events E_CREATE, E_DESTROY, and E_CLOSE do not contain
additional information in the EVENT structure.

See Also

XVT Events
EVENT_HANDLER
EVENT_MASK

EVENT_TYPE
XVT_CALLCONV*
xvt_event_get_font
xvt_event_set_font
xvt_win_dispatch_event

The "Events" chapter in the XVT Portability Toolkit Guide

EVENT_HANDLER
 Window Event Handler Function Prototype

Summary

typedef long (* EVENT_HANDLER)
(WINDOW win, EVENT *ep);

Description

This type definition defines the prototype for event handling
functions. Variables that will store event handling function pointers
should be defined to be of type EVENT_HANDLER.

For platforms without prototyping compilers, EVENT_HANDLER is
typedef’d to be a function with no arguments.

XVT functions that take a parameter of type EVENT_HANDLER are the
xvt_*_create_* functions, xvt_win_set_handler, and
xvt_win_get_handler. They can be called with the name of a
function matching this prototype or a variable of this type.

Implementation Note

To insure portability across all platforms, you should include the
macro XVT_CALLCONV1 in the prototypes and headers of all callback
functions used in XVT applications, including those of
EVENT_HANDLERs. This macro defines the linkage conventions used
in building XVT libraries.

See Also

EVENT
WINDOW
xvt_app_create
xvt_dlg_create_def
xvt_dlg_create_res
xvt_win_create
xvt_win_create_def
xvt_win_create_res
xvt_win_get_handler
xvt_win_set_handler

EVENT_MASK
 Event Mask

Summary

typedef unsigned long EVENT_MASK;

Description

Variables of type EVENT_MASK restrict the events that are sent to
window and dialog event handlers. You can set a bitwise-OR’d
combination of event mask constants (see EM_* Constants) in an
EVENT_MASK variable and pass it to xvt_win_set_event and the
window/dialog creation functions: xvt_dlg_create_def,
xvt_dlg_create_res, xvt_win_create, xvt_win_create_def, and
xvt_win_create_res.

When calling these functions, you normally pass an EVENT_MASK
variable set to a value of EM_ALL for no event restrictions. Setting it
to EM_NONE causes no events to be sent to the event handler for the
WINDOW. To get the current mask setting, call
xvt_win_get_event_mask.

See Also

EM_* Constants
EVENT
EVENT_TYPE
xvt_dlg_create_def
xvt_dlg_create_res
xvt_win_create
xvt_win_create_def
xvt_win_create_res
xvt_win_get_event_mask
xvt_win_set_event_mask

The "Events" chapter in the XVT Portability Toolkit Guide

EVENT_TYPE
 Event Type

See Also

This topic is discussed under EVENT_TYPE in the XVT Events.

FILE_SPEC
 Filename Specification

Summary

typedef struct {/* file specification */
DIRECTORY dir;/* directory */
char type[6];/* file type/extension */
char name[SZ_FNAME + 1];/* filename */
char creator[6];/* file creator */

} FILE_SPEC;

Description

Structures of this type specify filenames in a portable way. A
complete specification consists of the opaque DIRECTORY structure
dir, a NULL-terminated file type, and a NULL-terminated filename
name. The creator is not required on all platforms.

Implementation Note

Under NTFS and UNIX, file types are extensions, and are limited to
six bytes. On XVT/Mac, the most standard types (e.g., TEXT) are six
bytes. XVT/Mac is the only platform that uses the creator member
of FILE_SPEC.

See Also

DIRECTORY
FL_* Values for FL_STATUS
SZ_FNAME
xvt_app_get_file
xvt_dm_post_file_open
xvt_dm_post_file_save
xvt_fsys_convert_dir_to_str
xvt_fsys_convert_str_to_dir
xvt_fsys_get_file_attr
xvt_fsys_rem_file
xvt_fsys_set_file_attr
xvt_help_open_helpfile

FL_STATUS
 File Dialog Result

See Also

This topic is discussed under FL_* Values for FL_STATUS in XVT
Constants.

GHANDLE
 Global Memory Handle

Summary

typedef unsigned long GHANDLE;

Description

Objects of this type identify global memory blocks. You get one by
calling xvt_gmem_alloc or xvt_gmem_realloc; you use it in calls to
xvt_gmem_free, xvt_gmem_lock, xvt_gmem_realloc,
xvt_gmem_get_size, and xvt_gmem_unlock.

You can assume that GHANDLEs are at least 32 bits in length, but you
cannot assume anything about their internals.

You should not attempt to pass a GHANDLE to another application, nor
should you save one in a file to be read back in by a future invocation
of the application that allocated it. You cannot put a GHANDLE on the
clipboard either; XVT has special clipboard functions for putting

data on the clipboard. If you violate these rules, your application
might still work since XVT can’t always enforce them, but your
code might not port successfully to other XVT implementations.

See the topic xvt_gmem_alloc for a discussion of global memory.

Implementation Note

An XVT GHANDLE is not necessarily the same as a Mac or MS-
Windows memory handle. You must never treat it as a pointer to a
pointer, as you can with Mac handles.

See Also

xvt_gmem_alloc
xvt_gmem_free
xvt_gmem_get_size
xvt_gmem_lock
xvt_gmem_realloc
xvt_gmem_unlock

MENU_ITEM
 Menu Item

Summary

typedef struct s_mitem {
MENU_TAG tag;/* menu tag */
char *text;/* text to appear in menu */
short mkey;/* mnemonic */
unsigned enabled: 1;/* enabled? */
unsigned checked: 1;/* checked? */
unsigned checkable: 1;/* checkable? */
unsigned separator: 1;/* separator? */
struct s_mitems *child;/* pointer to submenu */
...

} MENU_ITEM;

Description

Arrays of MENU_ITEMs can be linked together in a tree fashion to
describe a menubar, all of its submenus, and the items within those
submenus.

A menubar is a horizontal list of submenus, usually located below
the titlebar of a window. A submenu is a vertical list of items that
can be pulled down by the user. The items in a submenu are either
commands that the user can choose, or submenus. Putting submenus

in other submenus is how "cascading" or "hierarchical" menus are
implemented.

The menubar is represented by an array of contiguous MENU_ITEM
structures, with one extra structure at the end with a tag field of zero,
to terminate the array. Within that array, each MENU_ITEM structure
has its child field set to point to an array of MENU_ITEMs representing
a submenu.

Each submenu, in turn, follows the same format as the menubar,
except that each element of the MENU_ITEM array can represent either
a command or another submenu. Elements representing commands
have the child field set to NULL, whereas elements representing
submenus have the child field set to point to another array of
MENU_ITEMs representing a submenu. This menu hierarchy can be
continued to an arbitrary level.

Each element of a MENU_ITEM array has the following fields set:

tag

Contains the menu tag. The last MENU_ITEM in an array has a tag
of zero.

text field

Contains the NULL-terminated text that will appear on the
menubar or pull-down menu for an item.

mkey field

Used on those systems that allow the keyboard to be used
universally for all menu items (i.e., XVT/Win32 and XVT/
XM). On those systems, one letter in the menu item text is
designated as the mnemonic. That letter should be the value of
the mkey field. For example, if the menu item is Search, then the
ASCII value for an "a" (97) should be used, even though the
user has to first press the Alt key.

enabled bit

Indicates whether the menu item is enabled or not. Menu items
can also be enabled or disabled dynamically with
xvt_menu_set_item_enabled.

checked bit

Indicates whether the menu item has a check mark beside it or
not. Menu items can also be checked or unchecked dynamically
with xvt_menu_set_item_checked.

checkable bit

Indicates whether the menu item is able to be checked or not.
This has a visual effect on some systems, such as leaving space
for a check mark. You can set this only for submenu items.

separator bit

Indicates whether the menu item is a separator line used to
delimit related groups of menu items. If this bit is set, then the
text, mkey, enabled, checked, and checkable fields are all
ignored. You should set this only in submenu items.

When allocating new MENU_ITEMs, the entire structure must be all
zeros because the specific definition for a particular XVT
implementation can include additional undocumented members
after child. The xvt_mem_zalloc function is useful for this.

See Also

MENU_TAG
xvt_mem_zalloc
xvt_menu_set_item_checked
xvt_menu_set_item_enabled
xvt_menu_set_tree
xvt_menu_get_tree
xvt_res_free_menu_tree
xvt_res_get_menu

MENU_TAG
 Menu-Item Tag

Summary

typedef short MENU_TAG;/* menu-item tag */

Description

Values of type MENU_TAG are used to refer to submenus or to
individual menu items.

A submenu vertical list of items that can be pulled down by the user.
The items in a submenu are either additional submenus or individual
items (i.e., commands) that the user can choose. Your application
can use values of this type as the case expression for any switch
statement. It is typical for an XVT application to do so when
processing E_COMMAND events.

The functions that take MENU_TAG arguments are
xvt_help_get_menu_assoc, xvt_help_set_menu_assoc,
xvt_menu_set_item_enabled, xvt_menu_set_item_checked, and
xvt_menu_set_item_title.

The special tag FONT_MENU_TAG refers to the Font/Style menu taken
as a whole. You can use this constant in a call to
xvt_menu_set_item_enabled.

There is no way to refer to the individual items on the Font/Style
menu, but you can check the ones that describe a particular
XVT_FNTID with the function xvt_menu_set_font_sel.

All menu tags defined by your application must fall within the range
(1 .. MAX_MENU_TAG) because XVT’s predefined menu tags are
above that range.

For the predefined menu constants for the standard Edit, File, and
Help menus, see the
M_EDIT_*, M_FILE_*, M_HELP_* Menu Tags.

See Also

E_COMMAND
FONT_MENU_TAG
M_EDIT_*, M_FILE_*, M_HELP_* Menu Tags
MENU_TAG
XVT_FNTID
xvt_help_get_menu_assoc
xvt_help_set_menu_assoc
xvt_menu_set_font_sel
xvt_menu_set_item_checked
xvt_menu_set_item_enabled
xvt_menu_set_item_title

The "Menus" chapter in the XVT Portability Toolkit Guide

Example

static void do_menu(WINDOW xdWindow, EVENT *xdEvent)
{

MENU_TAG tag = xdEvent->v.cmd.tag;
switch (tag) {
case M_FILE_NEW:

build_window(W_DOC);
break;

case M_FILE_OPEN:
/* file open processing */
break;

case M_FILE_SAVE:
/* file save processing */
break;

case M_FILE_CLOSE:
xvt_vobj_destroy(win);
break;

case M_FILE_QUIT:
xvt_app_destroy();
break;

...
}

}

PAT_STYLE
 Pattern Style

See Also

This topic is discussed under PAT_* Values for PAT_STYLE in XVT
Constants.

PEN_STYLE
 Pen Style

See Also

This topic is discussed under P_* Values for PEN_STYLE in XVT
Constants.

PICTURE
 Encapsulated Picture

Summary

typedef long PICTURE;

Description

Values of this type reference an encapsulated picture. A PICTURE is
an opaque data type that stores the result of a series of drawing
operations.

Implementation Note

Only the XVT/Mac platform stores PICTUREs as Mac PICTs, which
are a "meta-file" like sequence of drawing operations, and can be
arbitrarily scaled. On XVT/Win32 and XVT/XM, a PICTURE is a
bitmap, which can be scaled, but with a loss of resolution. Of course,
none of these underlying data types can be accessed portably.

See Also

xvt_cb_put_data
xvt_dwin_close_pict
xvt_dwin_draw_pict
xvt_pict_create
xvt_pict_destroy
xvt_pict_lock
xvt_pict_unlock

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

PNT
 Point

Summary

typedef struct {/* mathematical point */
short v;/* vertical (y) coord. */
short h;/* horizontal (x) coord. */

} PNT;

Description

Objects of this type are used whenever XVT needs to refer to a
mathematical point, consisting of x- and y-coordinates, in the h and
v members, respectively. The actual values are meaningful only if
you know what coordinate system they are relative to.

Structures of this type that are passed to XVT functions, such as
xvt_vobj_translate_points, must refer to a pixel-coordinate
system. However, point structures kept around for your own use can
be in the coordinate system of your choosing.

Implementation Note

Don’t assume that an XVT PNT is the same as a Mac Point, a MS-
Windows POINT, or any other similar structure in the underlying
window system.

See Also

xvt_dwin_draw_aline
xvt_dwin_draw_line
xvt_dwin_draw_polygon
xvt_dwin_draw_polyline
xvt_dwin_draw_set_pos
xvt_rect_get_pos
xvt_rect_has_point
xvt_rect_set_pos
xvt_vobj_translate_points
xvt_win_set_caret_pos

The "Coordinate Systems" chapter in the XVT Portability Toolkit
Guide

PRINT_RCD
 Print Record

Summary

typedef struct { ... } PRINT_RCD;

Description

Objects of this type keep track of the current printing status. A
PRINT_RCD contains information about the current page setup, and,
depending on the platform, can also contain information about the
job status as it progresses and the currently selected printer.

The contents of a PRINT_RCD are opaque to your application. In fact,
the declaration of PRINT_RCD in the XVT header file is a counterfeit
declaration supplied so that applications can declare pointers to a
PRINT_RCD. However, applications can’t directly do anything with
the object itself, nor can they use variables of type PRINT_RCD. They
can only declare pointers.

You get a PRINT_RCD with a call to xvt_print_create. A PRINT_RCD
is a "flat" data structure, so you can save it to a file and read it back
using the size returned by xvt_print_create. If you load from a
file, then you should check its validity with a call to
xvt_print_is_valid before passing it to other XVT functions. In
addition, you can display a dialog box to let the user modify the
PRINT_RCD’s contents with a call to xvt_dm_post_page_setup.

See Also

xvt_dm_post_font_sel
xvt_dm_post_page_setup
xvt_fmap_get_family_sizes
xvt_fmap_get_family_styles
xvt_fmap_get_familysize_styles
xvt_fmap_get_familystyle_sizes
xvt_palet_create
xvt_print_close_page
xvt_print_create
xvt_print_create_win
xvt_print_destroy
xvt_print_is_valid
xvt_print_open_page

The "Printing" chapter in the XVT Portability Toolkit Guide

RCT
 Rectangle

Summary

typedef struct {/* mathematical rect */
short top;/* top coordinate */
short left;/* left coordinate */
short bottom;/* bottom coordinate */
short right;/* right coordinate */

} RCT;

Description

Objects of this type contain the coordinates of rectangles, in any
coordinate system.

See Also

xvt_ctl_create
xvt_dwin_draw_arc
xvt_dwin_draw_image
xvt_dwin_draw_oval
xvt_dwin_draw_pict
xvt_dwin_draw_pie
xvt_dwin_draw_pmap
xvt_dwin_draw_rect
xvt_dwin_draw_roundrect
xvt_dwin_get_clip
xvt_dwin_invalidate_rect
xvt_dwin_is_update_needed
xvt_dwin_open_pict
xvt_dwin_scroll_rect
xvt_dwin_set_clip
xvt_image_fill_rect
xvt_image_get_from_pmap
xvt_image_transfer
xvt_pict_create
xvt_print_get_next_band
xvt_rect_*
xvt_tx_create
xvt_tx_get_view
xvt_vobj_get_client_rect
xvt_vobj_get_outer_rect
xvt_vobj_move
xvt_win_create

The "Coordinate Systems" chapter in the XVT Portability Toolkit
Guide

SCROLL_CALLBACK
 Text Edit Scroll Callback Function Prototype

Summary

typedef void(* SCROLL_CALLBACK)
(TXEDIT tx, T_LNUM org_line, T_LNUM nlines,
T_CPOS org_offset);

Description

This is the type of the fcn argument to
xvt_tx_set_scroll_callback. Variables that will store scroll
callback function pointers should be defined as type
SCROLL_CALLBACK. The xvt_tx_set_scroll_callback function
takes a parameter of type SCROLL_CALLBACK. This XVT function can
be called with the name of a function matching this prototype or with
a variable of this type.

Implementation Note

To insure portability across all platforms, you should include the
macro XVT_CALLCONV1 in the prototypes and headers of all callback
functions used in XVT applications, including those of
SCROLL_CALLBACKs. This macro defines the linkage conventions
used in building XVT libraries on all IBM-compatible platforms. On
other platforms, it is defined as an empty string.

See Also

XVT_CALLCONV*
xvt_tx_set_scroll_callback

SCROLL_CONTROL
 Scrollbar Component

See Also

This topic is discussed under SC_* Values for SCROLL_CONTROL in
XVT Events.

SCROLL_TYPE
 Type of Scrollbar

See Also

This topic is discussed under *SCROLL Values for SCROLL_TYPE in
XVT Constants.

SLIST
 String List

Summary

typedef struct { ... } *SLIST;

Description

Objects of this type refer to SLISTs, which are linked lists of strings
and associated data. They are used by xvt_list_add and the
xvt_slist_* functions. SLISTs are created by xvt_scr_list_wins
and xvt_res_get_str_list.

See Also

xvt_fsys_list_files
xvt_list_add
xvt_list_get_all
xvt_list_get_sel
xvt_res_get_str_list
xvt_scr_list_wins
xvt_slist_*

SLIST_ELT
 String List Element

Summary

typedef struct { ... } *SLIST_ELT;

Description

Objects of this type reference elements of an SLIST. They are used
when an application must refer to a particular element of the SLIST,
such as when inserting or deleting an item.

See Also

SLIST
xvt_slist_add_at_elt
xvt_slist_get
xvt_slist_get_data
xvt_slist_get_first
xvt_slist_get_next
xvt_slist_rem

T_CNUM
 Text Edit Character Number

Summary

typedef unsigned short T_CNUM;

Description

This type is used throughout the text edit system for numbering
characters. The first character in a sequence is always numbered
zero.

See Also

T_CPOS
T_LNUM
T_PNUM
xvt_tx_get_num_chars
xvt_tx_get_sel
xvt_tx_get_tabstop
xvt_tx_set_sel
xvt_tx_set_tabstop

"Controls" in the XVT Portability Toolkit Guide

T_CPOS
 Text Edit Character Position

Summary

typedef unsigned short T_CPOS;

Description

This type is used throughout the text edit system for numbering
character positions in pixels. The first pixel position in a sequence is
always numbered zero.

See Also

T_CNUM
T_LNUM
T_PNUM
xvt_tx_get_origin

"Controls" in the XVT Portability Toolkit Guide

T_LNUM
 Text Edit Line Number

Summary

typedef unsigned short T_LNUM;

Description

This type is used throughout the text edit system for numbering
lines. The first line in a sequence is always numbered zero.

See Also

T_CNUM
T_CPOS
T_PNUM
xvt_tx_get_line
xvt_tx_get_num_chars
xvt_tx_get_num_lines
xvt_tx_get_num_par_lines
xvt_tx_get_origin
xvt_tx_get_sel
xvt_tx_set_sel

The "Controls" chapter in the XVT Portability Toolkit Guide

T_PNUM
 Text Edit Paragraph Number

Summary

typedef unsigned short T_PNUM;

Description

This type is used throughout the text edit system for numbering
paragraphs. The first paragraph in a sequence is always numbered
zero.

See Also

T_CNUM
T_CPOS
T_LNUM
xvt_tx_add_par
xvt_tx_append
xvt_tx_get_line
xvt_tx_get_num_chars
xvt_tx_get_num_par_lines
xvt_tx_get_num_pars
xvt_tx_get_origin
xvt_tx_get_sel
xvt_tx_rem_par
xvt_tx_set_par
xvt_tx_set_sel

The "Controls" chapter in the XVT Portability Toolkit Guide

TXEDIT
 Text Edit Object

Summary

#define TXEDIT WINDOW

Description

A value of this type is returned by xvt_tx_create or
xvt_tx_create_def. It is used in subsequent text edit system calls
to identify the text edit object on which to operate. It is equivalent to
an XVT WINDOW.

If a text edit object has been created by xvt_win_create_res or
xvt_win_create_def, then its TXEDIT value can be retrieved by
calling xvt_win_get_tx and passing it the ID of the text edit object
of interest and its parent WINDOW.

See Also

WINDOW
xvt_tx_*
xvt_win_create_def
xvt_win_create_res

The "Controls" chapter in the XVT Portability Toolkit Guide

UNIT_TYPE
 Identify Coordinate System used for WIN_DEF Elements

See Also

This topic is discussed under U_* Values for UNIT_TYPE in XVT
Constants.

WIN_DEF
 Specify Window, Dialog, and Control Creation

Summary

typedef struct s_win_def {
WIN_TYPE wtype;/* WC_* or WO_* type */
RCT rct;
char *text;
UNIT_TYPE units;
XVT_COLOR_COMPONENT * ctlcolors;
union {

struct s_win_def_win {/* WINDOW’s */
short int menu_rid;/* menu resource id */
MENU_ITEM *menu_p;/* pointer to menu tree */
long flags;/* WSF_* flags */
XVT_FNTID ctl_font_id;/* control font id */

} win;struct s_win_def_dlg {/* DIALOG’s */
long flags;/* WSF_* flags */
XVT_FNTID ctl_font_id;/* control font id */

} dlg;struct s_win_def_ctl {/* CONTROL’s */
short int ctrl_id;
short int icon_id;/* for icons only */
long flags;/* CTL_* flags */
XVT_FNTID font_id;/* logical font */

} ctl;struct s_win_def_tx {/* textedit objects */
unsigned short attrib;/* TX_* flags */
XVT_FNTID font_id;/* logical font */
short margin;/* right margin */
short limit;/* max chars */
short int tx_id;/* text ID */

} tx;
} v;

} WIN_DEF;

Description

Structures of this type specify window, dialog, and control creation
to the following functions: xvt_ctl_create_def,
xvt_dlg_create_def, xvt_tx_create_def, and
xvt_win_create_def. The specific use of WIN_DEF structures as it
relates to each of these functions is more completely described in the
section for each function.

xvt_ctl_create_def and xvt_tx_create_def are passed a single
WIN_DEF structure describing the control or text edit object to be
created.

In contrast, xvt_dlg_create_def and xvt_win_create_def accept
arrays of WIN_DEF structures. Both of these functions expect the
following things in these structures:

• The first element of the WIN_DEF array must describe the
window or dialog itself

• The following elements of the array must describe controls
within the window or dialog

• The final element of the array must be a terminator identified
by a WIN_DEF structure whose wtype field is set to W_NONE

xvt_res_get_win_def and xvt_res_get_dlg_def return arrays of
WIN_DEF structures. The arrays of WIN_DEF structures loaded by these
functions are appropriate for xvt_win_create_def and
xvt_dlg_create_def. Arrays of WIN_DEFs returned by these two
functions can be freed by calling xvt_res_free_win_def.

Implementation Note

If you create your own WIN_DEF strucutre, you must intialize unused
fields to zero. You may use xvt_mem_zmalloc to allocate WIN_DEF
array and set the values to zero.

See Also

MENU_ITEM
RCT
UNIT_TYPE
W_*, WC_*, WD_*, Values for WIN_TYPE
WIN_TYPE
XVT_COLOR_COMPONENT
XVT_FNTID
xvt_ctl_create_def
xvt_dlg_create_def
xvt_mem_zalloc
xvt_res_free_win_def
xvt_res_get_dlg_def
xvt_res_get_win_def
xvt_tx_create_def
xvt_win_create_def

WIN_TYPE
 Window-Type

This topic is discussed under W_*, WC_*, WD_*, Values for
WIN_TYPE in XVT Constants.

WINDOW
 Window Descriptor

Summary

typedef long WINDOW;/* window descriptor */

Description

Objects of this type identify XVT windows. A WINDOW can be a
regular window, a dialog, a control, a pixmap, or a print window. It
can also be one of the container windows, TASK_WIN or SCREEN_WIN.

Your application gets valid window objects when it calls any of the
window, dialog, or control creation functions. It gets a valid print
window when it calls xvt_print_create_win. It gets a pixmap
window when it calls xvt_pmap_create. It can also use the
predefined container windows TASK_WIN or SCREEN_WIN at any time.

In addition, your application can call xvt_win_get_ctl to retrieve
the parent WINDOW for a control in a window or dialog.

Once your application has a valid window object, then it can pass it
to any of the XVT functions that take a WINDOW, subject to the rules
of that function.

Implementation Note

Direct information about the contents of a window descriptor is
unavailable to the application. In particular, the application must not
assume that a WINDOW is a WindowPtr or HWND. For information on
gaining access to native window types, see ATTR_NATIVE_WINDOW
and the XVT Platform-Specific Books.

See Also

ATTR_NATIVE_WINDOW
TASK_WIN
SCREEN_WIN
xvt_ctl_*
xvt_dlg_create_def
xvt_dlg_create_res
xvt_dm_post_font_sel
xvt_dwin_*
xvt_errmsg_get_*
xvt_font_get_win
xvt_font_map
xvt_list_*
xvt_menu_*
xvt_pmap_create
xvt_pmap_destroy
xvt_print_create_win
xvt_sbar_*
xvt_scr_get_focus_topwin
xvt_scr_get_focus_vobj
xvt_scr_set_focus_vobj
xvt_timer_create
xvt_tx_create
xvt_tx_create_def
xvt_vobj_*
xvt_win_*

The XVT Platform-Specific Books

XVT_BYTE
 Arbitrary Data

Summary

typedef char XVT_BYTE

Description

The use of char or char* for non-string one-byte storage should be
replaced by this type. The existing DATA_PTR type should be replaced
by XVT_BYTE* where appropriate.

See Also

DATA_PTR
XVT_UBYTE

XVT_CODESET_MAP
Character Codeset Mapping Descriptor

Summary

typedef struct { ... } *XVT_CODESET_MAP;

Description

Objects of this type refer to Character Codeset Maps, which are
mapping tables that define the mapping of the character value from
one character codeset to another character codeset. The specific
character codesets to be used are defined at the time the
XVT_CODESET_MAP object is created by the function
xvt_str_create_codeset_map.

See Also

xvt_str_create_codeset_map
xvt_str_destroy_codeset_map
xvt_str_translate_codeset

XVT_COLLATE_FUNCTION
 Application-supplied String Collation Function Prototype

Summary

typedef long (* XVT_COLLATE_FUNCTION)(const char* mbs1,
 const char *mbs2);

Description

This type defines the prototype for application-supplied functions
that collate strings. Variables that store application-supplied string
collation function pointers must be of this type.

Your application can use the function xvt_vobj_set_attr to set the
ATTR_COLLATE_HOOK hook function. The "value" parameter of the
call to xvt_vobj_set_attr must be a variable of type
XVT_COLLATE_FUNCTION but cast to a long. Similarly,
xvt_vobj_get_attr returns a variable of type
XVT_COLLATE_FUNCTION cast to a long when called to inquire the
current value of the ATTR_COLLATE_HOOK attribute.

If your application requires a collation algorithm different than that
provided by the default collation function supplied by the toolkit,
you must use an application-supplied collation function.

Implementation Note

To insure portability across all platforms, you should include the
macro XVT_CALLCONV1 in the prototypes and headers of all callback
functions used in XVT applications, including those of the
XVT_COLLATE_FUNCTIONs. This macro defines the linkage
conversions used in building XVT libraries.

See Also

ATTR_COLLATE_HOOK
XVT_CALLCONV*
xvt_str_collate
xvt_str_collate_ignoring_case
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Multibyte Character Sets and Localization" chapter in the XVT
Portability Toolkit Guide

XVT_COLOR_ACTION
 Color Setting Action

Summary

typedef enum s_xvt_color_action {
XVT_COLOR_ACTION_SET,/* set the colors */
XVT_COLOR_ACTION_UNSET/* unset the colors */

} XVT_COLOR_ACTION;

Description

This action is used for control colors. You use this type in
xvt_clt_set_colors and xvt_win_set_ctl_colors to set or unset
the control color components.

See Also

XVT_COLOR_COMPONENT
xvt_ctl_set_colors
xvt_win_set_ctl_colors

XVT_COLOR_COMPONENT
 Color Component Types

Summary

typedef s_xvt_color_component {
 XVT_COLOR_TYPE type; /* color component being

defined */
COLOR color;/* RGB color value */

} XVT_COLOR_COMPONENT;

Description

This type contains the XVT color values used in the various control
color access functions. Structures of this type usually appear in an
array. The last element in the array must have a type field of
XVT_COLOR_NULL.

See Also

COLOR
XVT_COLOR_*
XVT_COLOR_TYPE
xvt_ctl_get_colors
xvt_ctl_set_colors
xvt_win_get_ctl_colors
xvt_win_set_ctl_colors

XVT_COLOR_TYPE
 Control Color Component

Summary

typedef unsigned long XVT_COLOR_TYPE;

Description

This type is used for defining control color components in an
XVT_COLOR_COMPONENT structure. It assigns values of XVT_COLOR_*
to variables of type XVT_COLOR_TYPE.

See Also

XVT_COLOR_*
XVT_COLOR_COMPONENT
xvt_ctl_get_colors
xvt_ctl_set_colors
xvt_win_get_ctl_colors
xvt_win_set_ctl_colors

XVT_CONFIG
 System-Initialization Structure

Summary

typedef struct s_xvt_config {
short menu_bar_ID;/* task menubar ResID */
short about_box_ID;/* default aboutbox ResID */
char *base_appl_name;/* application’s "filename" */
char *appl_name;/* application’s name */
char *taskwin_title;/* title for task window */

} XVT_CONFIG;

Description

This data type provides system initialization information to
xvt_app_create.

menu_bar_ID

Specifies the resource ID of a menubar that will be used as the
task menubar. The task menubar will be available to the user at
certain times during the life cycle of the application. This must
be set to a valid menubar resource ID.

about_box_ID

Can either be set to zero for your application to use XVT’s
default About box, or it can be set to the resource ID of an
alternate About box dialog that you have specified in XRC. For
more information, see xvt_dm_post_about_box.

base_appl_name

Specifies the base filename (without extension) to be used when
XVT looks for .uid files.

appl_name

Specifies the application name that will be prepended to the
titles of document windows when xvt_win_set_doc_title is
called.

taskwin_title

Specifies the title of the task window for platforms where the
task window has a physical representation. Currently, only
XVT/Win32 and XVT/XM use this task window title.

To ensure that all values are in a default state, the application should
memset this structure to 0 before it is initialized. Use
ATTR_TASKWIN_TITLE_RID and ATTR_APPL_NAME_RID to load the
task window title and application name from resources.

Implementation Note

On XVT/Mac, appl_name specifies the name that is displayed in the
"About appl_name..." item at the top of the Apple menu.

On XVT/XM, base_appl_name must be set to the name of the .uid
file.

See Also

ATTR_APPL_NAME_RID
ATTR_TASKWIN_TITLE_RID
TASK_WIN
xvt_app_create
xvt_dm_post_about_box
xvt_win_set_doc_title

The "GUI Components" and the "Multibyte Character Sets and
Localization" chapter in the XVT Portability Toolkit Guide

XVT_CXO
 Container Extension Object

Summary

typedef long XVT_CXO;

Description

Objects of this type identify XVT Container Extension Objects
(CXO’s). An XVT_CXO is used to modify the behavior of a container
(an XVT WINDOW with an event handler). XVT_CXO’s have their
own event handlers and messaging system. These objects can be
created using xvt_cxo_create.

Implementation Note

Direct information about the contents of a window descriptor is
unavailable to the application. All communication with an XVT_CXO
should be done through the supplied API calls.

See Also

xvt_cxo_*

XVT_CXO_EVENT_HANDLER
 Container Extension Object Event Handler Function Prototype

Summary

typedef long (* XVT_CXO_EVENT_HANDLER)(XVT_CXO cxo,
EVENT * ep);

Description

This type definition defines the prototype for CXO event handling
functions.

XVT functions that take a parameter of type
XVT_CXO_EVENT_HANDLER are xvt_cxo_create and
xvt_cxo_set_event_handler. The function
xvt_cxo_get_event_handlef0 will return this type.

Implementation Note

To insure portability across all platforms, you should include the
macro XVT_CALLCONVl in the prototypes and headers of all callback
functions used in XVT applications, including those of
XVT_CXO_EVENT_HANDLERs. This macro defines the linkage
convention used in building XVT libraries.

See Also

EVENT
XVT_CXO

XVT_CXO_INSERTION
 Insertion Location for Container Extension Objects

See Also

This topic is discussed under XVT_CXO_POS_* Values for
XVT_CXO_INSERTION in XVT Constants.

XVT_DISPLAY_TYPE
 Value for ATTR_DISPLAY_TYPE

See Also

This topic is discussed under ATTR_DISPLAY_TYPE in XVT Portable
Attributes.

XVT_ENUM_CHILDREN
 Prototype for Application-supplied Functions Passed to xvt_win_enum_wins

Summary

typedef BOOLEAN (* XVT_ENUM_CHILDREN)(WINDOW child,
 long data)

WINDOW child

Child of parent_win specified in call to xvt_win_enum_wins

long data

Application supplied data

Description

This is the prototype for application-supplied functions supplied to
xvt_win_enum_wins. Application-supplied callback functions used
by xvt_win_enum_wins must follow this signature. The application
registers this callback function by passing its address to the
xvt_win_enum_wins function. The callback function, since it is
application-supplied, can perform any application action. The
application must be careful to avoid writing callbacks that cause
unintended recursion.

Return Value

To continue enumeration, the callback function must return TRUE. To
stop enumeration, it must return FALSE.

See Also

WINDOW
xvt_win_enum_wins

XVT_ERRID
 Error Message Identifier

Summary

typedef unsigned long XVT_ERRID;

Description

Error messages are identified using an opaque data type XVT_ERRID,
which is composed of several fields:

• Message number (16 bits unsigned short)

• Standard message flag (1 bit: distinguishes predefined,
standard toolkit messages from the ones defined by an
xvt_errmsg_sig call)

• Message category minor portion (4 bit)

• Message category major portion (4 bit)

You should not make any assumptions about the individual field
position within the identifier. Always use the xvt_errid_* macros
to access XVT_ERRID.

See Also

xvt_errid_create_*
xvt_errid_get_*
xvt_errid_is_*

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

XVT_ERRMSG
 Error Message Object

Summary

typedef struct { ... } *XVT_ERRMSG;

Description

The error message object is available only to an error handler.
Because the error message object is represented by an opaque
identifier, you must access it by using the xvt_errmsg_get_*
inquiry functions.

The xvt_errmsg_get_* inquiry functions give an error handler
complete information about an error signalled by one of the
xvt_errmsg_sig functions.

See Also

ATTR_ERRMSG_FILENAME
xvt_errid_get_*
xvt_errmsg_pop_handler
xvt_errmsg_push_handler
xvt_errmsg_sig

XVT_ERRMSG_HANDLER
 Error Message Handler Function Prototype

Summary

typedef BOOLEAN(* XVT_ERRMSG_HANDLER)
 (XVT_ERRMSG err_msg, DATA_PTR context);

XVT_ERRMSG err_msg

Error message object describing a signaled error.

DATA_PTR context

NULL or error handler context provided in the
xvt_errmsg_push_handler call.

Description

This type definition defines the prototype for error message
handling functions. Variables that will store error message handling
function pointers should be defined as type XVT_ERRMSG_HANDLER.

The error message handler is a function invoked by the error
messaging facility when the xvt_errmsg_sig or
xvt_errmsg_sig_std functions are called.

The handler examines the passed-in error message object using
xvt_errmsg_get_* calls. After taking appropriate application-
specific action, the handler either dismisses the error signal
(returning TRUE), or passes the error to the next handler (returning
FALSE). If the error is passed on, it ultimately reaches the XVT-
provided "last chance" error handler.

XVT functions that take a parameter of type XVT_ERRMSG_HANDLER
are xvt_errmsg_push_handler and xvt_errmsg_pop_handler.
They can be called with the name of a function matching this
prototype or with a variable of this type.

Return Value

TRUE if an error has been caught (handled) by the handler; FALSE if
the error has been passed on to the next error handler.

Parameter Validity and Error Conditions

To prevent deadlock, any errors signaled from within an error
handler are delivered only to the next error handler. You can use this
feature to signal errors.

Implementation Note

To insure portability across all platforms, you should include the
macro XVT_CALLCONV1 in the prototypes and headers of all callback
functions used in XVT applications, including those of
XVT_ERRMSG_HANDLERs. This macro defines the linkage conventions
used in building XVT libraries.

See Also

ATTR_ERRMSG_HANDLER
DATA_PTR
XVT_CALLCONV*
XVT_ERRMSG
xvt_errmsg_get_*
xvt_errmsg_pop_handler
xvt_errmsg_push_handler
xvt_errmsg_sig
xvt_errmsg_sig_std

Example

The following error handler performs application cleanup on fatal
errors, letting the XVT "last chance" handler present the message to
the user. Any other errors are simply masked out, with no action.

BOOLEAN XVT_CALLCONV1 my_handler(XVT_ERRMSG msg,
DATA_PTR context)

{
if (xvt_errmsg_get_sev_id (msg) == SEV_FATAL)) {

app_perform_cleanup();
return FALSE;/* let XVT report error */

}else
return TRUE;/* hide errors and warnings from user

*/
}

XVT_ERRSEV
 Error Severity Type

See Also

This topic is discussed under SEV_* Values for XVT_ERRSEV in
XVT Constants.

XVT_FNTID
 Object That Identifies a Logical Font

Summary

typedef struct { ... } *XVT_FNTID;

Description

Objects of this type identify logical fonts. Your application gets a
valid logical font when it calls xvt_dwin_get_font,
xvt_font_create, xvt_menu_get_font_sel, or
xvt_res_get_font, or receives an E_FONT event. Once your
application has a valid logical font, it can pass it to any of the XVT
functions that take an XVT_FNTID, subject to that function’s rules.

Implementation Note

An application cannot get direct information about the contents of an
XVT_FNTID. The application can access logical font attributes only
through the logical font access functions.

See Also

xvt_dm_post_font_sel
xvt_dwin_get_font*
xvt_dwin_set_font_*
xvt_event_get_font
xvt_event_set_font
xvt_font_*
xvt_menu_get_font_sel
xvt_menu_set_font_sel
xvt_res_get_font
xvt_tx_create

XVT_FONT_ATTR_MASK
 Logical Font Attribute Type

Summary

typedef unsigned long XVT_FONT_ATTR_MASK;

Description

This attribute mask specifies logical font attribute types for the
XVT_FNTID access functions. The logical font attribute mask is
composed of one or more XVT_FA_* flag values that are OR’d
together. You can use the XVT_FA_* constants in combined bit masks
to specify multiple values.

These are the valid flags you can use:

#define XVT_FA_FAMILY ... /* family */
#define XVT_FA_SIZE ... /* size */
#define XVT_FA_STYLE ... /* style */
#define XVT_FA_NATIVE ... /* native descriptor */
#define XVT_FA_APP_DATA ... /* application data */
#define XVT_FA_WIN ... /* window */
#define XVT_FA_ALL ... /* all attributes*/

See Also

XVT_FA_* Constants
XVT_FFN_* Constants
XVT_FNTID
xvt_font_copy

XVT_FONT_DIALOG
 Application-Supplied Font Selection Dialog Function Prototype

Summary

typedef BOOLEAN(* XVT_FONT_DIALOG)
(WINDOW win, XVT_FNTID default_font_id,
PRINT_RCD *precp, unsigned long reserved);

Description

This type definition defines the prototype for application-supplied
functions that invoke the Font Selection dialog. Variables that will

store application-supplied Font-Selection-dialog-invoking function
pointers should be defined to be of type XVT_FONT_DIALOG.

Your application can use the xvt_vobj_set_attr function to set the
ATTR_FONT_DIALOG portable attribute. The "value" parameter would
be a variable of type XVT_FONT_DIALOG (but cast to a long).
Similarly, xvt_vobj_get_attr returns a variable of type
XVT_FONT_DIALOG (cast to a long) when called to inquire the
ATTR_FONT_DIALOG portable attribute.

Implementation Note

To insure portability across all platforms, you should include the
macro XVT_CALLCONV1 in the prototypes and headers of all callback
functions used in XVT applications, including those of
XVT_FONT_DIALOGs. This macro defines the linkage conventions
used in building XVT libraries.

See Also

ATTR_FONT_DIALOG
PRINT_RCD
WINDOW
XVT_CALLCONV*
XVT_FNTID
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Font Selection Dialogs" section of the "Fonts and Text"
chapter in the XVT Portability Toolkit Guide

XVT_FONT_MAPPER
 Application-Supplied Font Mapper Function Prototype

Summary

typedef BOOLEAN(* XVT_FONT_MAPPER)
(XVT_FNTID font_id);

Description

This type definition defines the prototype for application-supplied
Logical Font Mapping functions. Variables that will store
application-supplied font mapping function pointers should be
defined to be of type XVT_FONT_MAPPER.

Your application can use the xvt_vobj_set_attr function to set the
ATTR_FONT_MAPPER portable attribute. The "value" parameter would

be a variable of type XVT_FONT_MAPPER (but cast to a long).
Similarly, xvt_vobj_get_attr returns a variable of type
XVT_FONT_MAPPER (cast to a long) when called to inquire the
ATTR_FONT_MAPPER portable attribute.

Implementation Note

To ensure portability across all platforms, you should include the
macro XVT_CALLCONV1 in the prototypes and headers of all callback
functions used in XVT applications, including those of
XVT_FONT_MAPPERs. This macro defines the linkage conventions
used in building XVT libraries.

See Also

ATTR_FONT_MAPPER
XVT_CALLCONV*
XVT_FNTID
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Application-Supplied Font Mappers" section of the "Fonts and
Text" chapter in the XVT Portability Toolkit Guide

XVT_FONT_STYLE_MASK
 Logical Font Style Type

Summary

typedef unsigned long XVT_FONT_STYLE_MASK;

Description

This style mask specifies logical font style for the XVT_FNTID access
functions. The logical font style mask is composed of one or more
XVT_FS_* flag values that are OR’d together. You can use the
XVT_FS_* constants in combined bit masks to specify multiple
values.

These are the valid flags you can use:

#define XVT_FS_NONE .../* none */
#define XVT_FS_BOLD .../* bold */
#define XVT_FS_ITALIC .../* italic */
#define XVT_FS_UNDERLINE .../* underline */
#define XVT_FS_OUTLINE .../* outline */
#define XVT_FS_SHADOW .../* shadow */
#define XVT_FS_INVERSE .../* inverse */
#define XVT_FS_BLINK .../* blinking */
#define XVT_FS_STRIKEOUT .../* strikeout */
#define XVT_FS_USER1 .../* for application use */
#define XVT_FS_USER2 .../* for application use */
#define XVT_FS_USER3 .../* for application use */
#define XVT_FS_USER4 .../* for application use */
#define XVT_FS_USER5 .../* for application use */
#define XVT_FS_WILDCARD .../* used only in XRC FONT

statement */

XVT provides the XVT_FS_USER* style flags for use by application-
supplied font mappers. The XVT_FS_WILDCARD style is not useful in
your application, but it is the resulting logical font style when you
specify "any" style in an XRC font statement.

The following list shows the availability of logical font style
attributes on different platforms:

Style Platform
bold Available on all platforms
italic Available on all platforms
underline Available on XVT/Mac and XVT/Win32
outline Available on XVT/Mac
shadow Available on XVT/Mac
strikeout Available on XVT/Win32

See Also

XVT_FONT_ATTR_MASK
XVT_FS_* Constants
xvt_dwin_get_font_style
xvt_dwin_get_font_style_mapped
xvt_dwin_set_font_style
xvt_fmap_get_family_styles
xvt_fmap_get_familysize_styles
xvt_fmap_get_familystyle_sizes
xvt_font_get_style
xvt_font_get_style_mapped
xvt_font_set_style

The "XRC Font Mapper" and "Application-Supplied Font Mappers"
sections of the "Fonts and Text" chapter in the XVT Portability
Toolkit Guide

XVT_FORMAT_HANDLER
Prototype for Application-Supplied Functions for String Formatting

Summary

typedef const char *(*XVT_FORMAT_HANDLER)(WINDOW win,
char *instr, int *start, int *end, void *data)

WINDOW win

The window or control containing the format function.

char *instr

The input string to format.

int *start

Return the cursor start position for WC_EDIT and WC_LISTEDIT
control text selection.

int *end

Return the cursor end position for WC_EDIT and WC_LISTEDIT
control text selection.

void *data

Application-supplied data.

Description

This is the prototype for application-supplied functions passed to
xvt_vobj_set_formatter. This function can be attached to XVT
windows, dialogs, and controls. The callback function is called
when setting the text for the title of these objects or inserting text
into certain controls. For WC_LISTBOX controls, the formatting
function is invoked when xvt_list_add is called. For WC_EDIT and
WC_LISTEDIT controls, the formatting function is invoked when
xvt_vobj_set_title is called, Cut or Paste operations are performed, or
a character is entered from the keyboard.

The formatter function gets passed the WINDOW object to which it
is attached, the string to be tested, and the application data set by the
application with xvt_vobj_set_formatter. The function also gets passed
output parameters for setting the text selection for a WC_EDIT or
WC_LISTEDIT control only.

The formatter function must test the input string and decide if
formatting is necessary. If no formatting is needed, the function

should return the input string unchanged. If formatting is needed, the
application should format the string, as desired, and return the new
string. XVT is not responsible for allocating or freeing the memory
for storing the new string. The application should either allocate
global data space or use a data buffer passed as the data parameter to
the formatter function. If the application wishes to terminate the
current action (setting a window title), the function should return -1.

Return Value

In order for the title to be inserted in the WINDOW, the function must
return a pointer to the newly formatted string (or the input string if
no change is needed). If NULL or -1 is returned, the calling function
returns without further action and the title will not be set.

 See Also

XVT_PATTERN
xvt_pattern_create
xvt_pattern_destroy
xvt_pattern_match
xvt_pattern_format_string
xvt_vobj_get_formatter
xvt_vobj_set_formatter

XVT_HELP_FLAVOR
 Configuration of the Help Viewer

See Also

This topic is discussed under XVT_HELP_* Values for
XVT_HELP_FLAVOR in XVT Constants.

XVT_HELP_INFO
 Help File Information Handle

Summary

typdef struct { ... } *XVT_HELP_INFO;

Description

XVT_HELP_INFO is an opaque type given to the application to identify
the information contained in a compiled help file.

Applications receive an XVT_HELP_INFO value from
xvt_help_open_helpfile. Every other help system function
expects a value of this type as the first parameter.

See Also

xvt_help_*

XVT_HELP_TID, NULL_TID
 Help Topic Identifier

Summary

typedef long XVT_HELP_TID#define NULL_TID ...

Description

A topic identifier is used to specify help file topics. Both the help file
itself and the program must agree on a set of unique topic identifier
values. A convenient way to ensure this is to place the identifiers in
an #include file that is shared by the help file and the program
source files.

NULL_TID specifies an undefined help topic.

See Also

xvt_help_*

XVT_HTML_XRC_INTERCEPT_HANDLER
Prototype for XRC Intercept Handler for HTML Control

Summary

typedef BOOLEAN (*XVT_HTML_XRC_INTERCEPT_HANDLER)
(WINDOW win,
char **xrc)

WINDOW win

The HTML control assigned the XRC intercept handler.

char **xrc

Pointer to the string containing the requested XRC.

Description

Prototype for the application-defined Universal Resource Locator
(XRC) intercept handler passed to xvt_html_set_xrc_intercept. The
XRC intercept handler is called whenever a XRC is to be set on an
HTML control, either with xvt_html_set_xrc or when the user
follows a link.

The XRC passed into the XRC intercept handler can be modified for
the purpose of redirection. Because this parameter is a pointer to a
character string, the existing character string must be freed using
xvt_mem_free prior to reallocation of the new string using
xvt_mem_alloc. Failure to free and reallocate or writing beyond the
existing string bounds will result in memory leaks and potential
memory protection faults.

Return Value

Return TRUE if the calling function is to further process and display
the passed XRC. Return FALSE if the calling function is to ignore
the passed XRC and not process the request.

See Also

WC_* Values for WIN_TYPE
xvt_html_get_xrc
xvt_html_set_xrc
xvt_html_get_xrc_intercept
xvt_html_set_xrc_intercept

Example

See example for xvt_html_set_xrc_intercept.

XVT_IMAGE
 Image Data Object

Summary

typedef struct { ... } *XVT_IMAGE;

Description

Variables of this type contain images. Your application creates valid
images using xvt_image_create, or by loading images from files

using the various xvt_image_read_* functions. XVT_IMAGE is an
opaque data type. Your application can manipulate variables of this
type only by calling xvt_image_* functions.

See Also

xvt_dwin_draw_image
xvt_image_*
xvt_palet_add_colors
xvt_res_get_image

XVT_IMAGE_ATTR
 Attribute used in Image Object Creation

Summary

typedef struct { ... } XVT_IMAGE_ATTR;

Description

This attribute is not currently implemented; it is reserved for future
use.

See Also

xvt_image_create

XVT_IMAGE_FORMAT
 Color Format Enumerated Type for Images

See Also

This topic is discussed under XVT_IMAGE_* Values for
XVT_IMAGE_FORMAT in XVT Constants.

XVT_IOSTR_CONTEXT
 Opaque Type for Pointer to Stream Data Encapsulation

Summary

typedef struct { ... } *XVT_IOSTR_CONTEXT;

Description

The XVT_IOSTREAM object uses this type for the user-defined
"context" of the stream data. It is typically defined as the address of
a user-defined structure containing a stream data pointer and
position indicator.

See Also

XVT_IOSTREAM
xvt_iostr_create_read
xvt_iostr_create_write

XVT_IOSTR_RWFUNC
 Function Signature for Stream Read/Write Functions

Summary

typedef short(*XVT_IOSTR_RWFUNC)
(XVT_IOSTREAM iostr, unsigned short nbytes,
XVT_BYTE *buf);

XVT_IOSTREAM iostr

I/O stream to be read read or written.

unsigned short nbytes

Number of bytes needed for read or write operations.

XVT_BYTE *buf

Buffer to be written or read.

Description

This is the signature of the stream read and write functions. When
creating user-defined XVT_IOSTREAM objects, you must provide
functions matching this signature for reading from and writing to the
stream context.

See Also

XVT_BYTE
XVT_IOSTREAM
xvt_iostr_create_read
xvt_iostr_create_write
xvt_iostr_get_context

XVT_IOSTR_SZFUNC
 Function Signature for Stream Size Function

Summary

typedef long(*XVT_IOSTR_SZFUNC) (XVT_IOSTREAM
iostr);

XVT_IOSTREAM iostr

I/O stream for which a size is to be returned.

Description

This is the signature of the stream size function. This function
returns the size of the data stream (in bytes) and must be provided
when user-defined XVT_IOSTREAM objects are created. The size value
returned must always be the original creation size.

See Also

XVT_IOSTREAM
xvt_iostr_create_read
xvt_iostr_create_write

XVT_IOSTREAM
 Input/Output Stream Object

Summary

typedef struct { ... } *XVT_IOSTREAM;

Description

Variables of this type contain information necessary for reading and
writing sequential data streams (files or application-defined). Your

application creates valid stream objects using any of the
xvt_iostr_create_* functions.

XVT_IOSTREAM is an opaque data type. Your application can
manipulate variables of this type only by calling xvt_iostr_*
functions.

See Also

xvt_image_read_bmp_from_iostr
xvt_image_read_macpict
xvt_image_read_xbm_from_iostr
xvt_image_read_xpm_from_iostr
xvt_image_write_bmp_to_iostr
xvt_image_write_macpict_to_iostr
xvt_iostr_create_fread
xvt_iostr_create_fwrite
xvt_iostr_create_read
xvt_iostr_create_write
xvt_iostr_destroy

XVT_MEM
 Structure of Memory Manager Functions

Summary

typedef struct s_mem {
DATA_PTR (*malloc) XVT_CC_ARGS((size_t size));
VOID (*free) XVT_CC_ARGS((DATA_PTR data));
DATA_PTR (*realloc) XVT_CC_ARGS((DATA_PTR data,

size_t size));
DATA_PTR (*zalloc) XVT_CC_ARGS((size_t size));

} XVT_MEM;

Description

This structure contains the addresses of the system-wide memory
management functions that are called when the application invokes
xvt_mem_alloc, xvt_mem_free, xvt_mem_realloc, or
xvt_mem_zmalloc.

To reset the memory management functions from the default set of
XVT-supplied functions to an application-specified set of functions,
applications can create and initialize a variable of this type, and pass
it to xvt_vobj_set_attr (using the ATTR_MEMORY_MANAGER
attribute). When an application calls xvt_vobj_get_attr using the
ATTR_MEMORY_MANAGER attribute, xvt_vobj_get_attr returns a
pointer to a structure of type XVT_MEM (cast to long).

See Also

ATTR_MEMORY_MANAGER
DATA_PTR
xvt_vobj_get_attr
xvt_vobj_set_attr

XVT_NAV
 Navigation Object

Summary

typedef long XVT_NAV;

Description

Objects of this type are XVT WINDOW navigation objects. Navigation
objects allow users to navigate through GUI objects contained
within a window using the keyboard. W_DOC, W_PLAIN, W_DBL,
W_MODAL, and W_NO_BORDER are windows which may contain
XVT_NAV objects.

See Also

xvt_nav_create
xvt_win_get_nav

XVT_NOTEBK_ENUM_PAGES
Callback Function Prototype for xvt_notebk_enum_pages

Summary

typedef BOOLEAN (* XVT_NOTEBK_ENUM_PAGES)
(WINDOW notebk, short tab_no, short page_no,
long data);

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number.

short page_no

Page number.

long data

Data to associate with tab and page.

Description

This type definition defines the required callback function for
xvt_notebk_enum_pages.

The calback function is continuously called with notebk, tab_no,
page_no and data being updated sequentially for each enumeration.
The callbacks will continue until the last enumeration occurs or the
callback returns FALSE.

Return Value

TRUE to continue next enumeration, if any; FALSE to discontinue
before next enumeration, if any.

Implementation Note

To insure portability across all platforms, you should include the
macro XVT_CALLCONV1 in the prototypes and headers of all callback
functions used in XVT applications, including those of
XVT_NOTEBK_ENUM_PAGES. This macro defines the linkage
conventions used in building XVT libraries.

See Also

xvt_notebk_enum_pages

Example

The following callback function checks the value of the associated
data for the tab and page to see if is is set to FALSE.

BOOLEAN XVT_CALLCONV1 my_callback(WINDOW notebk,
short tab_no, short page_no, long data)

{
if (data == FALSE) {

xvt_xm_post_note("Data is FALSE!");
return FALSE; /* discontinue enumeration */

}
else

return TRUE; /* continue enumeration */
}

XVT_PALETTE
 Color Palette Object

Summary

typdef struct { ... } *XVT_PALETTE;

Description

XVT_PALETTE is a data type for manipulating color palettes. Color
palettes map image colors onto colors available in the display
hardware. XVT_PALETTE is an opaque data type; your application can
only access and modify pixmaps through XVT functions.

See Also

XVT_PALLETE_* Values
xvt_pallet_*
xvt_vobj_get_palet
xvt_vobj_set_palet

The "Color Palettes" section of the "Portable Images" chapter in the
XVT Portability Toolkit Guide

XVT_PALETTE_ATTR
 Attribute used in Palette Object Creation

Summary

typedef struct { ... } XVT_PALETTE_ATTR;

Description

This attribute is not currently implemented; it is reserved for future
use.

See Also

xvt_palet_create

XVT_PALLET_TYPE
 Color Palette Types

See Also

This topic is discussed under XVT_PALLETE_* Values in XVT
Constants.

XVT_PATTERN
Complex String Pattern Descriptor

Summary

typedef struct { ... } *XVT_PATTERN

Description

Objects of this type refer to complex string patterns, which are
compiled parse trees of a string matching and formatting pattern.

See Also

XVT_FORMAT_HANDLER
xvt_pattern_create
xvt_pattern_destroy
xvt_pattern_match
xvt_pattern_format_string
xvt_vobj_get_formatter
xvt_vobj_set_formatter

XVT_PG_ORIENT
Page Orientation

Summary

typedef enum {
PG_PORTRIAT,
PG_LANGSCAPE

} XVT_PG_ORIENT;

Description

Enumerated type for identifing the page orientation.

See Also

xvt_print_set_page_orient

XVT_PG_SIZE
Page Dimensions

Summary

typedef struct {
double width;
double height;
XVT_PG_UNITS pgunits;

} XVT_PG_SIZE;

Description

This structure contains page information that is passed in the
function xvt_print_set_page_size. XVT_PG_UNITS is used to
describe the units that the width and height use (inches or
millimeters).

See Also

XVT_PG_UNITS
XVT_PG_ORIENT
xvt_print_set_page_size

XVT_PG_UNITS
Page Units

Summary

typedef enum {
PG_IN,
PG_MM

} XVT_PG_UNITS;

Description

Enumerated type for identifing the units within XVT_PG_SIZE. PG_IN
describes inches and PG_MM describes millimeters.

XVT_PIXMAP
 Color Image Object

Summary

typedef WINDOW XVT_PIXMAP;

Description

XVT_PIXMAP is a color image data type. XVT_PIXMAPs are almost
equivalent to WINDOWs and are defined as such; however, not all
graphics functions operate on pixmaps. XVT_PIXMAP is an opaque
data type; your application can access and modify pixmaps only
through XVT functions.

The following functions can accept a pixmap in addition to a
window:

xvt_dwin_clear
xvt_dwin_draw_aline
xvt_dwin_draw_arc
xvt_dwin_draw_icon
xvt_dwin_draw_image
xvt_dwin_draw_line
xvt_dwin_draw_oval
xvt_dwin_draw_pic
xvt_dwin_draw_pie
xvt_dwin_draw_pmap
xvt_dwin_draw_polygon
xvt_dwin_draw_polyline
xvt_dwin_draw_rect
xvt_dwin_draw_roundrect
xvt_dwin_draw_set_pos
xvt_dwin_draw_text
xvt_dwin_get_draw_ctools
xvt_dwin_get_font_metrics
xvt_dwin_get_text_width
xvt_dwin_scroll_rect
xvt_dwin_set_back_color
xvt_dwin_set_cbrush
xvt_dwin_set_clip
xvt_dwin_set_cpen
xvt_dwin_set_draw_ctools
xvt_dwin_set_draw_mode
xvt_dwin_set_font
xvt_dwin_set_fore_color
xvt_dwin_set_std_cbrush
xvt_dwin_set_std_cpen
xvt_vobj_get_client_rect
xvt_vobj_get_data
xvt_vobj_get_outer_rect
xvt_vobj_get_parent
xvt_vobj_get_type
xvt_vobj_set_data

See Also

WINDOW
XVT_PIXMAP_* Values
xvt_dwin_*
xvt_image_get_from_pmap
xvt_pmap_create
xvt_pmap_destroy
xvt_vobj_*

The "Portable Images" chapter in the XVT Portability Toolkit Guide

XVT_PIXMAP_ATTR
 Attribute used in Pixmap Object Creation

Summary

typedef struct { ... } XVT_PIXMAP_ATTR;

Description

This attribute is not currently implemented; it is reserved for future
use.

See Also

xvt_pmap_create

XVT_PIXMAP_FORMAT
 Color Image Types

See Also

This topic is discussed under XVT_PIXMAP_* Values in XVT
Constants.

XVT_POPUP_ALIGNMENT
 Aligns Popup Window

Summary

typedef enum {
XVT_POPUP_CENTERED,
XVT_POPUP_LEFT_ALIGNED,
XVT_POPUP_RIGHT_ALIGNED,
XVT_POPUP_OVER_ITEM

} XVT_POPUP_ALIGNMENT;

XVT_POPUP_CENTERED

Centered below specified position.

XVT_POPUP_LEFT_ALIGN

Left-aligned below specified position.

XVT_POPUP_RIGHT_ALIGN

Right-aligned below specified position.

XVT_POPUP_OVER_ITEM

Specified menu item centered over position.

Description

This type contains alignment information for popup windows.

See Also

xvt_menu_popup

XVT_PRINT_FUNCTION
 Application-Supplied Printing Function Prototype

Summary

typedef BOOLEAN (* XVT_PRINT_FUNCTION)
 (long data);

Description

This type definition defines the prototype for application-supplied
print functions. Variables that will store print function pointers
should be defined to be of type XVT_PRINT_FUNCTION.

The XVT function that takes a parameter of type
XVT_PRINT_FUNCTION is xvt_print_start_thread. You can call it
with the name of a function matching this prototype or a variable of
this type.

Implementation Note

To ensure portability across all platforms, you should include the
macro XVT_CALLCONV1 in the prototypes and headers of all callback
functions used in XVT applications, including those of
XVT_PRINT_FUNCTIONs. This macro defines the linkage conventions
used in building XVT libraries.

See Also

XVT_CALLCONV*
xvt_print_start_thread
The "Printing" chapter in the XVT Portability Toolkit Guide

XVT_RES
Resource ID

Summary

typedef long XVT_RES; /* Resource ID */

Description

Objects of this type identify resource IDs. Your application gets a
valid XVT_RES when calling xvt_res_add_res. This resource ID can
then be used in xvt_res_use_res to indicate the active resouce.

Implementation Note

xvt_res_use_res returns the previously active resource ID. It is the
programmers responsibility to keep such information.

See Also

xvt_res_add_res
xvt_res_use_res
xvt_res_remove_res

XVT_TREEVIEW_NODE
Treeview node

Summary

typedef void * XVT_TREEVIEW_NODE; /* Treeview node*/

Description

Objects of this type identify treeview nodes.

Implementation Note

See Also

xvt_res_add_res
xvt_res_use_res
xvt_res_remove_res

XVT_UBYTE
 Non-string Unsigned One-byte Storage

Summary

typedef unsigned char XVT_UBYTE

Description

An external type for non-string unsigned one-byte storage. Any use
of unsigned char or unsigned char* in this manner should be
replaced by this type. The existing type DATA_PTR should be replaced
by XVT_UBYTE* where appropriate.

See Also

DATA_PTR
XVT_BYTE

XVT_WCHAR
 Wide Character Type

Summary

typedef wchar_t XVT_WCHAR

Description

An encapsulation of the wide character type. On some platforms,
this may be typed to a short or some other integral type instead of a
wchar_t type.

See Also

xvt_str_convert_mb_to_wc
xvt_str_convert_mbs_to_wcs
xvt_str_convert_wc_to_mb
xvt_str_convert_wcs_to_mbs
xvt_str_convert_wchar_to_lower
xvt_str_convert_wchar_to_upper

XVT Constants
A_* Values for ACCESS_CMD
CB_* Values for CB_FORMAT
CHAR_MAX
COLOR_*, COLOR_INVALID Constants
CTL_FLAG_* Options
CURSOR_* Options
DEFAULT_*_MENU Values
DIR_TYPE
DLG_* Control IDs
DLG_FLAG_* Options
EM_* Constants
EOL_* Values for EOL_FORMAT
EOL_SEQ
FALSE
FL_* Values for FL_STATUS
FONT_MENU_TAG
HSF_* Option Flags
INT_MAX
K_* Key Codes
LONG_MAX
M_* Values for DRAW_MODE
M_EDIT_*, M_FILE_*, M_HELP_* Menu Tags
M_FONT and M_STYLE
MAX_MENU_TAG
NO_STD_ABOUT_BOX
NO_STD_*_MENU Values
NULL
NULL_FNTID
NULL_IMAGE
NULL_PALETTE
NULL_PICTURE
NULL_PIXMAP
NULL_TXEDIT
NULL_WIN
P_* Values for PEN_STYLE
PAT_* Values for PAT_STYLE
RESP_* Values for ASK_RESPONSE
SC_* Values for SCROLL_CONTROL
SCREEN_WIN
*SCROLL Values for SCROLL_TYPE
SEV_* Values for XVT_ERRSEV
SHRT_MAX
Software Identifiers
SZ_CLASS_NAME
SZ_FNAME
SZ_LEAFNAME
TASK_WIN
TL_* Constants
TRUE
TX_* Attributes
U_* Values for UNIT_TYPE

UCHAR_MAX
UNIT_MAX
ULONG_MAX
USHRT_MAX
W_*, WC_*, WD_*, Values for WIN_TYPE
WSF_* Options Flags
XVT_CALLCONV*
XVT_CLUT_SIZE
XVT_COLOR_*
XVT_COLOR_GET_BLUE
XVT_COLOR_GET_GREEN
XVT_COLOR_GET_RED
XVT_CTOOLS_*
XVT_CXO_*_MSG
XVT_CXO_POS_* Values for XVT_CXO_INSERTION
XVT_DISPLAY_* Values
XVT_ESC_*
XVT_FA_* Constants
XVT_FAST_WIDTH
XVT_FFN_* Constants
XVT_FILE_ATTR_* Constants
XVT_FILESYS_* Values
XVT_FS_* Constants
XVT_HELP_* Values for XVT_HELP_FLAVOR
XVT_IMAGE_* Values for XVT_IMAGE_FORMAT
XVT_MAKE_COLOR
XVT_MAX_MB_SIZE
XVT_MAX_WINDOW_RECT
XVT_MOD_KEY
XVT_NAV_INSERTION
XVT_PALLETE_* Values
XVT_PALETTE_SIZE
XVT_PIXMAP_* Values
XVT_STRING_RES_BASE
XVT_TIMER_ERROR
XVT_TPC_* Constants
XVTWS, *WS Values

A_* Values for ACCESS_CMD
 CMD Parameter to xvt_tx_get_line

Summary

typedef enum {
A_LOCK, /* lock text line */
A_GET, /* retrieve text pointer */
A_UNLOCK /* unlock text line */

} ACCESS_CMD;

Description

The use of these constants is described in xvt_tx_get_line.

See Also

xvt_tx_get_line

The "Controls" chapter in the XVT Portability Toolkit Guide

CB_* Values for CB_FORMAT
 Clipboard Format

Summary

typedef enum {/* std. clipboard format */
CB_TEXT,/* ASCII text */
CB_PICT,/* encapsulated picture */
CB_APPL /* app’s own (must have name) */

} CB_FORMAT;

Description

XVT supports two standard clipboard formats, text and
encapsulated picture, plus whatever special formats an application
uses for itself.

The enumeration constants CB_TEXT, CB_PIC, and CB_APPL identify
the formats. When the format is CB_APPL, you must supply a name
of four or fewer characters. The choice of a name is up to your
application.

See Also

xvt_cb_get_data
xvt_cb_free_data
xvt_cb_has_format
xvt_cb_put_data

The "Clipboard" chapter in the XVT Portability Toolkit Guide

Example

This code fragment demonstrates the use of CB_FORMAT:

BOOLEAN paste_enabled = TRUE;
...
if (xvt_cb_has_format(CB_APPL, APPL_FORMAT))

paste_fmt = CB_APPL;
else if (xvt_cb_has_format(CB_PICT, NULL))

paste_fmt = CB_PICT;
else if (xvt_cb_has_format(CB_TEXT, NULL))

paste_fmt = CB_TEXT;
else

paste_enable = FALSE;

CHAR_MAX
 Maximum char Value

Summary

#define CHAR_MAX ...

Description

This is XVT’s implementation of the ANSI C symbol for the
maximum value of a char variable.

See Also

INT_MAX
LONG_MAX
SHRT_MAX
UCHAR_MAX
UNIT_MAX
ULONG_MAX
USHRT_MAX

COLOR_*, COLOR_INVALID Constants
 Predefined Colors

Summary

#define COLOR_INVALID ...
#define COLOR_BLACK ...
#define COLOR_BLUE ...
#define COLOR_CYAN ...
#define COLOR_DKGRAY ...
#define COLOR_GRAY ...
#define COLOR_GREEN ...
#define COLOR_LTGRAY ...
#define COLOR_MAGENTA ...
#define COLOR_RED ...
#define COLOR_WHITE ...
#define COLOR_YELLOW ...

Description

These constants provide a convenient way for you to refer to 11
commonly used colors. The last 5 listed are the most portable; they
can be distinguished even on non-color monitors. The low 24 bits of
these constants are the RGB encodings for the color. The high byte
contains a value that is used internally by XVT.

You are not limited to these 11 colors if the underlying window
system and your hardware support more. Use the XVT_MAKE_COLOR
macro to make arbitrary colors from red, green, and blue values.

The COLOR_INVALID value is returned by some functions as an error
indicator.

Implementation Note

Since XVT uses the high byte of the COLOR value, if you want to
compare a COLOR to one of the standard COLORs, you must compare
only the low 24 bits. Mask off the high byte like this:

COLOR mycolor;if ((mycolor & 0x00FFFFFF) ==
COLOR_BLUE & 0x00FFFFFF) {
/* actual colors match */

}

See Also

COLOR
XVT_COLOR_GET_BLUE
XVT_COLOR_GET_GREEN
XVT_COLOR_GET_RED
XVT_MAKE_COLOR

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

CTL_FLAG_* Options
 Control Flags

Summary

#define CTL_FLAG_CENTER_JUST ...
#define CTL_FLAG_CHECKED ...
#define CTL_FLAG_DEFAULT ...
#define CTL_FLAG_DISABLED ...
#define CTL_FLAG_GROUP ...
#define CTL_FLAG_INVISIBLE ...
#define CTL_FLAG_LEFT_JUST ...
#define CTL_FLAG_MULTIPLE ...
#define CTL_FLAG_NATIVE_JUST ...
#define CTL_FLAG_READONLY ...
#define CTL_FLAG_RIGHT_JUST ...
#define CTL_FLAG_MAC_GENEVA9 ...
#define CTL_FLAG_MAC_MONACO9 ...
#define CTL_FLAG_MAC_MULTILINE ...
#define CTL_FLAG_MAC_WORDWRAP ...
#define CTL_FLAG_PASSWORD ...

Description

CTL_FLAG_* attributes specify the special characteristics a control
will have when it is created. Only CTL_FLAG_DISABLED and
CTL_FLAG_INVISIBLE are generic to all controls. Other CTL_FLAG_*
attributes apply only to a subset of XVT controls.

The attributes for a control are specified by ORing together the
appropriate CTL_FLAG_* constants for the control into an "attribute
value." When you call xvt_ctl_create, this value is passed via the
ctl_flags parameter. If you call xvt_ctl_create_def,
xvt_win_create_def, or xvt_dlg_create_def, this value is set in
the v.ctl.flags field of the appropriate element of the WIN_DEF
array.

CTL_FLAG_CHECKED

Used for check boxes and radio buttons only; it creates a control
that is initially in the "checked" state. To toggle the "checked
state" of a control, call xvt_ctl_set_checked.

CTL_FLAG_DISABLED

Creates a control that is initially disabled, meaning that it is not
operable by the user. To enable the control, call
xvt_vobj_set_enabled.

CTL_FLAG_DEFAULT

Used for push buttons only, and to create a push button with a
default border style. It is only meaningful when creating a push
button in a dialog whose ID is equal to DLG_OK.

CTL_FLAG_GROUP

Used for radio button controls only; it denotes the first or last
element in a radio button grouping, for keyboard navigation
purposes. For the purpose of keyboard navigation, a radio
button group is treated as a single entity. Setting this flag does
not affect how radio buttons are checked. Checking is
determined by xvt_ctl_check_radio_button.

CTL_FLAG_INVISIBLE

Specifies that a control is to be created initially invisible. An
invisible control cannot be seen or operated by the user. To
make the control visible, call xvt_vobj_set_visible.

CTL_FLAG_MULTIPLE

Used for WC_LBOX controls only. It implies that the user can
make multiple selections from a list box.

CTL_FLAG_NATIVE_JUST
CTL_FLAG_CENTER_JUST
CTL_FLAG_LEFT_JUST
CTL_FLAG_RIGHT_JUST

Specify special text justification (when possible for a particular
toolkit) for WC_PUSHBUTTON, WC_RADIOBUTTON, WC_CHECKBOX,
WC_TEXT, WC_EDIT, WC_LISTEDIT, WC_LISTBUTTON, and
WC_GROUPBOX (text component only) controls.

CTL_FLAG_READONLY

Is valid only for creating controls of type WC_LBOX. If this flag is
set, the list box will not allow selection but will allow the user
to scroll to view the contents of the list box.

CTL_FLAG_MAC_MULTILINE

Enables multiline edit controls in XVT/Mac only. If this flag is
set, new lines can be entered into edit control text.

CTL_FLAG_MAC_WORDWRAP

Enables multiline edit controls in XVT/Mac only. If this flag is
set, text is autowrapped to the next line when it exceeds the edit
control border.

CTL_FLAG_MAC_GENEVA9

Specifies the font as 9 point Geneva in any control containing
text (XVT/Mac only).

CTL_FLAG_MAC_MONACO9

Specifies the font as 9 point Monaco in any control containing
text (XVT/Mac only).

CTL_FLAG_PASSWORD

Is valid only for creating controls of type WC_EDIT. If this flag is
set, the edit control hides the typed characters by always
displaying a single character. The character displayed defaults
to a character appropriate for the native platform look-and-feel.
However, the displayed character can be set by defining a
STRING resource with resource id
RID_PASSWORD_ECHO_CHAR_STR. The first character of this
STRING resource is used if it exists in resources but is not
guaranteed to work with non-ASCII characters. This flag only
affects the display of typed characters by displaying the echo
character. The actual typed contents can still be retrieved with
xvt_vobj_get_title and xvt_vobj_set_title works as
expected.

For the final authoritative reference itemizing of valid CTL_FLAG_*
combinations for each type of control, refer to topics listed in the See
Also below.

Note: xrc uses a different method of specifying control characteristics. if
you are creating controls by calling xvt_win_create_res or
xvt_dlg_create_res, read the "Resources and Xrc" in the XVT
Portability Toolkit Guide.

See Also

xvt_ctl_check_radio_button
xvt_ctl_create
xvt_ctl_create_def
xvt_ctl_set_checked
xvt_dlg_create_def
xvt_dlg_create_res
xvt_vobj_set_enabled
xvt_vobj_set_visible
xvt_win_create_def
xvt_win_create_res
XRC Statements
Window/Dialog/Control Creation Function Parameters

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide
The XVT Platform-Specific Books

CURSOR_* Options
 Cursor Shape

Summary

#define CURSOR_ARROW .../* arrow (default) */
#define CURSOR_CROSS .../* cross hair */
#define CURSOR_HELP .../* question mark */
#define CURSOR_IBEAM .../* I-beam */
#define CURSOR_PLUS .../* plus sign */
#define CURSOR_USER .../* user defined shape */
#define CURSOR_WAIT .../* waiting symbol */

Description

These values are used to specify a mouse cursor shape. Six shapes
are predefined and can be used directly as arguments to
xvt_win_set_cursor. Additionally, you can define your own cursor
resources and use their IDs as arguments to xvt_win_set_cursor,
provided their IDs are CURSOR_USER or greater.

The cursor is the pointer or other shape that indicates the current
mouse position. Each XVT window has a current cursor that you can
set to one of six standard shapes or to a shape that’s defined as a
resource.

You need to set the cursor for a window just once--XVT
automatically takes care of setting it to the designated shape as the
cursor moves from window to window.

See Also

CURSOR
xvt_scr_hide_cursor
xvt_scr_set_busy_cursor
xvt_win_get_cursor
xvt_win_set_cursor

Example

xvt_win_set_cursor(win, CURSOR_IBEAM);

DEFAULT_*_MENU Values
 Standard Menu XRC Constants

Summary

#define DEFAULT_EDIT_MENU ...
#define DEFAULT_FILE_MENU ...
#define DEFAULT_FONT_MENU ...
#define DEFAULT_HELP_MENU ...

Description

You should define these macros in MENU statements of your XRC file
to automatically provide the predefined standard Edit, File, Font,
and Help submenus. The predefined submenus are directly
accessible only in XRC.

Implementation Note

Font/Style submenus are available only on XVT/XM and XVT/
Mac. On other platforms, no Font submenus exist. Instead, select the
Font menu item to invoke a Font Selection dialog.

See Also

M_EDIT_*, M_FILE_*, M_HELP_* Menu Tags
M_FONT and M_STYLE
NO_STD_*_MENU Values
xvt_menu_*

Example

To add standard predefined File, Edit, and Font menus to your
application, you can use code similar to the following in your XRC
file:

#define NO_STD_HELP_MENU/* prevents help menu from
 being built */

#include "xrc.h"
#include "sample.h"/* includes #define for

SAMPLE_MENUBAR */

MENUBAR SAMPLE_MENUBAR

MENU SAMPLE_MENUBAR

DEFAULT_FILE_MENU
DEFAULT_EDIT_MENU
SUBMENU M_CHOICE "~Sample Choice"
DEFAULT_FONT_MENU

DIR_TYPE
 File Type for Directories

Summary

#define DIR_TYPE .../* used with xvt_fsys_list_files */

Description

This constant is used only with the xvt_fsys_list_files function.
Its usage is explained under that topic.

See Also

xvt_fsys_list_files

DLG_* Control IDs
 Predefined Control Ids

Summary

#define DLG_CANCEL .../* cancel button clicked */
#define DLG_NO .../* other button clicked */
#define DLG_OK .../* default button clicked */
#define DLG_YES DLG_OK/* synonym */

Description

These are predefined button IDs common to many dialogs, and are
provided only as a convenience. In general, your application can use

any control IDs for the controls in a dialog, with the following two
exceptions:

• If you have a default push button, its ID should be DLG_OK

• If you have a cancel push button, its ID should be DLG_CANCEL

Implementation Note

On platforms that have "Close" menu item on a dialog, selecting this
item either sends an E_CONTROL event for a button with an ID of
DLG_CANCEL, if the button exists, or it simply sends an E_CLOSE
event.

See Also

E_CONTROL
xvt_dlg_create_def
xvt_dlg_create_res

Example

long XVT_CALLCONV1 dlg_eh(WINDOW xdWindow,
EVENT *xdEvent)
{

switch (xdEvent->type) {
...
case E_CONTROL:

switch(xdEvent->v.ctl.id) {
case DLG_OK:

...do default behavior...
break;

case DLG_CANCEL:
...do_cancel_behavior...
break;

}
break;

...

}

DLG_FLAG_* Options
 Dialog Option Flags

Summary

#define DLG_FLAG_DISABLED ...
#define DLG_FLAG_INVISIBLE ...

Description

These flags are used only when calling xvt_dlg_create_def. They
are set in the win_def_p[0].v.dlg.flags variable passed to
xvt_dlg_create_def.

DLG_FLAG_DISABLED

Makes the dialog appear initially disabled. To enable the dialog,
call xvt_vobj_set_enabled.

DLG_FLAG_INVISIBLE

Makes the dialog appear initially invisible. To make the dialog
visible, call xvt_vobj_set_visible.

Note: Setting either of these flags for a modal dialog is not recommended
and has an undefined effect.

See Also

xvt_dlg_create_def
xvt_res_get_dlg_def
xvt_vobj_set_enabled
xvt_vobj_set_visible

EM_* Constants
 Event Mask Constants

Summary

#define EM_ALL ...
#define EM_CHAR ...
#define EM_CLOSE ...
#define EM_COMMAND ...
#define EM_CONTROL ...
#define EM_CREATE ...
#define EM_DESTROY ...
#define EM_FOCUS ...
#define EM_FONT ...
#define EM_HELP ...
#define EM_HSCROLL ...
#define EM_MOUSE_DBL ...
#define EM_MOUSE_DOWN ...
#define EM_MOUSE_MOVE ...
#define EM_MOUSE_SCROLL ...
#define EM_MOUSE_UP ...
#define EM_NONE ...
#define EM_QUIT ...
#define EM_SIZE ...
#define EM_TIMER ...
#define EM_UPDATE ...
#define EM_USER ...
#define EM_VSCROLL ...

Description

The event mask constants are used to restrict the events that can be
sent to the event handler for a window or dialog. A bitwise-OR’d
combination of the EM_* constants can be passed to
xvt_win_set_event_mask and the window creation functions--
xvt_win_create_def, xvt_win_create_res, and xvt_win_create.
When calling these functions, you normally set the event mask to
EM_ALL for no restriction. If you do not want any events sent to the
event handler for the window, set the event mask to EM_NONE.
xvt_win_get_event_mask returns the current mask setting.

See Also

xvt_dlg_create_def
xvt_dlg_create_res
xvt_win_create
xvt_win_create_def
xvt_win_create_res
xvt_win_get_event_mask
xvt_win_set_event_mask

The "Events" chapter in the XVT Portability Toolkit Guide

EOL_* VALUES for EOL_FORMAT
 Terminator Found by xvt_str_find_eol

Summary

typedef enum e_eol {/* xvt_str_find_eol terminator */
EOL_NORMAL,/* normal (or first) terminator */
EOL_DIFF,/* terminator different from prev. */
EOL_NONE/* end of buf before any terminator */

} EOL_FORMAT;

Description

This type is used for the return value from the xvt_str_find_eol
function to indicate the reason for its return. For further information,
see the topic xvt_str_find_eol.

See Also

EOL_SEQ
xvt_str_find_eol

EOL_SEQ
 Local End-of-Line Sequence Constant

Summary

#define EOL_SEQ .../* local eol sequence */

Description

This string constant contains the standard end-of-line sequence for
the local operating system. Depending on the system, the end-of-line
sequence can be a return, a line feed, or return and a line feed. The
type of EOL_SEQ is char *.

When formatting lines of text for the clipboard, you should add
EOL_SEQ strings to the end of each line. If you are writing a file of
text opened in text mode, you don’t have to add EOL_SEQ strings to
the end of each line because the standard C library will add the local
end-of-line sequence.

When breaking into lines a collection of text lines that are already in
memory, you can scan for occurrences of the EOL_SEQ string, but it’s
much easier to call the function xvt_str_find_eol.

Implementation Note

The definition of EOL_SEQ is platform-specific. If you require the
exact values of this macro, refer to the definition in the platform-
specific file xvt_plat.h (or xvt_plxs.h on XVT/XM).

See Also

EOL_* Values for EOL_FORMAT
xvt_str_find_eol

xvt_plat.h (or xvt_plxs.h on XVT/XM)

Example

char buffer[1000];
buffer[0] = ’0’;
for (i = 0; text[i] != NULL; i++) {

strcat(buffer, text[i]);
strcat(buffer, EOL_SEQ);

}

FALSE
 False Value

Summary

#define FALSE ...

Description

This symbol should be used for a false BOOLEAN value.

See Also

BOOLEAN
TRUE

Example

BOOLEAN flag = FALSE;

FL_* Values for FL_STATUS
 File Dialog Result

Summary

typedef enum {/* file dialog result */
FL_BAD, /* error occurred */
FL_CANCEL,/* cancel button clicked */
FL_OK/* OK button clicked */

} FL_STATUS;

Description

A structure of this type is returned by xvt_dm_post_file_open or
xvt_dm_post_file_save to indicate the result of the user’s
interaction with the dialog box.

See Also

xvt_dm_post_file_open
xvt_dm_post_file_save

Example

See the examples for xvt_dm_post_file_open and
xvt_dm_post_file_save.

FONT_MENU_TAG
 Identifier for Entire Font/Style Menu

Summary

FONT_MENU_TAG

Description

FONT_MENU_TAG is a predefined constant that represents a
combination of the Font and Style menus. The only use for this value
is that you can call xvt_menu_set_item_enabled and pass the
FONT_MENU_TAG as the tag parameter to enable or disable the Font/
Style menus as a whole if they exist. This prevents your application
from needing to know whether a Font menu or Style menu or both
exist on the platform.

See Also

xvt_menu_set_item_enabled

HSF_* Option Flags
 Help System Flags

Summary

#define HSF_APPNAME_TITLE ...
#define HSF_INDEX_ON_DISK ...
#define HSF_NO_BEEP_MODAL ...
#define HSF_NO_HELPMENU_ASSOC ...
#define HSF_NO_TOPIC_WARNING ...

Description

These flags are used when calling the xvt_help_open_helpfile
function. They affect the behavior of the portable viewer in the help
system.The flags information can contain zero or more of the
following values, OR’d together:

HSF_APPNAME_TITLE

Normally, the help system displays the current topic in a help
topic window title bar. If the HSF_APPNAME_TITLE flag option is
set, your application name, as defined in the XVT_CONFIG
structure, is used instead.

HSF_INDEX_ON_DISK

If this flag option is used, the topic index is maintained on disk.
By default, the index is maintained in application memory. This
option is useful for low-memory environments.

HSF_NO_BEEP_MODAL

Most native window systems do not allow the user to
manipulate menus and windows when a modal dialog is active.
Therefore, the user could not operate the help viewer if help was
requested for a modal dialog. If HSF_NO_BEEP_MODAL is set, the
system beeps if help is requested for a modal dialog. If this flag
is not set, requests for help on modal dialogs are silently
ignored.

HSF_NO_HELPMENU_ASSOC

Normally, the help system automatically associates help topics
with the help menu items (e.g. "Help On Help", "Search"). If the

HSF_NO_HELPMENU_ASSOC flag is set, this association is not
performed.

HSF_NO_TOPIC_WARNING

If this flag option is used, the help system does not display any
error messages when a requested topic is not found in the help
file. If this flag is not set, a "topic not found" message is
displayed if a topic cannot be found.

Note: The HSF_NO_BEEP_MODAL flag only applies to the application-bound
help viewer. It has no effect on native and standalone help viewers.

See Also

XVT_CONFIG
xvt_help_open_helpfile

INT_MAX
 Maximum int Value

Summary

#define INT_MAX ...

Description

This is XVT’s implementation of the ANSI C symbol for the
maximum value of an int variable.

See Also

CHAR_MAX
LONG_MAX
SHRT_MAX
UCHAR_MAX
UNIT_MAX
ULONG_MAX
USHRT_MAX

K_* Key Codes
 Virtual Key Codes

Summary

#define K_F1 .../* function key 1 */
#define K_F2 ...
#define K_F3 ...
#define K_F4 ...
#define K_F5 ...
#define K_F6 ...
#define K_F7 ...
#define K_F8 ...
#define K_F9 ...
#define K_F10 ...
#define K_F11 ...
#define K_F12 ...
#define K_F13 ...
#define K_F14 ...
#define K_F15 ...
#define K_F16 ...
#define K_F17 ...
#define K_F18 ...
#define K_F19 ...
#define K_F20 ...
#define K_F21 ...
#define K_F22 ...
#define K_F23 ...
#define K_F24 .../* function key 24 */

#define K_KP0 .../* keypad ’0’ */
#define K_KP1 ...
#define K_KP2 ...
#define K_KP3 ...
#define K_KP4 ...
#define K_KP5 ...
#define K_KP6 ...
#define K_KP7 ...
#define K_KP8 ...
#define K_KP9 .../* keypad ’9’ */

#define K_KPMULT .../* keypad ’*’ */
#define K_KPSUB .../* keypad ’-’ */
#define K_KPADD .../* keypad ’+’ */
#define K_KPDIV .../* keypad ’/’ */

#define K_COPY .../* copy */
#define K_CUT .../* cut */
#define K_PASTE .../* paste */
#define K_UP .../* up arrow */
#define K_DOWN .../* down arrow */
#define K_RIGHT .../* right arrow */
#define K_LEFT .../* left arrow */
#define K_PREV .../* previous screen */
#define K_NEXT .../* next screen */
#define K_LHOME .../* line home */
#define K_LEND .../* line end */
#define K_HOME .../* home */
#define K_END .../* end */
#define K_INS .../* insert */
#define K_WLEFT .../* word left */
#define K_WRIGHT .../* word right */
#define K_BTAB .../* back tab */
#define K_HELP .../* help */
#define K_CLEAR .../* clear */
#define K_DEL .../* del (same as ASCII) */

Description

These symbols represent XVT virtual key codes. The comments
above indicate the proposed usage for each code, but the actual
usage is up to your application.

XVT’s virtual key codes map into various non-portable key
combinations on the native systems. An application using the virtual
key codes can rely on a sensible mapping to the native key codes,
where possible.

You get one of these codes via an E_CHAR event. In the EVENT
structure, any values of the v.chr.ch field that are greater than 255
(except for K_DEL) are virtual key codes.

Implementation Note

A mapping of native keyboard codes to XVT key codes is platform-
specific. Not all key codes listed here can be generated by a given
platform. An application can supplement the standard key
translation by setting its own key hook function via ATTR_KEY_HOOK.
See the XVT Platform-Specific Books for details.

See Also

ATTR_KEY_HOOK
E_CHAR
EVENT

The XVT Platform-Specific Books

LONG_MAX
 Maximum long Value

Summary

#define LONG_MAX ...

Description

This is XVT’s implementation of the ANSI C symbol for the
maximum value of a long variable.

See Also

CHAR_MAX
INT_MAX
SHRT_MAX
UCHAR_MAX
UNIT_MAX
ULONG_MAX
USHRT_MAX

M_* Values for DRAW_MODE
 Drawing Mode

Summary

typedef enum {/* drawing (transfer) mode *
M_COPY,
M_OR,
M_XOR,
M_CLEAR,
M_NOT_COPY,
M_NOT_OR,
M_NOT_XOR,
M_NOT_CLEAR

} DRAW_MODE;

Description

These symbols represent the eight drawing modes that determine
how CPEN, CBRUSH, and icon pixels (called source pixels) affect
pixels already present in a window when shapes are drawn. The
most common modes are M_COPY and M_XOR.

M_COPY

Sets drawn pixels to match the source regardless of what is
already in the window. The M_COPY mode uses the specified
color reliably. M_COPY is XVT’s normal mode.

M_XOR

Used for rubber banding. It can’t be used for printing. M_XOR has
the following two properties: drawing the same thing twice with
this mode reproduces the original, and if a reasonable color map
is present, the effects of M_XOR drawing are visible. It is possible,
however, that the effect of an M_XOR draw operation on a color
display might not result in a color that contrasts with the
background.

To set the mode for a window, use xvt_dwin_set_draw_mode or
xvt_dwin_set_draw_ctools.

The following chart shows how these modes act on a pixel in a
window when the source pixel is black or white:

M_COPY
Black: Force to black
White: Force to white
M_OR
Black: Force to black
White: Leave as is
M_XOR
Black: Invert
White: Leave as is
M_CLEAR
Black: Force to white
White: Leave as is
M_NOT_COPY
Black: Force to white
White: Force to black
M_NOT_OR
Black: Leave as is
White: Force to black
M_NOT_XOR
Black: Leave as is
White: Invert
M_NOT_CLEAR
Black: Leave as is
White: Force to white

Implementation Note

The following chart gives examples of the XVT modes in terms of
some of the native toolkit modes. In order to make sense of the MS-
Windows modes, it’s necessary to know that on MS-Windows a

white pixel is represented by a 1 bit, and a black pixel by a 0 bit,
since white is "all colors" and black is "no colors."

M_COPY
Mac Mode: patCopy
Windows Mode: R2_COPYPEN
Motif: GXcopy
M_OR
Mac Mode: patOr
Windows Mode: R2_MASKPEN
Motif: GXand
M_XOR
Mac Mode: PatXor
Windows Mode: R2_NOTXORPEN
Motif: GXxor
M_CLEAR
Mac Mode: patBic
Windows Mode: R2_MERGENOTPEN
Motif: GXor
M_NOT_COPY
Mac Mode: notPatCopy
Windows Mode: R2_NOTCOPYPEN
Motif: GXcopyInverted
M_NOT_OR
Mac Mode: notPatOr
Windows Mode: R2_MASKNOTPEN
Motif: GXandInverted
M_NOT_XOR
Mac Mode: notPatXor
Windows Mode: R2_XORPEN
Motif: GXequiv
M_NOT_CLEAR
Mac Mode: notPatBic
Windows Mode: R2_MERGEPEN
Motif: CXorInverted

See Also

xvt_dwin_set_draw_ctools
xvt_dwin_set_draw_mode

Example

This code uses the M_XOR drawing mode to draw a shape that can
track the mouse without disturbing what’s already showing in the
window. If mark_point is called twice with the same argument, the
pixels that were marked are restored exactly to the way they were.

static void mark_point(win, p)WINDOW win;
PNT p;
{

RCT rct;
CBRUSH brush;xvt_dwin_set_std_cpen(win,

TL_PEN_BLACK);
brush.pat = PAT_SOLID;
brush.color = COLOR_LTGRAY;
xvt_dwin_set_cbrush(win, &brush);
xvt_dwin_set_draw_mode(win, M_XOR);
xvt_rect_set(&rct, p.h - 10,

p.v - 10, p.h + 10, p.v + 10);
xvt_dwin_draw_rect(win, &rct);

}

M_EDIT_*, M_FILE_*, M_HELP_* Menu Tags
 Predefined Menu Tags

Summary

#define M_FILE ...
#define M_FILE_NEW ...
#define M_FILE_OPEN ...
#define M_FILE_CLOSE ...
#define M_FILE_SAVE ...
#define M_FILE_SAVE_AS ...
#define M_FILE_REVERT ...
#define M_FILE_PG_SETUP ...
#define M_FILE_PRINT ...
#define M_FILE_QUIT ...
#define M_FILE_ABOUT ...
#define M_EDIT ...
#define M_EDIT_UNDO ...
#define M_EDIT_CUT ...
#define M_EDIT_COPY ...
#define M_EDIT_PASTE ...
#define M_EDIT_CLEAR ...
#define M_EDIT_SEL_ALL ...
#define M_EDIT_CLIPBOARD ...
#define M_HELP ...
#define M_HELP_HELPMENU ...
#define M_HELP_ONCONTEXT ...
#define M_HELP_HELPONHELP ...
#define M_HELP_ONWINDOW ...
#define M_HELP_KEYBOARD ...
#define M_HELP_INDEX ...
#define M_HELP_TUTORIAL ...
#define M_HELP_SEARCH ...
#define M_HELP_OBJCLICK ...
#define M_HELP_VERSION ...
#define M_HELP_GOTO ...
#define M_HELP_GLOSSARY ...
#define M_HELP_CONTENTS ...

Description

These constants are used in XVT’s predefined File, Edit, and Help
submenus, and represent standard menu operations that are common
to many GUI environments. Most of your window menubars contain
File, Edit, and Help submenus, except for the task window’s
menubar, which normally has no use for an Edit menu.

XVT supplies pre-fabricated File, Edit, and Help submenus in the
xrc_plat.h header for your platform. Those submenus contain items
whose tags are from the list constants above. On a given platform,

the predefined submenus contain a subset of these tags as
appropriate for the platform.

The predefined submenus are directly accessible only in XRC.
When building a menubar, use the macros DEFAULT_FILE_MENU,
DEFAULT_EDIT_MENU, and DEFAULT_HELP_MENU in the proper
positions (normally first and last) of a MENU statement in your XRC
file. If you do not want any portion of these menus incuded on the
menubar, define the macros NO_STD_FILE_MENU,
NO_STD_EDIT_MENU, or NO_STD_HELP_MENU prior to including xrc.h
in your XRC file.

All of the items in the File and Edit submenus, except M_FILE_QUIT
and M_FILE_ABOUT, are initially disabled. If your application wants
the user to be able to select any other items, then you must enable
them with xvt_menu_set_item_enabled. The items in the Help
menu are initially enabled.

When the user chooses an item from one of the predefined
submenus, your window’s event handler then receives an E_COMMAND
event. However, the help system may intercept E_COMMAND events
from the Help menu.

Implementation Note

Since the content of the submenus varies between platforms, you
should code your application to handle all possible commands, even
though some might not occur on a given platform. For example,
because M_EDIT_SEL_ALL only appears on XVT/Mac, you are able to
test the code for handing that command only on XVT/Mac.

Since the items appearing on the standard File, Edit, and Help
submenus are platform-specific, not all of the M_FILE_* and
M_EDIT_* tags listed above exist on the predefined submenus for a
given platform. Because of this, the XVT menu item manipulation
functions ignore operations on non-existent predefined tags. For
example, the standard XVT/Win32 Edit submenu does not have the
item M_EDIT_SEL_ALL. Because of that, XVT ignores the following
call under XVT/Win32, instead of issuing an error:

xvt_menu_set_item_enabled(win, M_EDIT_SEL_ALL);

See Also

DEFAULT_*_MENU Values
M_FONT and M_STYLE
MENU_ITEM
NO_STD_*_MENU Values
xvt_menu_*
menu and menubar XRC Statement

The "Resources and XRC" and the "Menus" chapters in the XVT
Portability Toolkit Guide

M_FONT and M_STYLE
 Predefined Menu Tags

Summary

#define M_FONT ...
#define M_STYLE ...

Description

These constants are the tags for the Font and Style submenus.

Typically, these tags are useful for one thing. When your application
calls xvt_menu_get_tree or xvt_res_get_menu, it is handed a tree
of MENU_ITEM structures representing the menubar and all of its
submenus. When processing this tree, your application needs to be
able to identify the Font and Style submenus, so that it can safely
ignore them, since they are inherently non-portable. In general,
applications should ignore any tags greater than MAX_MENU_TAG,
except those that it has explicitly defined.

See Also

DEFAULT_*_MENU Values
MAX_MENU_TAG
M_EDIT_*, M_FILE_*, M_HELP_* Menu Tags
MENU_ITEM
NO_STD_*_MENU Values
xvt_menu_*
xvt_res_get_menu

MAX_MENU_TAG
 Upper Bound of Application Menu Tag Values

Summary

#define MAX_MENU_TAG ...

Description

MAX_MENU_TAG defines the upper bound of menu tag values that your
application is allowed to define.

Your application is allowed to define menu tags in the range (1 . .
. MAX_MENU_TAG) for its own menu items. In contrast, XVT’s
predefined menus (File, Edit, Font, Style, Help), define tags in the
range (MAX_MENU_TAG+1 . . . 32767). Your application is allowed
to use either its own tags or XVT’s tags when calling functions like
xvt_menu_set_item_enabled or xvt_menu_set_item_title.

The main reason for this distinction is that menu-manipulating
functions will ignore attempts to change non-existent menu items in
XVT’s reserved range, but will issue an error for attempts to change
non-existent menu tags in the range reserved for your application.

See Also

MENU_ITEM
xvt_menu_set_item_enabled
xvt_menu_set_item_title

NO_STD_ABOUT_BOX
 Standard About Box Removal Constant for XRC

Summary

#define NO_STD_ABOUT_BOX ...

Description

You should define this macro in your XRC file prior to including
xrc.h if you do not want the resources for the standard About box to
be built. This allows your application to define the DB_ABOUT
resource itself instead of relying on the system-defined DB_ABOUT.

Example

To remove the standard About box from your application, you can
use code like this in your XRC file:

#define NO_STD_ABOUT_BOX
#include "xrc.h"
...

NO_STD_*_MENU Values
 Standard Menu Removal Constants for XRC

Summary

#define NO_STD_EDIT_MENU ...
#define NO_STD_FILE_MENU ...
#define NO_STD_FONT_MENU ...
#define NO_STD_HELP_MENU ...

Description

You should define these macros in your XRC file prior to including
xrc.h, if you do not want the resources for the respective portion of
the menubar to be built.

Note: If you do not define these macros, the predefined menus are not
automatically included in your menubar. To include the standard
menus, you must use the DEFAULT_*_MENU values in an XRC
statement.

See Also

DEFAULT_*_MENU Values
M_EDIT_*, M_FILE_*, M_HELP_* Menu Tags
M_FONT and M_STYLE

Example

To remove the Help menubar item and its submenu tree from your
application, you can use code like this in your XRC file:

#define NO_STD_HELP_MENU
#include "xrc.h"
...

NULL Constants
NULL
NULL_FNTID
NULL_IMAGE
NULL_PALETTE
NULL_PICTURE
NULL_PIXMAP
NULL_TXEDIT
NULL_WIN

NULL
 NULL Value Macro

Summary

#define NULL ...

Description

Your application can use NULL anywhere it would normally need to
use a value of zero, such as in testing or initializing pointers, or
passing a NULL string parameter. Many XVT functions return NULL if
unsuccessful.

See Also

Other NULL Constants

Example

xvt_font_get_metrics(font_id, NULL, &ascent, NULL);

NULL_FNTID
 NULL Font ID Macro

Summary

#define NULL_FNTID ...

Description

This is a macro provided to help in identifying a NULL XVT_FNTID. It
might be returned as an error by functions that return XVT_FNTID.
XVT provides this macro so that you can avoid having to cast NULL
to perform an error check.

See Also

XVT_FNTID

NULL_IMAGE
 NULL Image Macro

Summary

#define NULL_IMAGE ...

Description

This constant is used as an error return by functions that return an
XVT_IMAGE (such as xvt_image_create). It avoids having to cast
NULL to perform an error check. You can use it as the value of an
IMAGE parameter in some functions, depending on the specific
requirements of those functions.

See Also

Other NULL Constants
XVT_IMAGE
xvt_image_create

Example

if ((new_image = xvt_image_read(file_spec->name)) !=
NULL_IMAGE)
ncolors = xvt_image_get_ncolors(new_image);

NULL_PALETTE
 NULL Palette Macro

Summary

#define NULL_PALETTE ...

Description

This constant is used as an error return by functions that return an
XVT_PALETTE (such as xvt_palet_create, xvt_palet_default,
xvt_vobj_get_palet). It avoids having to cast NULL to perform an
error check.

See Also

Other NULL Constants
XVT_PALETTE
xvt_palet_create

xvt_palet_default
xvt_vobj_get_palet

Example

if ((palette = xvt_palete_create(pixmap)) ==
NULL_PALETTE)
xvt_dm_post_error(

"Error retrieving palette from pixmap.");

NULL_PICTURE
 NULL Picture Macro

Summary

#define NULL_PICTURE ...

Description

This constant is used as an error return by functions that return a
PICTURE (such as xvt_pict_create). It avoids having to cast NULL
to perform an error check. You can use it as the value of a PICTURE
parameter in some functions, depending on the specific
requirements of those functions.

See Also

Other NULL Constants
PICTURE
xvt_pict_create

Example

if (!xvt_cb_put_data(CB_TEXT, NULL, size, NULL_PICTURE))
xvt_dm_post_error("Error putting text onto clipboard.");

NULL_PIXMAP
 NULL Pixmap Macro

Summary

#define NULL_PIXMAP ...

Description

This constant is used as an error return by functions that return an
XVT_PIXMAP (such as xvt_pmap_create). It avoids having to cast
NULL to perform an error check. NULL_PIXMAP is often used in tests
involving XVT_PIXMAP variables.

See Also

Other NULL Constants
XVT_PIXMAP
xvt_pmap_create

Example

PIXMAP pixmap;

xvt_errmsg_sig_if(pixmap == NULL_PIXMAP,
NULL_WIN, SEV_FATAL, ERR_FAIL_CREATE_PIXMAP,
TXT_ERR_FAIL_CREATE_PIXMAP, NULL, NULL);

NULL_TXEDIT
 NULL Text Edit Object

Summary

#define NULL_TXEDIT ...

Description

This constant indicates a non-existent text edit object.

See Also

xvt_tx_create
xvt_tx_create_def

NULL_WIN
 NULL Appropriate for Window Checks

Summary

#define NULL_WIN ...

Description

This is a macro provided to help identify a NULL WINDOW. It might be
returned as an error by functions that return a WINDOW. XVT provides
this macro so that you can avoid having to cast NULL to perform an
error check.

See Also

Other NULL Constants
WINDOW
xvt_win_create

P_* Values for PEN_STYLE
 Pen Style

Summary

typedef enum e_pen_style {/* pen style */
P_SOLID, /* solid */
P_DOT, /* dotted line */
P_DASH f/* dashed line */

} PEN_STYLE;

Description

Values of this type are used for the style member of a CPEN
structure.

Implementation Note

On XVT/PM, lines thicker than one pixel are not drawn as truly
dotted or dashed. Instead, a dithered pattern is used for thick pens,
which at least allows them to be distinguished from other pen styles.

On XVT/Win32 and XVT/Mac, dotted and dashed lines are always
displayed as one pixel wide, regardless of width.

See Also

CPEN

The "Pens" section of the "Drawing and Pictures" chapter in the
XVT Portability Toolkit Guide

PAT_* Values for PAT_STYLE
 Pattern Style

Summary

typedef enum {
PAT_NONE, /* no pattern */
PAT_HOLLOW, /* hollow */
PAT_SOLID, /* solid fill */
PAT_HORZ, /* horizontal lines */
PAT_VERT, /* vertical lines */
PAT_FDIAG, /* diagonal lines -- top-left to

bottom-right */
PAT_BDIAG, /* diagonal lines -- top-right to

bottom-left */
PAT_CROSS, /* horizontal and vertical crossing

lines */
PAT_DIAGCROSS, /* diagonol crossing lines */
PAT_RUBBER, /* rubber banding */
PAT_SPECIAL

} PAT_STYLE;

Description

Values of this type are used for the pat member of the CBRUSH and
CPEN structures. For pens, the only patterns allowed are PAT_HOLLOW,
PAT_SOLID, and PAT_RUBBER. For brushes, all the patterns are
allowed, except for PAT_RUBBER.

See Also

CBRUSH
CPEN

Section "Pens" and section "Brushes and Background Colors" of the
"Drawing and Pictures" chapter in the XVT Portability Toolkit Guide

RESP_* Values for ASK_RESPONSE
 Response from xvt_dm_post_ask

Summary

typedef enum { /* response from xvt_dm_post_ask fcn */
RESP_DEFAULT, /* default button */
RESP_2, /* second button */
RESP_3 /* third button */

} ASK_RESPONSE;

Description

xvt_dm_post_ask returns a value of ASK_RESPONSE. The value
returned depends on the button selected by the user.

See Also

xvt_dm_post_ask

SC_* Values for SCROLL_CONTROL
 Scrollbar Component

Summary

typedef enum {, /* scrollbar activity */
SC_NONE, /* nowhere (ignore) */
SC_LINE_UP, /* one line up */
SC_LINE_DOWN, /* one line down */
SC_PAGE_UP, /* previous page */
SC_PAGE_DOWN, /* next page */
SC_THUMB, /* thumb repositioning */
SC_THUMBTRACK /* thumb tracking */

} SCROLL_CONTROL;

Description

Values of this type refer to parts of a scrollbar that the user can
manipulate. They are used to identify the part that the user operated
to generate an E_HSCROLL or E_VSCROLL event, if the scrollbar is on
the frame of a window, or an E_CONTROL event if the scrollbar is a
control.

See Also

E_CONTROL
E_HSCROLL
E_VSCROLL

The "Window Scrollbars and Scrolling" section of the "Windows"
chapter in the XVT Portability Toolkit Guide

SCREEN_WIN
 Application Container Window

Summary

#define SCREEN_WIN ...

Description

SCREEN_WIN is an abstract XVT WINDOW representing the screen. Its
only purpose is to be used as a container for top-level windows,
dialogs, and TASK_WINs. Your application can pass SCREEN_WIN as
the parent argument to one of the xvt_win_create_* functions. All
dialogs automatically get SCREEN_WIN as their parent.

SCREEN_WIN is one of the two containers available for top-level
windows. The other container is TASK_WIN. The normal case is for
applications to use TASK_WIN as the parent for top-level windows.

Besides using it as a container, you can do two other things with
SCREEN_WIN: get its client area (useful for placing windows exactly
within the screen container), and set and get its application data.

Implementation Note

On XVT/Win32 using SCREEN_WIN instead of TASK_WIN has the
effect of detaching them from the task container window and
making them appear on the task manager list. On other platforms,
this difference has no visual appearance.

See Also

ATTR_SCREEN_WINDOW
TASK_WIN
WINDOW
xvt_win_create
xvt_win_create_def
xvt_win_create_res

*SCROLL Values for SCROLL_TYPE
 Type of Scrollbar

Summary

typedef enum { /* type of scrollbar */
HSCROLL, /* horizontal */
VSCROLL, /* vertical */
HVSCROLL, /* either */

} SCROLL_TYPE;

Description

Your application needs to use values of this type to specify a
scrollbar orientation to any of the scrollbar-manipulation functions,
such as xvt_sbar_set_* and xvt_sbar_get_*. To specify a
scrollbar on a window’s frame, pass HSCROLL or VSCROLL to these
functions (HSCROLL speicifies a horizontal scrollbar, VSCROLL
specifies a vertical scrollbar). To specify a scrollbar control in a
window or dialog, you pass HVSCROLL to these functions for either a
horizontal or vertical scrollbar.

See Also

xvt_sbar_get_pos
xvt_sbar_get_proportion
xvt_sbar_get_range
xvt_sbar_set_pos
xvt_sbar_set_proportion
xvt_sbar_set_range

The "E_HSCROLL and E_VSCROLL Events" sections of the "Events"
chapter in the XVT Portability Toolkit Guide

SEV_* Values for XVT_ERRSEV
 Error Severity Type

Summary

typedef enum {
SEV_NONE,
SEV_WARNING
SEV_ERROR,
SEV_FATAL,

} XVT_ERRSEV;

Description

This enumeration defines error severity codes used in error
signaling.

See Also

xvt_errmsg_sig
xvt_errmsg_sig_std

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

SHRT_MAX
 Maximum Short Value

Summary

#define SHRT_MAX ...

Description

This is XVT’s implementation of the ANSI C symbol for the
maximum value of a short variable.

See Also

CHAR_MAX
INT_MAX
LONG_MAX
UCHAR_MAX
UNIT_MAX
ULONG_MAX
USHRT_MAX

Software Identifiers
 Software Version Identifiers

The following constants define the version number for the XVT
Help system:

XVT_HELP_VERSION_MAJOR
XVT_HELP_VERSION_MINOR
XVT_HELP_VERSION_PATCH

The following constants define the version number for the XVT
Portability Toolkit:

XVT_PTK_VERSION_MAJOR
XVT_PTK_VERSION_MINOR
XVT_PTK_VERSION_PATCH

The folowing constants define the version number for the Text Edit
Object:

XVT_TX_VERSION_MAJOR
XVT_TX_VERSION_MINOR
XVT_TX_VERSION_PATCH

SZ_CLASS_NAME
 Maximum Length of a Class Name

Summary

#define SZ_CLASS_NAME ...

Description

This constant specifies the maximum length of a class name.

SZ_FNAME
 Maximum Size of Filename

Summary

#define SZ_FNAME .../* max filename length */

Description

This constant specifies the maximum filename length for the local
system, and is used in the definition of FILE_SPEC.

See Also

FILE_SPEC
SZ_LEAFNAME

SZ_LEAFNAME
 Maximum Size of Directory or Filename

Summary

#define SZ_LEAFNAME .../*max directory or filename
length*/

Description

This constant adds convenience for using
xvt_fsys_parse_pathname. This constant is defined as the
maximum length (in bytes) of a single directory or filename in a
pathname for the local system. This length includes file extensions
and the period (’.’).

See Also

FILE_SPEC
SZ_FNAME
xvt_fsys_parse_pathname

Example

char fname[SZ_LEAFNAME + 1];
xvt_fsys_parse_pathname(fullpath, NULL,

 NULL, fname, NULL, NULL);

TASK_WIN
 Task Container Window

Summary

#define TASK_WIN ...

Description

The task window represented by the TASK_WIN macro serves two
purposes in an XVT application. First, it acts as a central WINDOW
object representing the application as a whole. Second, it is a
container window that can be used as the parent for other windows.

TASK_WIN has an event handler to receive events that affect your
application as a whole. It is this event handling function that you
pass in your initial call to xvt_app_create. This task event handler
receives the following events portably across all systems:

• An E_CREATE event signalling the start of an application.

• An E_DESTROY event when the application is terminated.

• An E_COMMAND event when the user operates the task
menubar. The task menubar is available for the user to
operate under different situations across platforms, but in
general the user is able to operate the task menubar if no other
window’s menubar is available. Therefore, you should think
of the task menubar as a "backup" menubar for the user to
operate when there are no other menubars around.

• An E_FONT event if the user chooses a font from the font
selection menu or dialog. This is possible only if the task
menubar has Font/Style menus on it, or if a Font Selection
dialog is requested.

• An E_TIMER event if your application calls
xvt_timer_create and uses TASK_WIN as an argument.

• An E_USER event if your application sends them via
xvt_win_dispatch_event.

• An E_CLOSE event on XVT/Win32 and XVT/XM, indicating
that the user wishes to end the program.

• An E_QUIT event on XVT/MAC and XVT/Win32 indicating
that the user has initiated a system shutdown.

• An E_SIZE event following its initial E_CREATE event to tell
the application how large the task window’s client area is

(and hence how much area is available for placing top-level
windows within the task window). On XVT/Win32, it will
also receive an E_SIZE event when the user resizes the
physical task window. On other platforms, the size will never
change because TASK_WIN maps onto the screen.

Although several events (i.e., E_QUIT, E_CLOSE, and E_SIZE) are
delivered differently on some platforms, your application must still
handle the events with portable code. If your development platform
does not deliver E_QUIT events, your application must handle
E_QUIT events if you want portable code. In addition, an E_CLOSE
event sent to the task window should be handled in the same way it
would be if the user chose Quit from the File menu. Your application
can safely ignore E_SIZE events sent to the task handler, unless it
wants to adjust the layout of windows contained in the task window
when the size of the task window changes.

Since the task window is the XVT representation of an application,
calling xvt_vobj_destroy(TASK_WIN) will terminate the
application.

Implementation Note

In addition to the events received on all platforms, the following
events can only be received on XVT/Win32, when you set the
ATTR_WIN_PM_DRAWABLE_TWIN attribute before the calling
xvt_app_create: E_CHAR, E_CONTROL, E_FOCUS, E_HSCROLL,
E_MOUSE_*, E_UPDATE, and E_VSCROLL.

On XVT/Win32 a task window can also be used as a container
window. On these platforms, the task window is a visible object that
the user can manipulate. Specifying TASK_WIN as the parent
argument to an xvt_*_create_* function causes a top-level window
to be created inside the physical task window container. In contrast,
using SCREEN_WIN as the parent causes a top-level window to be
created outside of the physical task window (on "the screen"). On
other platforms, TASK_WIN and SCREEN_WIN represent the same
container, namely the screen itself.

See Also

XVT Events
ATTR_TASK_WINDOW
SCREEN_WIN
WINDOW
xvt_app_create

TL_* Constants
 Standard Tool Constants

Summary

#define TL_PEN_BLACK ...
#define TL_PEN_HOLLOW ...
#define TL_PEN_RUBBER ...
#define TL_PEN_WHITE ...
#define TL_BRUSH_BLACK ...
#define TL_BRUSH_WHITE ...

Description

These constants represent standard XVT drawing tools. The
TL_PEN_* constants can be used in a call to xvt_dwin_set_std_cpen
to set a standard pen. The TL_BRUSH_* constants can be used in a call
to xvt_dwin_set_std_cbrush to set a standard brush.

See Also

xvt_dwin_set_std_cbrush
xvt_dwin_set_std_cpen

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

TRUE
 True Value

Summary

#define TRUE ...

Description

This symbol should be used for a true BOOLEAN value.

See Also

BOOLEAN
FALSE

Example

BOOLEAN flag = TRUE;

TX_* Attributes
 Text Edit Attributes

Summary

#define TX_AUTOHSCROLL ...
#define TX_AUTOVSCROLL ...
#define TX_BORDER ...
#define TX_DISABLED ...
#define TX_ENABLECLEAR ...
#define TX_INVISIBLE ...
#define TX_NOCOPY...
#define TX_NOCUT ...
#define TX_NOMENU ...
#define TX_NOPASTE ...
#define TX_ONEPAR ...
#define TX_OVERTYPE ...
#define TX_READONLY ...
#define TX_WRAP ...

TX_AUTOHSCROLL

Enables automatic scrolling in the horizontal direction when the
user drags the mouse outside of the text edit object.

TX_AUTOVSCROLL

Enables automatic vertical scrolling.

TX_BORDER

Draws a rectangular border around the text edit object.

TX_DISABLED

Disables the text edit system.

TX_ENABLECLEAR

Leaves the clear item in the edit menu always enabled.

TX_INVISIBLE

Sets text to invisible.

TX_NOCOPY

Disables the Copy command on the Edit menu.

TX_NOCUT

Disables the Cut command on the Edit menu.

TX_NOMENU

Prevents the text edit system from changing the menu of the
window containing the text edit object. This attribute is
especially useful if there is no edit menu.

TX_NOPASTE

Disables the Paste command on the Edit menu.

TX_ONEPAR

Ignores carriage returns, and thus limits editing to one
paragraph.

TX_OVERTYPE

Enables "overtype mode" where users replace existing
characters when typing instead of inserting characters in front
of existing text.

TX_READONLY

Does not allow the user to make changes to the text.

TX_WRAP

Enables word wrap to the margin.

Description

The constants are OR’d together to form a set of attributes that
control the operation of a text edit object. The functions accepting
these OR’d combinations of TX_* attributes are xvt_tx_create,
xvt_tx_create_def, and xvt_tx_set_attr. Indirectly,
xvt_win_create_def also processes TX_* attributes because
xvt_win_create_def can create text edit objects inside the window.

For a detailed description of each attribute, see xvt_tx_create.

See Also

xvt_tx_create
xvt_tx_get_attr
xvt_tx_set_attr
xvt_tx_*
xvt_win_create_def

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

unsigned attrib;
WINDOW win;
TXEDIT txedit;
RCT rct;
XVT_FNTID my_font
...
attrib = TX_BORDER | TX_WRAP |

TX_AUTOHSCROLL | TX_AUTOVSCROLL;
if ((txedit = xvt_tx_create(win, &rct, attrib, my_font,

rct.right - rct.left, INT_MAX)) == NULL_TXEDIT)
xvt_dm_post_fatal_exit("Couldn’t create txedit");

U_* Values for UNIT_TYPE
 Identify Coordinate System used for WIN_DEF Elements

Summary

typedef enum e_unit_type {
U_PIXELS,
U_CHARS,
U_SEMICHARS

} UNIT_TYPE;

Description

The WIN_DEF structure is currently the only place in the API where
UNIT_TYPE is found. This type is used to identify the coordinate
system used for individual elements defined in a WIN_DEF array
passed to functions like xvt_win_create_def or
xvt_dlg_create_def.

Individual elements of the WIN_DEF array can be specified in terms
of either a pixel, semi-character, or character coordinate system. The
XVT Toolkits ensure that a sensible mapping is made to the native
pixel coordinate system.

See Also

WIN_DEF
xvt_dlg_create_def
xvt_win_create

UCHAR_MAX
 Max Unsigned Char Value

Summary

#define UCHAR_MAX ...

Description

This is XVT’s implementation of the ANSI C symbol for the
maximum value of a unsigned char variable.

See Also

CHAR_MAX
INT_MAX
LONG_MAX
SHRT_MAX
UNIT_MAX
ULONG_MAX
USHRT_MAX

UNIT_MAX
 Max Unsigned int Value

Summary

#define UINT_MAX ...

Description

This is XVT’s implementation of the ANSI C symbol for the
maximum value of a unsigned int variable.

See Also

CHAR_MAX
INT_MAX
LONG_MAX
SHRT_MAX
UCHAR_MAX
ULONG_MAX
USHRT_MAX

ULONG_MAX
 Max Unsigned Long Value

Summary

#define ULONG_MAX ...

Description

This is XVT’s implementation of the ANSI C symbol for the
maximum value of a unsigned long variable.

See Also

CHAR_MAX
INT_MAX
LONG_MAX
SHRT_MAX
UCHAR_MAX
UNIT_MAX
USHRT_MAX

USHRT_MAX
 Max Unsigned Short Value

Summary

#define USHRT_MAX ...

Description

This is XVT’s implementation of the ANSI C symbol for the
maximum value of an unsigned short variable.

See Also

CHAR_MAX
INT_MAX
LONG_MAX
SHRT_MAX
UCHAR_MAX
UNIT_MAX
ULONG_MAX

W_*, WC_*, WD_*, Values for WIN_TYPE
 Window-Type

Summary

typedef enum {/* type of window */
 W_NONE, /* marker for end of WIN_DEF array */
 W_DOC, /* document window */
 W_PLAIN, /* window with plain border */
 W_DBL, /* window with double border */
 W_PRINT, /* XVT internal use only */
 W_TASK, /* task window */
 W_SCREEN, /* screen window */
 W_NO_BORDER, /* no border */
 W_PIXMAP, /* pixmap */
 W_MODAL, /* modal window */
 WD_MODAL, /* modal dialog */
 WD_MODELESS, /* modeless dialog */
 WC_PUSHBUTTON, /* button control */
 WC_RADIOBUTTON, /* radio button control */
 WC_CHECKBOX, /* check box control */
 WC_HSCROLL, /* horizontal scroll bar control */
 WC_VSCROLL, /* vertical scroll bar control */
 WC_EDIT, /* edit control */
 WC_TEXT, /* static text control */
 WC_LBOX, /* list box control */
 WC_LISTBUTTON, /* button with list */
 WC_LISTEDIT, /* edit field with list */
 WC_GROUPBOX, /* group box */
 WC_TEXTEDIT, /* text-edit object */
 WC_ICON, /* icon control */
 WC_NOTEBK, /* notebook control */
 WC_HTML, /* html control */
 WC_NUM_WIN_TYPES,/* number of WIN_TYPEs */
 XVT_ENUM_DUMMY12 = XVT_CC_ENUM_END
} WIN_TYPE;

Description

Values of this type are used to specify or identify objects referred to
by the WINDOW data type. The value of this type is a parameter to all
of the window, dialog, and control creation functions that specify the
object type. In addition, to identify the type of an existing WINDOW, a
value of this type is also returned by xvt_vobj_get_type.

See Also

WIN_DEF
WINDOW
xvt_ctl_create
xvt_dlg_create_res
xvt_vobj_get_type
xvt_win_create
Window/Dialog/Control Creation Function Parameters

WSF_* Options Flags
 Window-Creation Flags

Summary

#define WSF_CLOSE ...
#define WSF_DECORATED ...
#define WSF_DEFER_MODAL ...
#define WSF_DISABLED ...
#define WSF_HSCROLL ...
#define WSF_ICONIZABLE ...
#define WSF_ICONIZED ...
#define WSF_INVISIBLE ...
#define WSF_MAXIMIZED ...
#define WSF_NO_MENUBAR ...
#define WSF_NONE ...
#define WSF_PLACE_EXACT ...
#define WSF_SIZE ...
#define WSF_SIZEONLY ...
#define WSF_VSCROLL ...

Description

These flags are used when calling the xvt_win_create and
xvt_win_create_def functions. They determine the style of the
window to be created. Once a window is created, its style cannot be
changed, with the exceptions noted below. The OR’d combination
of these flags can be obtained by calling xvt_vobj_get_flags.

WSF_CLOSE

Specifies that a window should be created with a close control,
which is usually in the upper-left corner of the window. On
some systems, it can also add a "close" item to a window-
manager menu. Valid only for top-level windows of type W_DOC.

WSF_DECORATED

A convenient combination of the above four flags.

WSF_DEFER_MODAL

Specifies that a W_MODAL window will not enter a modal state
until the function xvt_win_process_modal is called. Normally a
W_MODAL window will enter the modal state inside the
xvt_win_create* function and will only return after the window is
destroyed and modal processing is complete. This is only valid
for windows of type W_MODAL.

WSF_DISABLED

Specifies that the window should be created initially disabled.
To enable it, call xvt_vobj_set_enabled.

WSF_HSCROLL

Specifies that the window should be created with a horizontal
scrollbar on its frame. Valid only for top-level windows of type
W_DOC, or child windows of type W_PLAIN.

WSF_ICONIZABLE

Specifies that the window is iconizable. This is only valid for
top-level windows of type W_DOC. It is ignored on XVT/Mac
which does not support iconized windows.

WSF_ICONIZED

Specifies that the window should be created initially iconized.
A window created initially iconized can be deiconized only by
the user. This is only valid for top-level windows of type W_DOC.
This flag is ignored on XVT/Mac which does not support
iconized windows.

WSF_INVISIBLE

Specifies that the window should be created initially invisible.
To make it visible, call xvt_vobj_set_visible.

WSF_MAXIMIZED

Specifies that the window should be created initially maximized
(or zoomed, as some call it). A maximized window occupies its
entire container. In addition, a maximized window might not
respond to xvt_vobj_move calls until the user un-maximizes it.
This is only valid for top-level windows of type W_DOC. This flag
is ignored on XVT/XM.

WSF_NO_MENUBAR

Specifies that a top-level window has no menubar (child
windows never have menubars). Windows with this flag do not
receive E_COMMAND events. Note that the absence of this flag

does not imply that the window will have a menubar physically
attached to its frame--in general, the physical placement of
menubars is determined by the platform. Rather, this flag
controls the presence or absence of a logical menubar, which
is somehow operable when the window has focus.

WSF_PLACE_EXACT

 Specifies that for a W_MODAL window the position of the top and
left fields should be determined by the RCT structure.

WSF_SIZE

Specifies that a window should be created with a sizing control.
This may mean that the window has a thick, sizeable frame on
some platforms, whereas it may create certain "size controls" on
the window’s frame for other platforms. Valid only for top-level
windows of type W_DOC.

WSF_SIZEONLY

Causes the window to have a small box in the lower-right corner
for sizing. This is only valid for top-level windows of type
W_DOC. In addition, this is only used on XVT/Mac, and only for
windows without scrollbars.

WSF_VSCROLL

Specifies that the window should be created with a vertical
scrollbar on its frame. Valid only for top-level windows of type
W_DOC, or child windows of type W_PLAIN.

See Also

WINDOW
W_*, WC_*, WD_*, Values for WIN_TYPE
xvt_vobj_get_flags
Window/Dialog/Control Creation Function Parameters

Example

See the examples for xvt_win_create and xvt_vobj_get_flags.

XVT_CALLCONV*
 Linkage Macros

Summary

#define XVT_CALLCONV1 ...
#define XVT_CALLCONV2 ...

Description

The XVT_CALLCONV1 macro defines the linkage convention of
functions on IBM-compatible PC platforms (XVT/Win32). On
XVT/Mac, they define a C calling convention for linkage between C
and C++ compiler-generated code. On other platforms, they are
defined as empty macros. For the exact values used, see the
xvt_env.h and xvt_plat.h files.

To ensure portability, you should use XVT_CALLCONV1 in all
prototypes and headers for XVT callback functions (including event
handlers, hook functions, print threads, application-supplied font
mappers, and application-supplied Font Selection dialogs). You
should also use the XVT_CALLCONV1 macro in the declaration of the
main function.

Note: XVT_CALLCONV2 is not currently defined and is reserved for future
use.

See Also

xvt_env.h
xvt_plat.h

The XVT Platform-Specific Books
The compiler manuals for your platform

Example

You should declare a callback function prototype like this:

BOOLEAN XVT_CALLCONV1 key_hook(...)

You should declare the main function like this:

int XVT_CALLCONV1 main(int argc, char **argv);

XVT_CLUT_SIZE
 Maximum Size of an Image Object Color Look-Up Table

Summary

#define XVT_CLUT_SIZE ...

Description

This constant defines the maximum number of colors in any
XVT_IMAGE object’s color look-up table. Note that this constant only
applies to images of type XVT_IMAGE_CL8.

See Also

XVT_IMAGE
xvt_image_get_clut
xvt_image_set_clut
xvt_image_set_ncolors

XVT_COLOR_*
 Color Constants

Summary

#define XVT_COLOR_NULL...
#define XVT_COLOR_BACKGROUND...
#define XVT_COLOR_BLEND...
#define XVT_COLOR_BORDER...
#define XVT_COLOR_FOREGROUND...
#define XVT_COLOR_HIGHLIGHT...
#define XVT_COLOR_SELECT..
#define XVT_COLOR_TROUGH...

XVT_COLOR_BACKGROUND

Fill color of rectangular region occupied by control

XVT_COLOR_BLEND

Secondary background for some controls. This provides that
colors blend into their container window’s background without
visual indication of a border

XVT_COLOR_BORDER

Outside edge of control (rectangular)

XVT_COLOR_FOREGROUND

Control text and the arrows on scrollbars

XVT_COLOR_HIGHLIGHT

Visual indication that a control has keyboard focus

XVT_COLOR_SELECT

Indication that a control has been selected

XVT_COLOR_TROUGH

Slider area behind scrollbar thumb

Description

These constants define (in XVT_COLOR_COMPONENT) the component of
a control (fcXVT_COLOR_TYPE) to which a color is applied.

See Also

XVT_COLOR_COMPONENT
XVT_COLOR_TYPE
xvt_ctl_get_colors
xvt_ctl_set_colors
xvt_win_get_ctl_colors
xvt_win_set_ctl_colors

XVT_COLOR_GET_BLUE
 Returns the Blue Component of a Color

Summary

#define XVT_COLOR_GET_BLUE(color) ...

Description

This macro returns the blue component (unsigned char) of an XVT
COLOR value.

See Also

XVT_COLOR_GET_GREEN
XVT_COLOR_GET_RED
XVT_MAKE_COLOR

XVT_COLOR_GET_GREEN
 Returns the Green Component of a Color

Summary

#define XVT_COLOR_GET_GREEN(color) ...

Description

This macro returns the green component (unsigned char) of an
XVT COLOR value.

See Also

XVT_COLOR_GET_BLUE
XVT_COLOR_GET_RED
XVT_MAKE_COLOR

XVT_COLOR_GET_RED
 Returns the Red Component of a Color

Summary

#define XVT_COLOR_GET_RED(color) ...

Description

This macro returns the red component (unsigned char) of an XVT
COLOR value.

See Also

XVT_MAKE_COLOR
XVT_COLOR_GET_BLUE
XVT_COLOR_GET_GREEN

XVT_CTOOLS_*
User-Modifiable Drawing Tool Constants

Summary

#define XVT_CTOOLS_PEN ...
#define XVT_CTOOLS_PEN_ALL ...
#define XVT_CTOOLS_BRUSH ...
#define XVT_CTOOLS_FORE_COLOR ...
#define XVT_CTOOLS_BACK_COLOR ...
#define XVT_CTOOLS_CTOOL ...
#define XVT_CTOOLS_ALL ...

XVT_CTOOLS_PEN

Allows the user to change color, width and style of the
DRAW_CTOOLS pen.

XVT_CTOOLS_PEN_ALL

Allows the user to change all members of the DRAW_CTOOLS pen.

XVT_CTOOLS_BRUSH

Allows the user to change all members of the DRAW_CTOOLS
brush.

XVT_CTOOLS_FORE_COLOR

Allows the user to change the DRAW_CTOOLS foreground color.

XVT_CTOOLS_BACK_COLOR

Allows the user to change the DRAW_CTOOLS background color.

XVT_CTOOLS_CTOOL

Allows the user to change all DRAW_CTOOLS members except
mode and opaque_text.

XVT_CTOOLS_ALL

Allows the user to change all members of the DRAW_CTOOLS
construct.

Description

These constants are used for calls to xvt_dm_post_ctools_sel and
are based on the DRAW_CTOOLS construct.

XVT_CXO_*_MSG
 Container Extension Object Message Constants

Summary

#define XVT_CXO_CREATE_MSG -1
#define XVT_CXO_DESTROY_MSG -2

Description

These constants represent standard XVT E_CXO messages which
XVT dispatches when a CXO is created or destroyed. Additional
messages may be defined in the future.

Implementation Note

XVT reserves the negative range for CXO messages, but CXO’s
may use positive values for their own messages.

See Also

E_CXO

Example

See the example for xvt_cxo_create.

XVT_CXO_POS_* Values for
XVT_CXO_INSERTION

 Container Extension Object Insertion Type

Summary

typedef enum
{

XVT_CXO_POS_FIRST,
XVT_CXO_POS_LAST

} XVT_CXO_INSERTION;

Description

The enumeration defines locations for inserting a CXO into a
container’s CXO chain.

Implementation Note

XVT reserves the negative range for CXO messages, but CXO’s
may use positive values for their own messages.

See Also

xvt_cxo_create

XVT_DISPLAY_* Values
 Value for ATTR_DISPLAY_TYPE

Summary

xvt_vobj_get_attr

returns one value of an enumerated type, defined as follows:

typedef enum {
XVT_DISPLAY_MONO,
XVT_DISPLAY_GRAY_16,
XVT_DISPLAY_GRAY_256,
XVT_DISPLAY_COLOR_16,
XVT_DISPLAY_COLOR_256,
XVT_DISPLAY_DIRECT_COLOR

} XVT_DISPLAY_TYPE;
XVT_DISPLAY_MONO

A monochromatic, black-and-white display.

XVT_DISPLAY_GRAY_16

A grayscale display, capable of displaying 16 shades of gray
(but no colors).

XVT_DISPLAY_GRAY_256

A grayscale display, capable of displaying 256 shades of gray
(but no colors).

XVT_DISPLAY_COLOR_16

A color display, capable of displaying 16 distinct colors.

XVT_DISPLAY_COLOR_256

A color display, capable of displaying 256 distinct colors.

XVT_DISPLAY_DIRECT_COLOR

A full-color display, capable of displaying thousands (or more)
of distinct colors.

See Also

ATTR_DISPLAY_TYPE

The "Portable Images" chapter in the XVT Portability Toolkit Guide

XVT_ESC_*
 XVT Escape Codes

Description

Typically, these constants are used as arguments to xvt_app_escape
to specify non-portable actions.

XVT defines only one portable escape code,
XVT_ESC_GET_PRINTER_INFO, which gives you the printer
information from the passed print record. Any of the return
parameter pointers can be NULL. The call signature is:

xvt_app_escape(XVT_ESC_GET_PRINTER_INFO,
PRINT_RCD* print_rcd, long* heightp,
long* widthp, long* vresp, long* hresp);

PRINT_RCD* print_rcd

Current print record.

long* heightp

Height in dots.

long* widthp

Width in dots.

long* vresp

Vertical resolution in dots per inch.

long* hresp

Horizontal resolution in dots per inch.

See Also

xvt_app_create
xvt_app_escape
xvt_dm_post_page_setup

For details of non-portable XVT escape codes, see the XVT
Platform-Specific Books

XVT_FA_* Constants
 Logical Font Attribute Constants

Summary

#define XVT_FA_ALL ... /* all attributes*/
#define XVT_FA_APP_DATA ... /* application data */
#define XVT_FA_FAMILY ... /* family */
#define XVT_FA_NATIVE .. /* native descriptor */
#define XVT_FA_SIZE ... /* size */
#define XVT_FA_STYLE ... /* style */
#define XVT_FA_WIN ... /* window */

Description

These constants are used in an XVT_FONT_ATTR_MASK to specify
logical font attribute types with XVT_FNTID access functions. You
can use these constants combined in bit masks to specify multiple
values.

See Also

XVT_FONT_ATTR_MASK
XVT_FNTID
XVT_FFN_* Constants
XVT_FS_* Constants
xvt_font_*

Example

Here is an example of how an application might combine the
constants in a mask:

XVT_FNTID font_id1 = xvt_font_create();
XVT_FNTID font_id2 = xvt_font_create();
xvt_font_set_family(font_id1, "times");
xvt_font_set_style(font_id1, XVT_FS_BOLD |

XVT_FS_ITALIC);
xvt_font_set_size(font_id1, 18);
xvt_font_copy(font_id2, font_id1,

XVT_FA_FAMILY | XVT_FA_SIZE | XVT_FA_STYLE);

XVT_FAST_WIDTH
 Fastest Pen Width For CPEN’s

Summary

#define XVT_FAST_WIDTH ...

Description

This constant defines the CPEN width to use for fastest drawing
speed.

Implementation Note

The definition of XVT_FAST_WIDTH is platform-specific. If you
require the exact value of this macro, see the definition in the
xvt_plat.h or the platform-specific file (or xvt_plxs.h on XVT/
XM).

See Also

CPEN

XVT_FFN_* Constants
 Logical Font Family Name Constants

Summary

#define XVT_FFN_COURIER ... /* "courier" */
#define XVT_FFN_FIXED ... /* "fixed" */
#define XVT_FFN_HELVETICA ... /* "helvetica" */
#define XVT_FFN_SYSTEM ... /* "system" */
#define XVT_FFN_TIMES ... /* "times" */

Description

XVT provides these constants as a convenience. They represent
logical fonts guaranteed to have a good, consistent appearance on all
toolkits. Any other logical font families may undergo some mapping
substitutions when being ported across platforms.

Your application can specify the above predefined logical font
family names strings as parameters to xvt_font_set_family.

See Also

XVT_FA_* Constants
XVT_FS_* Constants
xvt_font_*

XVT_FILE_ATTR_* Constants
 XVT File Attribute Constants

Summary

#define XVT_FILE_ATTR_ATIME ...
#define XVT_FILE_ATTR_CREATORSTR ...
#define XVT_FILE_ATTR_CTIME ...
#define XVT_FILE_ATTR_DIRECTORY ...
#define XVT_FILE_ATTR_DIRSTR ...
#define XVT_FILE_ATTR_EXECUTE ...
#define XVT_FILE_ATTR_EXIST ...
#define XVT_FILE_ATTR_FILESTR ...
#define XVT_FILE_ATTR_NUMLINKS ...
#define XVT_FILE_ATTR_MTIME ...
#define XVT_FILE_ATTR_READ ...
#define XVT_FILE_ATTR_SIZE ...
#define XVT_FILE_ATTR_TYPESTR ...
#define XVT_FILE_ATTR_WRITE ...

XVT_FILE_ATTR_EXIST

Return type: BOOLEAN
Returns TRUE if the file exists and can be reached via a
searchable path of directories.

XVT_FILE_ATTR_READ

Return type: BOOLEAN
Returns TRUE if the file exists and is readable.

XVT_FILE_ATTR_WRITE

Return type: BOOLEAN
Returns TRUE if the file exists and is writable.

XVT_FILE_ATTR_EXECUTE

Return type: BOOLEAN
Returns TRUE if the file exists and can be executed.

XVT_FILE_ATTR_DIRECTORY

Return type: BOOLEAN
Returns TRUE if the file is a directory.

XVT_FILE_ATTR_NUMLINKS

Return type: long
Returns the number of hard links to the file. This is meaningful
only on XVT/XM. It returns 1 on other platforms.

XVT_FILE_ATTR_SIZE

Return type: long
Returns the number of bytes in the file. On XVT/Mac, this is the
size of the data segment.

XVT_FILE_ATTR_ATIME

Return type: time_t
Returns the access time of the file (i.e., the last time and date the
file was read/written/executed). On the XVT/Mac platform, this is
the same as the modified time.

XVT_FILE_ATTR_CTIME

Return type: time_t
Returns the creation date of the file.

XVT_FILE_ATTR_MTIME

Return type: time_t
Returns the date the file was last modified.

XVT_FILE_ATTR_DIRSTR

Return type: char *
Returns the directory component of the input FILE_SPEC structure
as a NULL-terminated string. This is equivalent to calling
xvt_fsys_convert_dir_to_str on the directory component of
the input FILE_SPEC structure.

XVT_FILE_ATTR_FILESTR

Return type: char *
Returns the file component of the input FILE_SPEC structure as a
NULL-terminated string.

XVT_FILE_ATTR_TYPESTR

Return type: char *
Returns the type component of the input FILE_SPEC structure as a
NULL-terminated string. On the XVT/Mac platform, this is the
system file type.

XVT_FILE_ATTR_CREATORSTR

Return type: char *
Returns the creator component from the input FILE_SPEC
structure. On XVT/Mac, this is the system file creator.

Description

These constants are used in xvt_fsys_set_file_attr and
xvt_fsys_get_file_attr to specify the file attribute that is being
set or inquired.

See Also

xvt_fsys_get_file_attr
xvt_fsys_set_file_attr

Example

if (FL_OK == xvt_dm_post_file_open(&fs,
"Open File ...")) {
sprintf(lines[i++], "testing file: %s",

(char *) xvt_fsys_get_file_attr(&fs,
XVT_FILE_ATTR_FILESTR));

if (!xvt_fsys_get_file_attr(&fs, XVT_FILE_ATTR_EXIST))
sprintf(lines[i++], "File does not exist");

...
}

XVT_FILESYS_* Values
 File System Macros

Summary

#define XVT_FILESYS_MAC ... /* Apple Macintosh file
system */

#define XVT_FILESYS_NTFS .../* MS-Windows NT File System
*/
#define XVT_FILESYS_UNIX .../* UNIX file system */

Description

These macros are set to a value of either TRUE or FALSE, depending
on whether or not the operating system under which the application
is executing may be supporting the file system. Because some
operating systems can support more than one file system
simultaneously, the macros indicate what may be supported and not
the actual file system configuration.

You can use these macros both in coding and in XRC resources.
These macros are defined in the xvt_env.h file and are set in the
platform-specific file xvt_plat.h (xvt_plxs.h on XVT/XM).

Implementation Note

Although you could use the XVT_OS macro to determine the file
system, XVT strongly encourages you to use the XVT_FILESYS_*
macros. They provide a more consistent and simpler way to
determine file systems. Also, the supported values of the XVT_OS
macro are subject to change between releases of XVT as support for
various operating systems is added or removed.

See Also

XVTWS, *WS Values
xvt_env.h
xvt_plat.h (or xvt_plxs.h on XVT/XM)

Example

#if XVT_FILESYS_NTFS || XVT_FILESYS_DOS
/* platform-specific file system code with DOS-like

file naming and directory conventions */
#endif#if XVT_FILESYS_UNIX

/* platform-specific file system code with UNIX
file naming and directory conventions */

#endif

XVT_FS_* Constants
 Logical Font Style Constants

Summary

#define XVT_FS_BLINK ... /* blinking */
#define XVT_FS_BOLD ... /* bold */
#define XVT_FS_INVERSE ... /* inverse */
#define XVT_FS_ITALIC ... /* italic */
#define XVT_FS_NONE ... /* none */
#define XVT_FS_OUTLINE ... /* outline */
#define XVT_FS_SHADOW ... /* shadow */
#define XVT_FS_STRIKEOUT .../* strikeout */
#define XVT_FS_UNDERLINE .../* underline */
#define XVT_FS_USER1 ... /* for application use */
#define XVT_FS_USER2 ... /* for application use */
#define XVT_FS_USER3 ... /* for application use */
#define XVT_FS_USER4 ... /* for application use */
#define XVT_FS_USER5 ... /* for application use */
#define XVT_FS_WILDCARD ... /* used only in XRC created

logical fonts */

Description

These constants are used in an XVT_FONT_STYLE_MASK to specify
logical font style with XVT_FNTID access functions. You can use the
XVT_FS_* constants combined in bit masks to specify multiple values.
The XVT_FS_WILDCARD logical font style is the only style a logical font
has if it was created from an XRC font resource with a style of "any."

See Also

XVT_FA_* Constants
XVT_FFN_* Constants
XVT_FNTID
XVT_FONT_STYLE_MASK
font XRC Statement

The "Menus" and the "Resources and XRC" chapters in the XVT
Portability Toolkit Guide

XVT_HELP_* Values for
XVT_HELP_FLAVOR

 Configuration of the Help Viewer

Summary

typedef enum {
XVT_HELP_FLAVOR_NONE, /* no viewer */
XVT_HELP_FLAVOR_NTVSRV, /* native standalone

(server) viewer */
XVT_HELP_FLAVOR_NTVBND, /* native bound viewer */
XVT_HELP_FLAVOR_PORTSRV, /* portable standalone

(server) viewer */
XVT_HELP_FLAVOR_PORTBND /* portable bound viewer

*/
} XVT_HELP_FLAVOR;

Description

XVT supports several help viewer configurations. These
enumeration constants identify which configuration is being used by
an application.

See Also

xvt_help_get_flavor

XVT_IMAGE_* Values for
XVT_IMAGE_FORMAT

 Color Format Enumerated Type for Images

Summary

typedef enum {
XVT_IMAGE_NONE,
XVT_IMAGE_CL8,
XVT_IMAGE_RGB
XVT_IMAGE_MONO,

} XVT_IMAGE_FORMAT;

Description

Enumerated type for identifying the color format of an XVT_IMAGE
variable. The values correspond to the following color formats:

XVT_IMAGE_NONE

No image format.

XVT_IMAGE_CL8

Indexed image with a 256-entry color look-up table, one byte
per pixel.

XVT_IMAGE_RGB

Full color image, one 24-bit COLOR variable per pixel.

XVT_IMAGE_MONO

Monochrome (black and white) or two-color image, one bit per
pixel.

See Also

xvt_image_create
xvt_image_get_format

XVT_MAKE_COLOR
 Create a Color

Summary

#define XVT_MAKE_COLOR(r, g, b) ...

Description

Use this macro to create COLORs from separate red, green, and blue
intensity values.

In addition to creating your own COLOR values, you can use one of
the eleven predefined COLORs described under the COLOR_* constants
topic. The range of values for red, green, and blue are 0 to 0xFF
(unsigned char).

For a description of how RGB colors are stored in XVT, see the
topic COLOR.

Return Value

The COLOR.

See Also

COLOR_*, COLOR_INVALID Constants
XVT_COLOR_GET_BLUE
XVT_COLOR_GET_GREEN
XVT_COLOR_GET_RED

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

Example

This code shows how to create red:

COLOR red = XVT_MAKE_COLOR (0xFF, 0x00, 0x00)

This code shows how to create magenta:

COLOR magenta = XVT_MAKE_COLOR (0xFF, 0x00, 0xFF)

XVT_MAX_MB_SIZE
 Maximum Size of the Largest Multibyte Character

Summary

#define XVT_MAX_MB_SIZE ...

Description

This constant is defined as the maximum size in bytes of the largest
multibyte character on a particular platform and compiler.

Example

char mbc[XVT_MAX_MB_SIZE];
int len;len = xvt_str_convert_wc_to_mb(mbc, wc);

XVT_MAX_WINDOW_RECT
 Maximum Window Size Constant

Summary

#define XVT_MAX_WINDOW_RECT ...

Description

This constant is passed to the xvt_win_create window-creation
function to create a top-level window that occupies its entire
container.

This constant is slightly different than specifying the
WSF_MAXIMIZED flag, as the latter has particular implications about
the state of the resizing frame controls for the window. In addition,
a window created with WSF_MAXIMIZED might not respond to
xvt_vobj_move calls until the user un-maximizes it, whereas a
window created with XVT_MAX_WINDOW_RECT will respond to
xvt_vobj_move calls.

See Also

WSF_* Options Flags
xvt_win_create
xvt_win_create_def
xvt_win_create_res
xvt_vobj_move

XVT_MOD_KEY
 Modify Keys

Summary

#define XVT_MOD_KEY_ALT
#define XVT_MOD_KEY_CMD
#define XVT_MOD_KEY_COMPOSE
#define XVT_MOD_KEY_CTL
#define XVT_MOD_KEY_LSHIFT
#define XVT_MOD_KEY_NONE
#define XVT_MOD_KEY_OPTION
#define XVT_MOD_KEY_RSHIFT
#define XVT_MOD_KEY_SHIFT

Description

These symbols represent modifier key bitfields. All available
modifier keys are passed in the E_CHAR event for use by the
application. Constant values are defined for testing for particular
modifier keys. Combinations of modifiers may be tested against the
bitfield.

Some keys never occur with certain keyboards or on some
platforms. The application should take this into account for
portability.

See Also

ATTR_KEY_HOOK
ATTR_MULTIBYTE_AWARE
E_CHAR

XVT_NAV_INSERTION
 Navigation Object Insertion Flag

Summary

typedef enum e_nav_insertion
{

XVT_NAV_POS_FIRST,
XVT_NAV_POS_LAST,
XVT_NAV_POS_BEFORE,
XVT_NAV_POS_AFTER

} XVT_NAV_INSERTION;

Description

xvt_nav_add_win uses values of this type to indicate where a new
GUI object is inserted in the navigation order of a window.

See Also

XVT_NAV
xvt_nav_add_win

XVT_PALLETE_* Values
 Color Pallet Types

Summary

typedef enum {
XVT_PALETTE_NONE,
XVT_PALETTE_STOCK,
XVT_PALETTE_CURRENT,
XVT_PALETTE_CUBE16,
XVT_PALETTE_CUBE256,
XVT_PALETTE_USER

} XVT_PALETTE_TYPE

Description

XVT_PALETTE_TYPE enumerates the available types of XVT_PALETTE
color palettes. None of the values are modifiable by your application
except for XVT_PALLET_USER. The values are interpreted as follows:

XVT_PALETTE_STOCK

Contains platform-specific colors that are intended to be
compatible with the platform’s default color scheme. This
palette type is used for the initial default palette.

XVT_PALETTE_CURRENT

Contains the color values currently used by the system’s display
color palette. This palette type minimizes color flashes and
other undesireable effects produced when switching between
different windows and applications on one display. The number
of colors and their values will vary depending on the system’s
current display palette.

XVT_PALETTE_CUBE16

Contains 16 "basic" color values. It is primarily intended for
systems limited to 16-color displays.

XVT_PALETTE_CUBE256

Contains 256 evenly distributed color values, including 16
shades of grey and a uniform set of color hues and saturations.
It is based on the Macintosh default color palette.

XVT_PALETTE_USER

Is freely modifiable by your application. When created, it
initially contains enough basic system color values to ensure
that menus and window decorations can be rendered. There will
be no more than 32 of these pre-allocated colors for 256-color
systems, and no more than two for 16-color systems.

See Also

XVT_PALETTE
xvt_palet_create
xvt_palet_get_type

XVT_PALETTE_SIZE
 Maximum of a Pallette Object

Summary

#define XVT_PALETTE_SIZE ...

Description

This constant defines the maximum number of colors in any
XVT_PALETTE object. Note that if ATTR_DISPLAY_TYPE is
XVT_DISPLAY_DIRECT_COLOR, this constant is ignored since
unlimited colors are available.

See Also

ATTR_DISPLAY_TYPE
XVT_PALETTE
xvt_palet_add_colors
xvt_palet_get_ncolors
xvt_palet_get_size

XVT_PIXMAP_* Values
 Color Image Types

Summary

typedef enum {
XVT_PIXMAP_NONE
XVT_PIXMAP_DEFAULT,

} XVT_PIXMAP_FORMAT;

Description

XVT_PIXMAP_FORMAT enumerates the available types of XVT_PIXMAP
color images. Currently, the only supported format is
XVT_PIXMAP_DEFAULT, which represents a pixmap whose color
format matches the display hardware.

See Also

XVT_PIXMAP
xvt_pmap_create

XVT_STRING_RES_BASE
 Start of XVT String Constants

Summary

#define XVT_STRING_RES_BASE ...

Description

This constant indicates the start of string resources used internally by XVT.
You should create string resources with IDs less than XVT_STRING_RES_BASE.

XVT_TIMER_ERROR
 Timer Error

Summary

#define XVT_TIMER_ERROR ...

Description

This constant is returned by xvt_timer_create to indicate an error. See that
function for details.

See Also

xvt_timer_create

XVT_TPC_* Constants
 Help System Macros

Summary

#define XVT_TPC_HELPONHELP .../* Information about the
help system */

#define XVT_TPC_KEYBOARD ... /* Information about
special keys */

#define XVT_TPC_INDEX /* Help index */
#define XVT_TPC_CONTENTS /* Help table of

contents */
#define XVT_TPC_TUTORIAL /* Application tutorial

information */
#define XVT_TPC_ONVERSION /* Application version

information */
#define XVT_TPC_GLOSSARY /* Glossary of terms */
#define XVT_TPC_FILE_OPEN ... /* xvt_dm_post_file_open
*/
#define XVT_TPC_FILE_SAVE ... /* xvt_dm_post_file_save
*/
#define XVT_TPC_ASK ... /* xvt_dm_post_ask */
#define XVT_TPC_NOTE ... /* xvt_dm_post_note */
#define XVT_TPC_ERROR ... /* xvt_dm_post_error */
#define XVT_TPC_WARNING ... /* xvt_dm_post_warning */
#define XVT_TPC_STRING_PROMPT.../*
xvt_dm_post_string_prompt */
#define XVT_TPC_FONT_SEL ... /* xvt_dm_post_font_sel */
#define XVT_TPC_PAGE_SETUP .../* xvt_dm_post_page_setup
*/
#define XVT_TPC_MESSAGE ... /* xvt_dm_post_message */
#define XVT_TPC_FATAL ... /* xvt_dm_post_fatal_exit
*/

Description

The first set of symbols are reserved topic identifiers, which
correspond to the items on the predefined Help menu.

The second set of symbols are predefined IDs. When help is
requested while a predefined XVT modal dialog is active, an E_HELP
event is dispatched to the task event handler. The tid member of the
help event structure is set to one of the predefined IDs.

See Also

E_HELP
xvt_help_*

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

XVTWS, *WS Values
 Windowing System Macros

Summary

#define XVTWS ... /* window system macro */
#define XVT_WS_UNKNOWN .../* unsupported window system

(error condition) */
#define MACWS ... /* Apple Macintosh */
#define MTFWS ... /* Motif */
#define WIN32WS ... /* Win32 */

Description

You can use the XVTWS macro to determine the window system under
which an XVT application is executing. It is assigned the value of
one of the *WS macros. You can use it either in coding your
application or in your XRC resources. These macros are defined in
the xvt_env.h file and are set in the platform-specific file
xvt_plat.h.

Implementation Note

Although you could use the XVT_OS macro to determine the window
system, XVT strongly encourages you to use the XVTWS macro. It
provides a more consistent and simpler way to determine the
window system. Also, the supported values of the XVT_OS macro are
subject to change between releases of XVT as support for various
operating systems is added or removed.

See Also

XVT_FILESYS_* Values
xvt_env.h
xvt_plat.h

XVT Functions
 Listed by Object

xvt_app_* Application Objects (global executable context)
xvt_cb_* Clipbard Functions
xvt_ctl_* Functionality Specific to Controls (contrary to windows)
xvt_cxo_* Container Extension Object Functions
xvt_debug_* Debugging Facility
xvt_dlg_* User-Writen Dialog Support
xvt_dm_* Dialog Manager, controlling built-in dialogs
xvt_dwin_* Object Supporting Drawing Operations

(windows and pixmaps)
xvt_errid_* Error Message Identifiers
xvt_errmsg_* Error Handling Facility
xvt_event_* Event Access
xvt_fmap_* Font Mapper Facility
xvt_font_* Font Objects
xvt_fsys_* File System Under the Application
xvt_gmem_* Global Memory Management (Mac relocatable)
xvt_help_* Help System
xvt_html_* HTML Object
xvt_image_* Image Objects
xvt_iostr_* Input/Output Byte Stream
xvt_list_* List Box, List Edit
xvt_mem_* Memory Allocation Facility
xvt_menu_* Application Menu Components
xvt_nav_* Navigation Objects
xvt_notebk_* Notebook Functions
xvt_palet_* Color Palette Object
xvt_pattern_* Complex Pattern Facility
xvt_pict_* Picture Objects
xvt_pmap_* Pixmap Objects
xvt_print_* Printing Context
xvt_rect_* Rectangle Objects
xvt_res_* Resource Manager
xvt_sbar_* Scrollbar Objects
xvt_scr_* Screen Objects
xvt_slist_* List of Tagged Strings
xvt_str_* String Operations
xvt_timer_* Timer Objects
xvt_tx_* Portable, XVT Look-and-Feel Text Object
xvt_vobj_* Visible Objects (windows, dialogs, and controls)

xvt_win_* Visible Window Object-Specific Functionality
Miscellaneous Functions

Miscellaneous Functions
max
min
NOREF
PTR_LONG

max
 Get Maximum of Two Quantities

Summary

scalar_type max(scalar_type x, scalar_type y)

scalar_type x

First value to compare.

scalar_type y

Second value to compare.

Description

This macro returns the maximum of two quantities of any scalar
type. Don’t call it with arguments that have side effects (e.g., i++),
because it might evaluate an argument more than once.

Return Value

Maximum (same type as arguments).

See Also

min

Example

/* ensure value is between 0 & 100 */
value = max (0, value);
value = min (100, value);

min
 Get Minimum of Two Quantities

Summary

scalar_type min(scalar_type x, scalar_type y)

scalar_type x

First value to compare.

scalar_type y

Second value to compare.

Description

This macro returns the minimum of two quantities of any scalar
type. Don’t call it with arguments that have side effects (e.g., i++),
as it may evaluate an argument more than once.

Return Value

Minimum (same type as arguments).

See Also

max

Example

See the example for max.

NOREF
 Avoid "Unused Argument" Warning

Summary

void NOREF(any_type arg)

any_type arg

Argument to reference.

Description

This macro establishes a reference to an otherwise unused argument
to a function so as to suppress a compiler warning. The NOREF
statement must follow all other variable definitions.

Example

void fcn(x, y)
int x, y;
{

int i;
NOREF(x);
i = fcn2(y);

}

PTR_LONG
 Cast Pointer to Long

Summary

long PTR_LONG(pointer-type any_pointer)

pointer-type any_pointer

Any pointer-type.

Description

This macro casts a pointer to long in a way that avoids a compiler
warning. Use it with the window, control, and dialog creation
functions or with xvt_vobj_set_data or with xvt_vobj_set_attr
to cast a data structure pointer to a long argument.

When casting a long back into a pointer, a simple cast suffices.

Return Value

A pointer represented as long integer.

See Also

xvt_ctl_create_def
xvt_dlg_create_def
xvt_dlg_create_res
xvt_win_create_def
xvt_win_create_res
xvt_vobj_set_data
xvt_vobj_set_attr

Example

struct sel_state {
...

};
...

struct sel_state *state = (struct scl_state *)
xvt_mem_alloc(sizeof(struct sel_state));

...
xvt_vobj_set_data(win, PTR_LONG(state));

xvt_app_*
 Application Objects (Global Executable Context)

xvt_app_allow_quit
xvt_app_create
xvt_app_destroy
xvt_app_escape
xvt_app_get_default_ctools
xvt_app_get_file
xvt_app_get_files_count
xvt_app_process_pending_events
xvt_app_set_file_processed

xvt_app_allow_quit
 Agree to Termination of Application

Summary

void xvt_app_allow_quit(void)

Description

This function tells XVT that the application is willing to quit the
next time it receives an E_QUIT event with the query member of the
EVENT structure set to FALSE. This is used on systems where a two-
stage shutdown occurs. Only the task event handler will receive
E_QUIT events.

Since there will be no opportunity to cancel, call
xvt_app_allow_quit only upon receiving an E_QUIT event with the
query member set to TRUE, and only after all documents have been
saved and the user has agreed to quit.

Implementation Note

This function has no effect on most systems. Subsequently your
usage of it can be adequately tested only on XVT/Win32, since this
is the only platform that receives E_QUIT events.

See Also

XVT Events
E_QUIT
xvt_app_destroy

The "Events" chapter in the XVT Portability Toolkit Guide

Example

case E_QUIT:
if (xdEvent->v.query)

xvt_app_allow_quit();
else

xvt_app_destroy();

xvt_app_create
 Initiate and Initialize System

Summary

void xvt_app_create(int argc, char *argv[],
unsigned long flags, EVENT HANDLER eh,
XVT_CONFIG *config)

int argc

Set to the argc argument passed to your application’s main
function.

char *argv[]

Set to the argv argument passed to your application’s main
function.

unsigned long flags

Currently unused; pass zero for this parameter.

EVENT HANDLER eh

Set to your application’s task event handler. It will be the first
event handler to receive events, and the first event it receives
will be an E_CREATE event.

XVT_CONFIG *config

Set to point to an XVT_CONFIG structure that specifies various
aspects of your application. For details, see XVT_CONFIG.

Description

This function, usually called from main, invokes the XVT system.

It does not return a value, and does not return to the application. As
events occur, designated event handlers for windows, dialogs, and
the application itself are called.

A call to xvt_app_create is required before an application can
access the XVT library. No other XVT functions can be called
before xvt_app_create, with the exception of some attribute values
that can be accessed via xvt_vobj_get_attr and
xvt_vobj_set_attr.

Since this function does not return, your application must wait for an
event to be sent to event handlers in order to gain control. The first
such event is an E_CREATE event sent to your task event handler, and
at that point you normally perform application initialization.

Parameter Validity and Error Conditions

XVT issues an error if any of the following parameter conditions are
not met:

• flags value must be zero

• eh must not be NULL

• config must not be NULL

• config->menu_bar_ID must specify a valid menubar
resource

• config->base_appl_name, config->appl_name, and
config->taskwin_title must all be non-NULL

See Also

XVT Portable Attributes
E_CREATE
EVENT_HANDLER
XVT_CONFIG
TASK_WIN
xvt_app_destroy
xvt_vobj_get_attr
xvt_vobj_set_attr

The "Events" and the "About the XVT API" chapters in the XVT
Portability Toolkit Guide
The XVT Platform-Specific Books

Example

The following example is taken from the Image Editor example:

long XVT_CALLCONV1 task_eh(WINDOW, EVENT
*);XVT_CONFIG xvt_config = {

TASK_MENUBAR, /* task window menu bar ResID */
0, /* default aboutbox ResID */
"imagedit", /* application’s "file name" */
"XVT Image Editor", /* application’s name */
"XVT Image Editor" /* title for task window */

};int XVT_CALLCONV1 main(int argc, char *argv[])
{

xvt_app_create(argc, argv, 0L, task_eh,
&xvt_config);

}

xvt_app_destroy
 Terminate Execution

Summary

void xvt_app_destroy(void)

Description

This function immediately terminates the application and sends an
E_DESTROY event to the task event handler. It does not return.

You normally call xvt_app_destroy when you get an E_QUIT event
with the v.query member set to FALSE. In addition, you might want
to call xvt_app_destroy when the task handler gets an E_CLOSE
event, or when any handler gets an E_COMMAND event with its tag set
to M_FILE_QUIT. If you need to abort the application in an
emergency, call xvt_dm_post_fatal_exit, which will call
xvt_app_destroy after displaying an error message.

Note: Terminating the application does not necessarily send E_DESTROY
events to any event handler other than the task event handler.

See Also

E_CLOSE
E_COMMAND
E_QUIT
E_DESTROY
M_EDIT_*, M_FILE_*, M_HELP_* Menu Tags
TASK_WIN
xvt_app_create
xvt_dm_post_fatal_exit

Example

case E_COMMAND:
if (xdEvent->v.cmd.tag == M_FILE_QUIT)

xvt_app_destroy();
break;

xvt_app_escape
 Perform Platform-Specific Action

Summary

BOOLEAN xvt_app_escape(int esc_code [, arg]...)int
esc_code [, arg]...

Platform-specific escape code and zero or more arguments.

Description

This function allows access to non-portable, platform-specific
functionality via a consistent interface.

Each platform can define escape codes that your application can use
to perform non-portable actions. For each escape code so defined,
there is also a definition of the arguments that should be passed to
xvt_app_escape for a particular escape code.

XVT defines only one portable escape code,
XVT_ESC_GET_PRINTER_INFO, which gives you the printer
information from the passed print record. Any of the return
parameter pointers can be NULL. The call signature is:

xvt_app_escape(XVT_ESC_GET_PRINTER_INFO,
PRINT_RCD* print_rcd, long* heightp,
long* widthp, long* vresp, long* hresp);

PRINT_RCD* print_rcd

Current print record.

long* heightp

Height in dots.

long* widthp

Width in dots.

long* vresp

Vertical resolution in dots per inch.

long* hresp

Horizontal resolution in dots per inch.

Note: You might find that two or more platforms support the same escape
code. In that case, the arguments for the escape code will be the same
between the platforms that share that escape code. However, you
should not assume that all platforms implement the same escape
code. You must always refer to the XVT Platform-Specific Books for
definitions of supported escape codes.

Return Value

TRUE if successful; FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if you pass an unsupported escape code to this
function. In addition, each platform might define error conditions
for a particular escape code. Refer to the XVT Platform-Specific
Books for these conditions.

See Also

XVT_ESC_*
xvt_dm_post_page_setup

For definitions of particular escape codes and their arguments, see
the XVT Platform-Specific Books.

xvt_app_get_default_ctools
 Get Normal Color Drawing Tools

Summary

DRAW_CTOOLS *xvt_app_get_default_ctools
(DRAW_CTOOLS *ctoolsp)

DRAW_CTOOLS *ctoolsp

Pointer to the color drawing tools.

Description

This function stores a set of normal (or standard) color tools used to
specify the colors and patterns that drawing functions use when
drawing in a regular window or print window.

These colors of the ctools are set in the DRAW_CTOOLS structure
pointed to by ctoolsp:

• A one-pixel-wide black CPEN

• A white CBRUSH

• A DRAW_MODE of M_COPY

• A foreground color of COLOR_BLACK

• A background color of COLOR_WHITE

• A FALSE value for opaque text

The drawing functions that use the ctools are xvt_dwin_*.

To set the tools for a particular window, you have to use the
DRAW_CTOOLS retrieved by xvt_app_get_default_ctools in a call
to xvt_dwin_set_draw_ctools.

Return Value

Value of ctoolsp.

Parameter Validity and Error Conditions

XVT issues an error if ctoolsp is NULL.

See Also

CBRUSH
COLOR
CPEN
DRAW_CTOOLS
DRAW_MODE
M_* Values for DRAW_MODE
xvt_dwin_get_draw_ctools
xvt_dwin_set_draw_ctools

Example

See the example for xvt_dwin_get_draw_ctools.

xvt_app_get_file
 Get Next File to be Printed or Opened

Summary

FILE_SPEC *xvt_app_get_file(void)

Description

This function returns a pointer to a FILE_SPEC describing the next
file to be opened or printed, among those files that were selected by
the user when the application was invoked. XVT does not check to
see if the selected files are valid files (for example, if they were
entered on the command line). Therefore, to determine if the files
exist your application should call:

xvt_fsys_get_file_attr(fp, XVT_FILE_ATTR_EXIST)

Use xvt_app_get_files_count to determine the number of
selected files, and whether they are to be opened or printed. After
each file is opened or printed, you should call
xvt_app_set_file_processed to tell XVT that the file has been
processed.

To retrieve all the files to be opened or printed, xvt_app_get_file
is typically called in the E_CREATE case of an application’s task event
handler. When xvt_app_get_file returns NULL, all selected files
have been passed to the application.

If the files are to be printed, your application should exit after
printing them, by calling xvt_app_destroy. If they are to be opened,
you should open them (usually by creating a document window for
each file) and simply return from your task event handler so that
normal processing continues.

Return Value

A pointer to a FILE_SPEC if successful; NULL when no files remain.

Implementation Note

On all platforms except XVT/Mac, this function uses the argv that
you pass to xvt_app_create. Unlike other platforms, the Mac
doesn’t have a command line, so the names are guaranteed to be
valid files.

See Also

FILE_SPEC
XVT_FILE_ATTR_* Constants
xvt_app_create
xvt_app_get_files_count
xvt_app_set_file_processed
xvt_fsys_build_pathname
xvt_fsys_get_file_attr

The "Files" chapter in the XVT Portability Toolkit Guide

Example

int num_files;
BOOLEAN print_files;/* convert files on command line to
bmp format */
xvt_app_get_files_count(&print_files, &num_files);
if (num_files > 0 && print_files == FALSE)
{

while (num_files--)
{

if (convert_to_bmp(xvt_app_get_file(), FALSE))
xvt_app_set_file_processed();

}xvt_dm_post_note(
"Images have been converted to bmp");

}

xvt_app_get_files_count
 Get Count of Files to be Printed or Opened

Summary

void xvt_app_get_files_count(BOOLEAN *printp,
int *countp)

BOOLEAN *printp

Files to be printed or opened.

int *countp

Number of files.

Description

This function returns through countp the number of files that were
selected by the user when the application started. The value returned
through printp indicates whether the files should be opened (FALSE)
or printed (TRUE).

You should call xvt_app_get_files_count when your application
starts up, preferably in the E_CREATE case of the task event handler.
If the count is greater than zero, you should then call
xvt_app_get_file repeatedly to get each file’s name, until it returns
NULL. After processing a file, you call
xvt_app_set_file_processed to indicate that you are done with it.

If the files are to be printed, your application should exit after
printing them, by calling xvt_app_destroy. If they are to be opened,
you should open them (usually by creating a document window for
each file) and simply return from your task event handler so that
normal processing continues.

Parameter Validity and Error Conditions

printp must not be NULL. countp must not be NULL.

Implementation Note

If the user starts the application without specifying a file (e.g., the
user double clicks on the application in XVT/Mac or XVT/Win32),
xvt_app_get_files_count returns a count of 0. If the user starts the
application by opening (or printing) a file associated with the
application (e.g., the user double clicks on a data file associated with
the application on XVT/Mac and XVT/Win32),
xvt_app_get_file_count returns a count of 1. A count larger than
1 is returned when the user starts the application with more than one
data file. For example, on XVT/Mac, the user can "drop-launch" an
application by selecting several files, then dragging and dropping
them onto the application icon.

On XVT/XM, printp is always set to
FALSE.xvt_app_get_files_count returns information about files
passed as command-line arguments on the argv that you pass to
xvt_app_create.

See Also

E_CREATE
xvt_app_create
xvt_app_destroy
xvt_app_get_file
xvt_app_set_file_processed

The "Files" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_app_get_file.

xvt_app_process_pending_events
 Process Pending Events

Summary

void xvt_app_process_pending_events(void)

Description

This function causes XVT to empty the event queue of all pending
events and to dispatch them to the appropriate event handlers. After
all events have been dispatched and the functions that received them
have returned, xvt_app_process_pending_events returns.

Since you can only call xvt_app_process_pending_events from an
event handler, it’s possible to make a recursive call to that function.
You should plan carefully for this by, among other things, restricting
the use of global variables. Especially, make sure that the recursive
call won’t call xvt_app_process_pending_events again.

Calling xvt_app_process_pending_events during an otherwise
unbroken operation (such as loading a file) allows user input to be
processed. On non-preemptive multitasking window systems (Mac
and MS-Windows), this also gives other applications a chance to
execute.

Therefore, call this function often (every 1/10th second suffices)
during long operations such as reading or writing a file, or when
performing a time-consuming computation such as sorting. During
that operation you can put up a dialog box that offers the user the
opportunity to Cancel. For the dialog to function, you must call
xvt_app_process_pending_events.

You can also use xvt_app_process_pending_events to implement
a crude sort of multi-threading. By extending the above concepts,
you can set up a system whereby several "background" tasks can be
running simultaneously, timesliced in a non-preemptive fashion. Be
careful, as it is quite tricky to keep the user input allowed during
xvt_app_process_pending_events calls from interfering with the
running tasks. This code shows a skeleton example of such a setup:

while (running) {
xvt_app_process_pending_events();
task1_timeslice();
task2_timeslice();
...

}

Parameter Validity and Error Conditions

This function should not be called during E_UPDATE.

See Also

The "Events" chapter in the XVT Portability Toolkit Guide

xvt_app_set_file_processed
 Indicate that File has been Processed

Summary

void xvt_app_set_file_processed(void)

Description

This function tells XVT that a file the user selected prior to starting
the XVT application has been processed. This function implicitly
refers to the file returned by the previous call to xvt_app_get_file.

Implementation Note

This function doesn’t have any effect on platforms other than XVT/
Mac. On XVT/Mac, xvt_app_set_file_processed indicates that a
selected file has been processed by deselecting the file’s icon.

See Also

xvt_app_get_file
xvt_app_get_files_count

The "Files" chapter in the XVT Portability Toolkit Guide.

Example

See the example for xvt_app_get_file.

xvt_cb_*
 Clipboard Objects

xvt_cb_alloc_data
xvt_cb_close
xvt_cb_free_data
xvt_cb_get_data
xvt_cb_has_format
xvt_cb_open
xvt_cb_put_data

xvt_cb_alloc_data
 Allocate Memory for Clipboard Data

Summary

char *xvt_cb_alloc_data(long size)long size

The number of bytes to allocate for memory.

Description

This function allocates a block of memory in which to place a data
structure to be put onto the clipboard in CB_TEXT or CB_APPL format.
It is analogous to the standard C function malloc. After setting up
the data structure, call xvt_cb_put_data to put it onto the clipboard.
Then call xvt_cb_free_data to free the block.

Don’t allocate memory with xvt_cb_alloc_data for PICTUREs,
because xvt_cb_put_data takes that format directly.

You have to use this function to allocate CB_TEXT and CB_APPL
clipboard memory--you can’t use malloc, xvt_gmem_alloc, or any
other method.

Return Value

A pointer to the block is returned if successful; NULL is returned if
memory can’t be allocated.

See Also

CB_* Values for CB_FORMAT
xvt_cb_free_data
xvt_cb_put_data

The "Clipboard" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_cb_put_data.

xvt_cb_close
 Close the Clipboard

Summary

BOOLEAN xvt_cb_close(void)

Description

This function closes the clipboard that was previously opened with
xvt_cb_open. After putting or retrieving data from the clipboard, it
should be closed immediately to avoid interference with other
applications. Future access to the clipboard can be gained via
another call to xvt_cb_open.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

See Also

xvt_cb_open

The "Clipboard" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_cb_get_data and xvt_pict_create.

xvt_cb_free_data
 Free Memory for Clipboard Data

Summary

void xvt_cb_free_data(void)

Description

This function frees the clipboard memory previously allocated by
xvt_cb_alloc_data. Your application must call

xvt_cb_free_data; it is not called automatically by
xvt_cb_put_data.

See Also

xvt_cb_alloc_data
xvt_cb_put_data

The "Clipboard" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_cb_put_data.

xvt_cb_get_data
 Get Data from Clipboard

Summary

char *xvt_cb_get_data(CB_FORMAT cbfmt, char *name,
long *sizep)

CB_FORMAT cbfmt

Format requested.

char *name

Application-determined format name (if CB_APPL). This
argument is ignored (and can be NULL) when the format is
CB_TEXT or CB_PICT.

long *sizep

Number of bytes retrieved from the clipboard.

Description

This function gets data from the clipboard, in whatever format you
request. The data always comes in as a sequence of bytes whose
length is returned through sizep.

For CB_APPL data, name specifies the application-determined format
to be gotten. The interpretation of the resulting bytes is up to the
application. The size returned through sizep is guaranteed to be at
least the size of the data put onto the clipboard via
xvt_cb_put_data. Use the returned size to allocate a buffer for
making a copy of the data before closing the clipboard or getting
more data. Because the clipboard buffer may be larger than the data,

the application must be able to determine the size of the data based
on the format name and the buffer size (e.g., use a known
termination byte value, divide the buffer size by record size, etc.).

For CB_TEXT data, the bytes may be broken into text lines, each of
which ends with an end-of-line sequence equal to EOL_SEQ (which is
platform-specific). Do not assume that the last line is terminated by
an end-of-line sequence, although it might be. The data is not
terminated by a NULL byte. Use the size returned through the sizep
argument to determine the end of the data. For portability, use
xvt_str_find_eol to break the data into lines.

For CB_PICT data, convert the bytes to a PICTURE by calling
xvt_pict_create. The format of the unconverted sequence is in the
same (undefined) format as that returned by xvt_pict_lock.

Return Value

A pointer to the data if successful; NULL if the desired format is
unavailable or if an error occurred. The returned address points to
data buffers internal to XVT. Do not attempt to free this pointer by
calling any function, including free or xvt_mem_free. The returned
pointer is only valid until the next call to xvt_cb_get_data or until
you call xvt_cb_close.

Therefore, make sure to copy the data from this pointer using
whatever means is appropriate before you close the clipboard or get
additional data.

See Also

CB_* Values for CB_FORMAT
xvt_cb_close
xvt_cb_put_data
xvt_pict_create
xvt_pict_lock

The "Clipboard" chapter in the XVT Portability Toolkit Guide

Example

char *p;if (xvt_cb_open(FALSE) == TRUE)
{

p = xvt_cb_get_data(format.fmt, format.name,
&format.size);

if (p == (char *) NULL)
xvt_dm_post_note(
"Clipboard contains no data in chosen format");

else
switch(format.fmt) {
case CB_TEXT:

...
break;

case CB_APPL:
...
break;

case CB_PICT:
...
break;

}
xvt_cb_close();

}

xvt_cb_has_format
 Test If Format is on Clipboard

Summary

BOOLEAN xvt_cb_has_format(CB_FORMAT fmt, char
*name)

CB_FORMAT fmt

Format of the data to be tested.

char *name

The application-determined format name (if CB_APPL). When
the format is other than CB_APPL, the name argument should be
NULL.

Description

This function tests to see if data in a particular format is on the
clipboard. When the format is CB_APPL, name is the name of the
format as determined by the application. It must be a NULL-
terminated character string of 4 characters or less.

To call xvt_cb_has_format, the clipboard does not need to be
opened with xvt_cb_open.

Return Value

TRUE if the data of the requested format is present; FALSE otherwise.

See Also

CB_* Values for CB_FORMAT
xvt_cb_open

The "Clipboard" chapter in the XVT Portability Toolkit Guide

Example

/* enable paste if clipboard has data */
BOOLEAN paste_enable = TRUE;
if (xvt_cb_has_format(CB_APPL, APPL_FORMAT))

paste_fmt = CB_APPL;
else if (xvt_cb_has_format(CB_PICT, NULL))

paste_fmt = CB_PICT;
else if (xvt_cb_has_format(CB_TEXT, NULL))

paste_fmt = CB_TEXT;
else

paste_enable = FALSE;

xvt_cb_open
 Open Clipboard for Reading or Writing

Summary

BOOLEAN xvt_cb_open(BOOLEAN writing)BOOLEAN writing

If TRUE, clipboard is open for writing, or if FALSE, for reading.

Description

This function opens the clipboard for access. You must call it before
calling any other clipboard function other than xvt_cb_has_format.
As soon as you have gotten data from or put data onto the clipboard,
close it with xvt_cb_close.

writing should be TRUE if you will be calling xvt_cb_put_data, and
FALSE if you will be calling xvt_cb_get_data.

If you are putting multiple formats onto the clipboard, or taking
multiple formats off of the clipboard, then do so within a single
xvt_cb_open/xvt_cb_close pair.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

See Also

xvt_cb_close
xvt_cb_get_data
xvt_cb_has_format
xvt_cb_put_data

The "Clipboard" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_cb_get_data and xvt_pict_create.

xvt_cb_put_data
 Put Data on Clipboard

Summary

BOOLEAN xvt_cb_put_data(CB_FORMAT cbfmt, char *name,
long size, PICTURE pic)

CB_FORMAT cbfmt

Format of the data to be put on the clipboard.

char *name

Format name (if CB_APPL). For CB_TEXT or CB_PICT formats, if
name is not used, name should be NULL.

long size

Number of bytes to put on clipboard. A size is required for
formats CB_TEXT and CB_APPL, but not for CB_PICT (in which
case size can be zero).

PICTURE pic

Picture (if CB_PICT). For CB_TEXT or CB_APPL formats, if pic is
not used, pic should be (PICTURE)0.

Description

This function puts data on the clipboard. For the format CB_PICT,
you supply an object of type PICTURE as the pic argument. For
formats CB_TEXT and CB_APPL, the data is automatically taken from

the global memory allocated earlier with a call to
xvt_cb_alloc_data.

After a call to xvt_cb_put_data, any block allocated via
xvt_cb_alloc_data is no longer valid and should not be accessed.
In addition, once you have put the data on the clipboard, free any
block allocated via xvt_cb_alloc_data by calling
xvt_cb_free_data.

If you are putting multiple data formats on the clipboard at one time,
put all formats on the clipboard within a single xvt_cb_open/
xvt_cb_close pair.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

See Also

CB_* Values for CB_FORMAT
xvt_cb_alloc_data
xvt_cb_close
xvt_cb_open

The "Clipboard" chapter in the XVT Portability Toolkit Guide

Example

This function assumes that xvt_cb_open has been called, and that
xvt_cb_close will be called later.

/*
Function to put some text onto the clipboard.
Although the text is static here, the algorithm to
put it onto the clipboard is general, and can be
used for any collection of text lines.

*/
void put_text(void);
static void put_text()
{

char *p;
static char *text[] = {

"The quick brown fox",
"jumped over the",
"lazy dogs.",
NULL

};int i, eol_len;
long size;eol_len = strlen(EOL_SEQ);
size = 0;
for (i = 0; text[i] != NULL; i++)

size += strlen(text[i]) + eol_len;
p = xvt_cb_alloc_data(size);
if (p != (char *) NULL) {

p[0] = ’0’;
for (i = 0; text[i] != NULL; i++) {

strcat(p, text[i]);
strcat(p, EOL_SEQ);

}
xvt_cb_put_data(CB_TEXT, NULL, size, NULL);
xvt_cb_free_data();

}
}

xvt_ctl_*
 Control Functions

xvt_ctl_check_radio_button
xvt_ctl_create
xvt_ctl_create_def
xvt_ctl_get_color_component
xvt_ctl_get_colors
xvt_ctl_get_font
xvt_ctl_get_id
xvt_ctl_get_native_color_component
xvt_ctl_get_native_colors
xvt_ctl_get_text_sel
xvt_ctl_is_checked
xvt_ctl_set_checked
xvt_ctl_set_color_component
xvt_ctl_set_colors
xvt_ctl_set_font
xvt_ctl_set_text_sel
xvt_ctl_unset_color_component

xvt_ctl_check_radio_button
 Check a Radio Button in a Window

Summary

void xvt_ctl_check_radio_button(WINDOW win,
WINDOW *ctls, int nctls)

WINDOW win

Radio button to set.

WINDOW *ctls

Array of grouped radio buttons.

int nctls

Count of the items in ctls.

Description

This function highlights exactly one of a group of radio button
controls. ctls points to an array of the related radio button WINDOWs

(as returned by a control creation function or xvt_win_get_ctl) that
are to be treated as a group. win is the WINDOW of the radio button to
be checked. Except for win, all of the controls in ctls are
unchecked. nctls is a count of the items in ctls.

Note: The group of radio buttons affected by this function is entirely
independent of the keyboard navigation groups established by the
radiobutton GROUP option in XRC.

Parameter Validity and Error Conditions

XVT issues an error if each element of ctls and win are not of type
WC_RADIOBUTTON.

See Also

WINDOW
XVT_COLOR_TYPE
xvt_ctl_create
xvt_ctl_create_def
xvt_ctl_is_checked
xvt_ctl_set_checked
xvt_dlg_create_def
xvt_dlg_create_res
xvt_win_create
xvt_win_create_def
xvt_win_create_res
xvt_win_get_ctl
radiobutton Control XRC statement

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

static void check_radio(WINDOW win, int id)
{

WINDOW ctls[3];ctls[0] = xvt_win_get_ctl(win,
RADIO_1);

ctls[1] = xvt_win_get_ctl(win, RADIO_2);
ctls[2] = xvt_win_get_ctl(win, RADIO_3);
xvt_ctl_check_radio_button(

xvt_win_get_ctl(win, id), ctls, 3);
}

xvt_ctl_create
 Create a Control in a Window

Summary

WINDOW xvt_ctl_create(WIN_TYPE wtype, RCT *rct_p,
char *title, WINDOW parent_win, long ctl_flags,
long app_data, int ctrl_id)

WIN_TYPE wtype

Determines the type of control to be created and should be one
of the WC_* constants. For the list of possible types, see
WIN_TYPE.

RCT *rct_p

Defines the bounding rectangle for the control in terms of the
parent window’s client area. This parameter must not be NULL
and must point to a valid rectangle. If you are creating combo
controls of type WC_LISTEDIT or WC_LISTBUTTON, then set this
rectangle to include the area that will be occupied by the
dropped-down list when the user activates it. XVT ignores the
height of the rectangle when the list is not activated by the user.
Instead, XVT displays the edit field or button using the current
font for the control and default height of the platform. Because
the users activate the dropped-down list only when they want to
see the list, it doesn’t matter if other controls overlap with the
bounding rectangle.

char *title

Used to set the text of the control in the fashion appropriate for
the control. For WC_PUSHBUTTON, WC_RADIOBUTTON,
WC_CHECKBOX, WC_GROUPBOX, WC_TEXT, WC_EDIT, and
WC_LISTEDIT controls, it has the effect of setting the title of the
control. It has no effect for other controls. If it is NULL, the
control will have no title.

WINDOW parent_win

Window in which the control should be placed. It must be a
valid window of type W_*.

long ctl_flags

Controls the attributes and the initial state of a control. The
applicable control flags vary among controls, and a complete

table listing the valid control flags for each control can be found
in Window/Dialog/Control Creation Function Parameters.

long app_data

Contains any application data that you wish to attach to a
control. Typically, this will be a pointer to some structure
allocated from the heap, cast into a long such that later your
application can retrieve the structure and look at it.

int ctrl_id

An ID number for the control relative to its parent window.
When XVT sends an E_CONTROL event to the event handler for
the window containing the control, it sets the v.ctl.id field of
the EVENT structure to the ID of the control that was activated.
A control ID-parent window combination is a way of uniquely
identifying a control independent of its window handle. Keep in
mind that it is not necessary to use control IDs, but if you choose
to use them, then all of the IDs for the controls in a window must
be unique. You can also call the xvt_win_get_ctl function
with an ID and parent window to retrieve the WINDOW for a
control.

Description

This function adds a control to parent_win. This function does not
add controls to dialogs.

Note: You cannot create icon controls with xvt_ctl_create, because icon
controls require that xvt_ctl_create have an extra parameter to
specify an icon resource ID. Use xvt_ctl_create_def instead.

Return Value

A WINDOW if successful; NULL_WIN if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if your application does not meet the following
conditions for parameters passed to xvt_ctl_create:

• wtype must be one of the WC_* control types.

• rct_p must point to a valid rectangle.

• parent_win must be a valid XVT window of type W_*. You
cannot create a control in a dialog, a print window, a task
window, or a screen window. (The exception to this is if your
application is running with XVT/Win32, and has set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN. In that case,
it can create controls in the task window.)

• ctl_flags must be appropriate for the control you want to
create, as defined in Window/Dialog/Control Creation
Function Parameters.

See Also

CTL_FLAG_* Options
E_CONTROL
EVENT
RCT
W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
WIN_TYPE
xvt_ctl_create_def
xvt_dlg_create_def
xvt_vobj_get_data
xvt_vobj_get_title
xvt_vobj_set_data
xvt_vobj_set_title
xvt_win_create_def
xvt_win_create_res
xvt_win_get_ctl
Window/Dialog/Control Creation Function Parameters

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

#define BUTTON_ID 101
.
:

RCT rect;
WINDOW button;
xvt_rect_set(&rect, BUTTON_X, BUTTON_Y, BUTTON_X + 100,

BUTTON_Y + (int) xvt_vobj_get_attr(window,
ATTR_CTL_BUTTON_HEIGHT));

button = xvt_ctl_create(WC_PUSHBUTTON, &rect,
"Push Me", window, 0L, 0L, BUTTON_ID);

xvt_ctl_create_def
 Create a Control from a Data Structure

Summary

WINDOW xvt_ctl_create_def(WIN_DEF *win_def_p,
WINDOW parent_win, long app_data)

WIN_DEF *win_def_p

Pointer to a WIN_DEF structure describing the control to be
created.

WINDOW parent_win

Window in which the control is to be placed. It must be a valid
window of type W_*.

long app_data

Contains any application data that you wish to attach to a
control. Typically, this will be a pointer to some structure
allocated from the heap cast into a long, such that later your
application can retrieve the structure and look at it.

Description

This function adds a control, based on a data structure definition, to
parent_win. This function does not add controls to dialogs.

The win_def_p parameter points to a WIN_DEF structure describing
the control to be created. When filling in the WIN_DEF, keep in mind
the following:

• win_def_p->wtype determines the type of control to be
created. The field should contain one of the WC_* constants.
For the list of possible types, see WIN_TYPE.

• win_def_p->rct defines the bounding rectangle for the
control in terms of the parent window’s client area. If you are
creating combo controls of type WC_LISTEDIT or
WC_LISTBUTTON, then set this rectangle to include the area that
will be occupied by the dropped-down list when the user
activates it. XVT will ignore the height of the rectangle when
the list is not activated by the user. Instead, XVT will display
the edit field or button using the font set for the control or
default height of the platform. Because the users activate the
dropped-down list only when they want to see the list, it
doesn’t matter if other controls overlap with the bounding
rectangle.

• win_def_p->text is used to set the text of the control in the
fashion appropriate for the control. For WC_PUSHBUTTON,
WC_RADIOBUTTON, WC_CHECKBOX, WC_GROUPBOX, WC_TEXT,
WC_EDIT, and WC_LISTEDIT controls, it sets the label of the
control. It has no effect for other controls. If it is NULL, the
control will have no title.

• win_def_p->units is one of U_PIXELS, U_CHARS, or
U_SEMICHARS, and specifies the units used to measure the
bounding rectangle win_def_p->rct.

• win_def_p->ctlcolors points the array of
XVT_COLOR_COMPONENT structures that define the control’s
colors. If it is NULL, the control uses the default colors for the
container control colors. The last element of the
XVT_COLOR_COMPONENT array should have an
XVT_COLOR_TYPE of XVT_COLOR_NULL to indicate the end of
the array.

• win_def_p->v.ctl.ctrl_id is an ID number for the control.
When XVT sends an E_CONTROL event to the event handler
for the window containing the control, it sets the v.ctl.id
field of the EVENT structure to the ID of the control that was
activated. A control ID-parent window combination is a way
of uniquely identifying a control independent of its window
handle. Keep in mind that it is not necessary to use control
IDs, but if you choose to use them, then all of the IDs for the
controls in a window must be unique. You can also call the
xvt_win_get_ctl function with an ID and parent window to
retrieve the WINDOW for a control.

• win_def_p->v.ctl.icon_id contains the resource ID for an
icon resource to be used for controls of type WC_ICON. The
icon resource ID refers to an icon resource that is declared
non-portably in your resource file. For more information, see
the XVT Platform-Specific books.

• win_def_p->v.ctl.flags controls the attributes and the
initial state of a control. The applicable control flags vary
among controls, and a complete table listing the valid control
flags for each control can be found in Window/Dialog/
Control Creation Function Parameters.

• win_def__p->v.ctl.font_id is the XVT_FNTID that defines
the font used in the control.

Return Value

A WINDOW if successful; NULL_WIN if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if your application does not meet the following
conditions for parameters passed to xvt_ctl_create:

• win_def_p->wtype must be one of the WC_* control types.

• parent_win must be a valid XVT window of type W_*. You
cannot create a control in a dialog, a print window, a task
window, or a screen window. (The exception to this is if your
application is running with XVT/Win32, and has set the non-

portable attribute ATTR_WIN_PM_DRAWABLE_TWIN. In that case,
it can create controls in the task window.)

• win_def_p->v.ctl.flags must be appropriate for the
control you want to create, as defined in Window/Dialog/
Control Creation Function Parameters.

• win_def_p->v.ctl.icon_id must specify a valid icon
resource ID if the control to be created is of type WC_ICON.

• win_def_p->units must specify U_PIXELS, U_CHARS, or
U_SEMICHARS.

• win_def_p->v.ctl.font_id must be either NULL_FNTID or a
valid logical font.

• win_def_p->ctlcolors must either be NULL or a valid array
of XVT_COLOR_COMPONENT structures.

See Also

CTL_FLAG_* Options
W_*, WC_*, WD_*, Values for WIN_TYPE
WIN_DEF
WINDOW
XVT_COLOR_COMPONENT
xvt_ctl_create
xvt_dlg_create_def
xvt_font_*
xvt_vobj_get_data
xvt_vobj_get_title
xvt_vobj_set_data
xvt_vobj_set_title
xvt_win_create_def
xvt_win_create_res
xvt_win_get_ctl
Window/Dialog/Control Creation Function Parameters

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

This code is nearly equivalent to the example for xvt_ctl_create:

#define BUTTON_ID 101
static WIN_DEF button_def = {

WC_PUSHBUTTON,
{BUTTON_Y, BUTTON_X, BUTTON_Y + 30, BUTTON_X +
100},
"Push Me",
U_PIXELS,
NULL

};
.
:

WINDOW button;
button_def.v.ctl.ctrl_id = BUTTON_ID;
button_def.v.ctl.flags = 0L;
button_def.v.ctl.font_id = NULL_FNTID;
button = xvt_ctl_create_def(&button_def, window, 0L);

xvt_ctl_get_color_component
Get the Control Color for a Color Type From a Single Control

Summary

COLOR xvt_ctl_get_color_component(WINDOW ctl_win,
XVT_COLOR_TYPE ctype)

WINDOW ctl_win

WINDOW ID of the control.

XVT_COLOR_TYPE ctype

Control component to get the color for.

Description

This function gets the control color used in a single control for a
single control component. This color is either the control color set in
the WIN_DEF structure during the control's creation, or the control
colors set by xvt_ctl_set_colors or xvt_ctl_set_color_component.

Return Value

INVALID_COLOR if no color is set for the requested component of this
control or if an error occurs, otherwise the COLOR value of the
control component.

Parameter and Validity Conditions

XVT issues an error if win is not a valid control WINDOW or ctype is
not a valid XVT_COLOR_TYPE.

See Also

WIN_DEF
XVT_COLOR_TYPE
XVT_COLOR_COMPONENT
xvt_ctl_set_colors
xvt_ctl_set_color_component
xvt_ctl_unset_color_component
xvt_ctl_get_colors
xvt_win_set_ctl_colors
xvt_win_get_ctl_colors
ATTR_APP_CTL_COLORS
COLOR

xvt_ctl_get_colors
 Get the Colors From a Single Control

Summary

XVT_COLOR_COMPONENT *xvt_ctl_get_colors(WINDOW
ctl_win)

window ctl_win

WINDOW ID of control.

Description

This function provides the application with a copy of the colors used
in a single control. These colors are either the control colors set in
the WIN_DEF structure during the control’s creation, or the control
colors set by xvt_ctl_set_colors.

Return Value

NULL if no colors are set for the control or if an error occurs; a pointer
to an array of XVT_COLOR_COMPONENT structures otherwise. The
application owns this array: when finished with it, use
xvt_mem_free to destroy it.

Parameter and Validity Conditions

ctl_win must be a valid control.

See Also

WIN_DEF
WINDOW
XVT_COLOR_COMPONENT
xvt_ctl_get_native_colors
xvt_ctl_set_colors
xvt_mem_free
xvt_win_get_ctl_colors
xvt_win_set_ctl_colors

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_ctl_get_font
 Get the Logical Font from a Single Control

Summary

XVT_FNTID xvt_ctl_get_font(WINDOW ctl_win)

WINDOW ctl_win

WINDOW ID of control.

Description

This function returns a copy of the logical font used in a single
control. The logical font returned reflects the latest control font
setting for the specified control. This font can either be the control
font set in the WIN_DEF structure during the control’s creation, or a
control font set by xvt_ctl_set_font.

Return Value

NULL_FNTID if an error occurs; a copy of the logical font rendering
the control if no error occurs. The application owns this logical font
and when finished with it, it must be destroyed with
xvt_font_destroy.

Parameter and Validity Conditions

ctl_win must be a valid control.

See Also

ATTR_APP_CTL_FONT_RID
WIN_DEF
WINDOW
XVT_FNTID
xvt_ctl_set_font
xvt_font_destroy
xvt_win_get_ctl_font
xvt_win_set_ctl_font

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_ctl_get_id
 Get a Control ID

Summary

int xvt_ctl_get_id(WINDOW ctl_win)

WINDOW ctrl_win

WINDOW ID of control.

Description

This function returns a control ID, given the control’s WINDOW. This
function is the reverse of xvt_win_get_ctl (which returns a WINDOW
ID given a control ID and the control parent window).

Return Value

Control ID of the window; zero for controls created without a
control ID (for example, xvt_ctl_create called with a control ID
of zero); zero if an error is detected.

Note: This function does not return any information about the container of
the control. Use xvt_vobj_get_parent to obtain this information.

Parameter and Validity Conditions

ctl_win must be a valid control.

See Also

WINDOW
xvt_ctl_create
xvt_ctl_create_def
xvt_vobj_get_parent
xvt_win_get_ctl

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_ctl_get_native_color_component
Get the Native Control Color for a Control Type From a Single Control Component

Summary

COLOR xvt_ctl_get_native_color_component(WIN_TYPE type,
XVT_COLOR_TYPE ctype)

WIN_TYPE type

WINDOW type of a control.

XVT_COLOR_TYPE ctype

Control component to get the color for.

Description

This function gets the native control color used in a single control for
a single control component. This color is the control color set by the
native window system when no other control color settings are used.

Return Value

INVALID_COLOR if no color is defined for the requested component
of this control or if an error occurs, otherwise the native COLOR
value of the control component.

Parameter and Validity Conditions

XVT issues an error if type is not a valid control type (WC_*) or ctype
is not a valid XVT_COLOR_TYPE.

See Also

WIN_DEF
XVT_COLOR_TYPE
XVT_COLOR_COMPONENT
xvt_ctl_set_colors
xvt_ctl_set_color_component
xvt_ctl_unset_color_component
xvt_ctl_get_colors
xvt_win_set_ctl_colors
xvt_win_get_ctl_colors
ATTR_APP_CTL_COLORS
COLOR

xvt_ctl_get_native_colors
 Get the Native Default Colors for a Control Type

Summary

XVT_COLOR_COMPONENT *xvt_ctl_get_native_colors(WIN_TYPE
type)

WIN_TYPE type

The WC_* control type.

Description

This function provides the application with a copy of the native
colors used when creating a control of the type specified in type.
These are the colors that would be used when creating a control
when no other colors have been specified in the WIN_DEF structure or
assigned to the window with xvt_ctl_set_colors or through the
attribute ATTR_APP_CTL_COLORS.

Return Value

NULL if an invalid type is passed or if an error occurs; a pointer to an
array of XVT_COLOR_COMPONENT structures otherwise. The
application owns this array: when finished with it, use
xvt_mem_free to destroy it.

Parameter and Validity Conditions

WIN_TYPE must be a WC_* control type.

See Also

WIN_DEF
WIN_TYPE
XVT_COLOR_COMPONENT
xvt_ctl_set_colors
xvt_ctl_get_colors
xvt_mem_free
xvt_win_get_ctl_colors
xvt_win_set_ctl_colors

 xvt_ctl_get_text_sel"

Get Text Selection in Edit Control

Summary

void xvt_ctl_get_text_sel(WINDOW win, int *first,
int *last)

WINDOW win

WC_EDIT or WC_LISTEDIT control to be queried.

int *first

Position of the left-most selected character.

int *last

Position of the last selected character plus one.

Description

This function returns information about the selection or insertion
point in the WC_EDIT or WC_LISTEDIT control specified by win.

first returns the position of the left-most selected character
(numbered starting at zero). last returns the position of the last
selected character plus one. For example, if characters one through
five (numbered from zero) are selected, first is set to one and last
to six.

If nothing is selected, xvt_ctl_get_text_sel returns the position
of the insertion point. In this case, first and last return the same
value.

If your application is attempting to validate characters as they are
typed in and the user types an invalid character, your application
should retrieve the insertion position so that it can restore it (with
xvt_ctl_set_text_sel) after calling xvt_vobj_set_title to
remove the erroneous character.

Return Value

None.

Parameter Validity and Error Conditions

XVT issues an error if your application does not meet the following
conditons for parameters passed to xvt_ctl_get_text_sel:

• win window must be of type WC_EDIT or WC_LISTEDIT

• first and last must be non-NULL pointers to integers

See Also

WINDOW
W_*, WC_*, WD_*, Values for WIN_TYPE
xvt_ctl_set_text_sel
xvt_vobj_set_title

The "Windows" and the "Controls" chapters in the XVT Portability
Toolkit Guide

xvt_ctl_is_checked
 Get Checked State of Control

Summary

BOOLEAN xvt_ctl_is_checked(WINDOW win)WINDOW win

WC_RADIOBUTTON or WC_CHECKBOX control to be queried.

Description

Calling xvt_ctl_is_checked will tell your application the state of a
radio button or check box control. Recall that radio buttons are
controls of type WC_RADIOBUTTON and check boxes are controls of
type WC_CHECKBOX. Both of these control types have a visual
indication of whether they are "checked," meaning that the user has
selected them in some fashion.

Upon creation, radio buttons and check boxes can be initially
checked using theCTL_FLAG_CHECKED control flag. You can change
the "checked" state of a radio button by calling
xvt_ctl_check_radio_button. You can change the "checked" state
of a check box by calling xvt_ctl_set_checked.

Return Value

TRUE if the WC_CHECKBOX or WC_RADIOBUTTON control specified by
win is checked; FALSE if the control is not checked.

Parameter Validity and Error Conditions

XVT issues an error if win is not of type WC_CHECKBOX or
WC_RADIOBUTTON.

See Also

CTL_FLAG_* Options (CTL_FLAG_CHECKED)
W_*, WC_*, WD_*, Values for WIN_TYPE (WC_CHECKBOX,
WC_RADIOBUTTON)
WINDOW
xvt_ctl_check_radio_button
xvt_ctl_create
xvt_ctl_create_def
xvt_ctl_is_checked
xvt_ctl_set_checked
xvt_dlg_create_def
xvt_dlg_create_res
xvt_win_create
xvt_win_create_def
xvt_win_create_res

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_ctl_set_checked.

xvt_ctl_set_checked
 Check a Check Box Control

Summary

void xvt_ctl_set_checked(WINDOW win, BOOLEAN check)

WINDOW win

Check box control to be set or reset.

BOOLEAN check

Set or reset a check mark.

Description

This function sets or resets a check mark in a check box control.
There are two common situations when you would do this. First,
when a window or dialog containing checked boxes is first
initialized, you set all of the check box controls to their initial states.
Second, when the user operates a check box control, your
application receives an E_CONTROL for that check box, in which case
your application normally toggles the "checked" state of that
control.

When toggling the "checked" state of the control,
xvt_ctl_is_checked can be used to get the current state. Do not use
xvt_ctl_set_checked for radio buttons. Instead, use
xvt_ctl_check_radio_button.

Parameter Validity and Error Conditions

XVT issues an error if the control is not of type WC_CHECKBOX.

See Also

CTL_FLAG_* Options (CTL_FLAG_CHECKED)
E_CONTROL
W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_ctl_create
xvt_ctl_create_def
xvt_ctl_check_radio_button
xvt_ctl_is_checked
xvt_dlg_create_def
xvt_dlg_create_res
xvt_win_create
xvt_win_create_def
xvt_win_create_res

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

void flip_checkbox (WINDOW win)
{

xvt_ctl_set_checked(win, !xvt_ctl_is_checked(win));
}

xvt_ctl_set_color_component
Sets the Control Color for a Color Type Used by a Single Control

Summary

void xvt_ctl_set_color_component(WINDOW ctl_win, XVT_COLOR_TYPE
ctype, COLOR

color)

WINDOW ctl_win

WINDOW ID of the control.

XVT_COLOR_TYPE ctype

Control component to set the color for.

COLOR color

Color to assign.

Description

This function sets the control color used in a single control for a
single control component. A call to this function overrides any
previous control color setting only for the specified
XVT_COLOR_TYPE. This includes the default colors set in the
WIN_DEF structure during the control's creation, any previous call to
xvt_ctl_set_color_component, xvt_ctl_set_colors, or xvt_win_set_ctl_colors
for this component. All other colors used by the designated control
not specified by a call to this function are unaffected.

Parameter and Validity Conditions

XVT issues an error if win is not a valid control WINDOW or ctype is
not a valid XVT_COLOR_TYPE.

See Also

WIN_DEF
XVT_COLOR_TYPE
XVT_COLOR_COMPONENT
xvt_ctl_set_colors
xvt_ctl_set_color_component
xvt_ctl_unset_color_component
xvt_ctl_get_colors
xvt_win_set_ctl_colors
xvt_win_get_ctl_colors
ATTR_APP_CTL_COLORS
COLOR

xvt_ctl_set_colors
 Changes Control Colors Used by a Single Control

Summary

void xvt_ctl_set_colors(WINDOW ctl_win,
XVT_COLOR_COMPONENT *colors,
XVT_COLOR_ACTION action)

WINDOW ctl_win

WINDOW ID of control.

XVT_COLOR_COMPONENT* colors

Colors to set or unset.

XVT_COLOR_ACTION action

Either sets or unsets the colors.

Description

This function sets (or unsets) the control colors used in a single
control. A call to this function overrides any previous control color
settings only for the specified XVT_COLOR_COMPONENTs in the colors
array. This includes the default colors set in the WIN_DEF structure
during the control’s creation, any previous call to
xvt_ctl_set_colors, and any previous call to
xvt_win_set_ctl_colors. All colors used by the designated control
not specified in a call to this function are unaffected.

If NULL is passed to this function as the value of colors, the control
reverts to the default colors for its container: i.e., the ACTION
parameter is ignored; no colors are set. If the action parameter is
XVT_COLOR_ACTION_SET, the control colors for the specified color
components are set to the values in the colors parameter. If the action
parameter is XVT_COLOR_ACTION_UNSET, the control colors for the
specified color components are either inherited from the control’s
container, or the application owned colors, or the system default.

Parameter and Validity Conditions

XVT issues and error if win is not a valid control WINDOW.

See Also

ATTR_APP_CTL_COLORS
WINDOW
XVT_COLOR_ACTION
XVT_COLOR_COMPONENT
xvt_ctl_get_colors
xvt_win_get_ctl_colors
xvt_win_set_ctl_colors

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_ctl_set_font
 Changes a Single Control’s Logical Font

Summary

void xvt_ctl_set_font(WINDOW ctl_win,
XVT_FNTID font_id)

WINDOW ctl_win

WINDOW ID of control.

XVT_FNTID font_id

Logical font.

Description

This function sets a single control’s logical font. A call to this
function overrides any previous font setting for the specified control
(including the logical font the control received during creation, any
previous call to xvt_ctl_set_font, and any previous call to
xvt_win_set_ctl_font).

If NULL_FNTID is passed to this function, the control reverts to using
either the default font of its container, or the application owned
font_id, or the default control font.

Parameter and Validity Conditions

XVT issues an error if:

• win is not a valid control WINDOW

• font_id is neither NULL_FNTID nor a valid logical font

See Also

ATTR_APP_CTL_FONT_RID
NULL_FNTID
WINDOW
XVT_FNTID
xvt_ctl_get_font
xvt_win_get_ctl_font
xvt_win_set_ctl_font

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_ctl_set_text_sel
 Select Text in Edit Control

Summary

void xvt_ctl_set_text_sel(WINDOW win, int first,
int last)

WINDOW win

WC_EDIT or WC_LISTEDIT control.

int first

Position of the left-most character to be selected (numbered
starting at zero).

int last

Position of the last character to be selected plus one.

Description

This function selects characters from first to last in the WC_EDIT
or WC_LISTEDIT control specified by win. If the keyboard focus is
not already in that control, this function forces it there.

first should be set to the position of the left-most character to be
selected (numbered starting at zero). last should be set to the
position of the last character to be selected plus one. For example, to
select characters one through five (numbered from zero), set first
to one and last to six.

To select everything, set first to zero and last to SHRT_MAX. To
select nothing--that is, to position the insertion point--set first and
last to the same value.

If your event handler detects an error in entered text when the user
clicks OK, select the erroneous part. That way, the user can just type
in the correction without having to first select it.

Parameter Validity and Error Conditions

XVT issues an error if any of the following parameter conditions are
not met:

• win must be of type WC_EDIT or WC_LISTEDIT.

• last must be greater than or equal to the value of first. If
last is less than first, XVT issues a warning, sets last equal
to first, and then proceeds.

See Also

WINDOW
W_*, WC_*, WD_*, Values for WIN_TYPE (WC_EDIT,
WC_LISTEDIT)
xvt_ctl_get_text_sel

The "Windows" and the "Controls" chapters in the XVT Portability
Toolkit Guide

xvt_ctl_unset_color_component
Unsets the Control Color for a Color Type Used by a Single Control

Summary

void xvt_ctl_set_color_component(WINDOW ctl_win, XVT_COLOR_TYPE
ctype)

WINDOW ctl_win

WINDOW ID of the control.

XVT_COLOR_TYPE ctype

Control component to set the color for.

Description

This function unsets the control color used in a single control for a
single control component. A call to this function overrides any
previous control color setting only for the specified
XVT_COLOR_TYPE. This includes the default colors set in the
WIN_DEF structure during the control's creation, any previous call to
xvt_ctl_set_color_component, or xvt_ctl_set_colors for this component.
All other colors used by the designated control not specified by a call
to this function are unaffected.

The control reverts to the default colors for its container. The control
colors for the specified color component is either inherited from the
control's container, or the application owned colors, or the system
default.

Parameter and Validity Conditions

XVT issues an error if win is not a valid control WINDOW or ctype is
not a valid XVT_COLOR_TYPE.

See Also

WIN_DEF
XVT_COLOR_TYPE
XVT_COLOR_COMPONENT
xvt_ctl_set_colors
xvt_ctl_set_color_component
xvt_ctl_unset_color_component
xvt_ctl_get_colors
xvt_win_set_ctl_colors
xvt_win_get_ctl_colors
ATTR_APP_CTL_COLORS
COLOR

xvt_cxo_*
 Container Extension Object Functions

xvt_cxo_call_next
xvt_cxo_create
xvt_cxo_destroy
xvt_cxo_dispatch_msg
xvt_cxo_get_class_name
xvt_cxo_get_data
xvt_cxo_get_event_handler
xvt_cxo_get_event_mask
xvt_cxo_get_win
xvt_cxo_is_valid
xvt_cxo_set_data
xvt_cxo_set_event_handler
xvt_cxo_set_event_mask

xvt_cxo_call_next
 Call the Next CXO in the Chain

Summary

long xvt_cxo_call_next(XVT_CXO cxo, EVENT * event_p)

XVT_CXO cxo

Specifies the CXO currently being called.

EVENT * event_p

Event to be passed on.

Description

This function is used to call the next CXO in the call chain, or to call
the base event handler for a container if there are no CXO’s left in
the call chain. A CXO event handler must call this function if it
wishes other CXO’s and its container to receive events. If the CXO
wants to consume an event, it can return immediately. Events can be
pre-processed or post-processed by strategic placement of this
function within a CXO’s event handler. If a CXO wishes to post-
process events, then xvt_cxo_call_next should be used at the top
of the CXO’s event handler. Otherwise this function should be
called at the end for pre-processing.

Return Value

The return value is that of following CXO’s or the base event
handler.

Parameter and Validity Conditions

XVT issues an error if any of the following conditions are not met:

• The specified CXO is not valid.

• The event structure is not valid.

See Also

EVENT
E_CXO
XVT_CXO
xvt_cxo_create

Example

This example shows how to call the next CXO in the call chain from
a CXO event handler.

long my_cxo_eh(XVT_CXO cxo, EVENT * ep)
{

/* Pre-processing events */

switch(ep -> type)
{
case E_CXO:
...
return(OL);
default:

break;
}
/*
Allow the rest of the CXO’s and the base event handler
to process event
*/
xvt_cxo_call_next(cxo, ep);

}

xvt_cxo_create
 Create a CXO

Summary

XVT_CXO xvt_cxo_create(WINDOW win, const long
state_data, XVT_CXO_INSERTION where,
XVT_CXO_EVENT_HANDLER cxo_eh, EVENT_MASK mask,
char * class_name, long cxo_id)

WINDOW win

The container that the CXO will be attached to.

const long state_data

The initial state data for the CXO.

XVT_CXO_INSERTION where

Specifies where to add the CXO to the CXO chain for the
container specified. A container can have more than one CXO
attached to it. The new CXO can be added at the head or tail of
a CXO chain

XVT_CXO_EVENT_HANDLER cxo_eh

The CXO event handler function.

EVENT_MASK mask

Specifies which events should be sent to the CXO handler. This
is usually an OR’ed combination of any of the EM_* constants or
EM_ALL.

char * class_name

The class name for the CXO. CXO’s are uniquely identified by
class_name and cxo_id. A CXO must have a class name but
does not have to have an id value if the CXO class does not care
if it is uniquely identified.

long cxo_id

The id value for the CXO. This can be zero if the class is all that
is needed to identify a CXO.

Description

This function creates a CXO for the container specified. The
container can be any window of type W_* except W_PIXMAP and
W_PRINT. The container can also be SCREEN_WIN or TASK_WIN. If the
container specified is SCREEN_WIN, then the CXO is a system level
CXO. It will see all XVT events that are generated.

Return Value

An XVT_CXO if successful; NULL if unsuccessful (on error).

Parameter and Validity Conditions

XVT issues an error if any of the following conditions are not met:

• win must be a valid container.

• cxo_eh must be a valid pointer to a CXO event handler.

• class_name must point to a valid class name string.

See Also

EVENT_MASK
WINDOW
XVT_CXO
XVT_CXO_EVENT_HANDLER
XVT_CXO_POS_* Values for XVT_CXO_INSERTION

Example

This example shows how to create a CXO and to handle setting the
state data for the XVT_CXO_CREATE_MSG.

{

XVT_CXO new_cxo = (XVT_CXO)NULL;
...

/* Creating a system level CXO */

new_cxo = xvt_cxo_create(SCREEN_WIN, 0L,
XVT_CXO_POS_FIRST, mñEM_CHAR,
"MySystemCxo", 0L);

...

}

/* The event handler for MySystemCxo */
long my_cxo_eh(XVT_CXO cxo, EVENT * ep)
{

switch(ep -> type)
{
case E_CXO:
switch(ep -> v.cxo.msg_id)
{
case XVT_CXO_CREATE_MSG:
xvt_cxo_set_data(cxo, (long)ep -> v.cxo.ptr);
break;
...
}
return(0L);
...
}

/* Calling here because we are pre-processing events

 */ xvt_cxo_call_next(cxo, ep);

}

xvt_cxo_destroy
 Destroy a CXO

Summary

void xvt_cxo_destroy(XVT_CXO cxo)

XVT_CXO cxo

CXO to destroy.

Description

This function destroys the CXO specified by cxo. The CXO’s
handler will receive the XVT_CXO_DESTROY_MSG message before the
CXO is destroyed. A CXO that is still on the call stack will not
receive this message until its recursion level has reached zero.
CXO’s that remain at application shutdown will be sent the
XVT_CXO_DESTROY_MSG but can be destroyed by the user at any time
before then.

Parameter and Validity Conditions

XVT issues an error if the following condition is not met:

cxo must be a valid CXO.

See Also

XVT_CXO
XVT_CXO_*_MSG
xvt_win_get_cxo
xvt_cxo_get_data

Example

This example shows how to destroy a CXO in a window.

XVT_CXO cxo = (XVT_CXO)NULL;
char* data;

switch(ep -> type)
{
case E_DESTROY:

cxo = xvt_win_get_cxo(win, "MySystemCxo", OL);

if(cxo)
{
data = (char *)xvt_cxo get_data(cxo);

if(data)
xvt_mem_free(data);
xvt_cxo_destroy(cxo);
}
break;
...

}

xvt_cxo_dispatch_msg
 Send a Message to a CXO

Summary

long xvt_cxo_dispatch_msg(XVT_CXO cxo, long msg_id,
void * data)

XVT_CXO cxo

The CXO to which a message is being sent.

long msg_id

The message being sent to the CXO. The message will in most
cases be defined by the implementor of a CXO and be unique to
that CXO. Message id’s can be any positive long value.
Negative values are reserved by XVT.

void * data

The data associated with the message.

Description

Applications use this function to send a message to a CXO. The
message sent will in most cases be unique to that CXO. The data is
associated with the message being sent. The implementor of a CXO
will have to specify his or her own messages and what, if any, data
is associated with them. The message and the data are similar to
those used in E_USER messages. This application function will
package up the message and data into an E_CXO message that will be
sent to the CXO’s handler. It is important to note that your
application cannot use xvt_win_dispatch_event to send an E_CXO
message.

Return Value

The return from this function is specified by the implementor of the
CXO on a per-message basis.

Parameter and Validity Conditions

XVT issues an error if the following condition is not met:

cxo must be a valid CXO.

See Also

E_CXO
E_USER
XVT_CXO
XVT_CXO_*_MSG
xvt_win_dispatch_event

Example

This example shows how to dispatch a message to a CXO and how
it might be handled.

#define NO_MORE_CHARS 1 L
{

...
xvt_cxo_dispatch_msg(cxo, NO_MORE_CHARS, (void
*)NULL);
...

}

/* Event handler for MySystemCxo */
long my_cxo_handler(XVT_CXO cxo, EVENT * ep)
{

/* Post process the events */
xvt_cxo_call_next(cxo, ep);

switch(ep -> type)
{
...
case E_CXO:
switch(ep -> v.cxo.msg_id)
{
case NO_MORE_CHARS:
{
EVENT_MASK mask;

mask = xvt_cxo_get_event_mask(cxo);

mask &= ~(EM_CHAR);
xvt_cxo_set_event_mask(cxo, mask);
break;
}
...
}
return(0L);
...
}

}

xvt_cxo_get_class_name
 Get the Class Name of a CXO

Summary

char * xvt_cxo_get_class_name(XVT_CXO cxo, char *
class_name, int sz_class_name)

XVT_CXO cxo,

CXO from which to get the class name.

char * class_name,

Buffer in which to return the class name.

int sz_class_name

The size of the class name buffer.

Description

This function retrieves the class name for a CXO that was specified
during xvt_cxo_create. The class name will be returned in the
class_name buffer and up to sz_class_name characters will be
returned.

Return Value

A pointer to the class_name buffer; NULL if an error occurs.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are not met:

• The CXO specified must be valid.

• The class_name buffer must not be NULL.

• sz_class_name must be greater than 0.

See Also

SZ_CLASS_NAME
XVT_CXO
xvt_cxo_create

Example

This example shows how to get the class name of a CXO.

char buffer[SZ_CLASS_NAME];

xvt_cxo_get_class_name(cxo, buffer, SZ_CLASS_NAME);

xvt_cxo_get_data
 Get State Data Associated With a CXO

Summary

long xvt_cxo_get_data(XVT_CXO cxo)

XVT_CXO cxo

CXO from which to get the state data.

Description

This function retrieves the state data associated with a CXO --
similar to retrieving the application data stored in a WINDOW. The
state data can be set by using xvt_cxo_set_data.

Return Value

The CXO state data, or zero if there is an error or if no data asif
sociated with the CXO.

Parameter Validity and Error Conditions

XVT issues an error if the following condition is not met:

The CXO specified must be valid.

See Also

XVT_CXO
xvt_cxo_set_data

Example

See example for xvt_cxo_destroy.

xvt_cxo_get_event_handler
 Retrieve Event Handling Function for a CXO

Summary

XVT_CXO_EVENT_HANDLER xvt_cxo_get_event_handler(XVT_CXO
cxo)

XVT_CXO cxo

CXO whose event handler is to be retrieved.

Description

This function gets the current event handler for a CXO. The current
handler can be changed by calling xvt_cxo_set_event_handler.

Return Value

A valid CXO event handler; NULL if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if the following condition is not met:

The CXO specified must be valid.

See Also

XVT_CXO
xvt_cxo_set_event_handler

Example

This example shows how to swap CXO event handlers.

long my_new_cxo_eh(XVT_CXO cxo, EVENT * ep);

XVT_CXO_EVENT_HANDLER old_cxo_eh;

old_cxo_eh = xvt_cxo_get_event_handler(cxo);
xvt_cxo_set_event_handler(cxo, my_new_cxo_eh);

xvt_cxo_get_event_mask
 Get Event Mask for a CXO

Summary

EVENT_MASK xvt_cxo_get_event_mask(XVT_CXO)

XVT_CXO cxo

CXO whose event mask is being retrieved.

Description

This function is used to retrieve the event mask for a CXO. The
event mask is set when xvt_cxo_create is called and can be
changed by using xvt_cxo_set_event_mask.

Return Value

The EVENT_MASK for the CXO.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are not met:

• The CXO specified must be valid.

See Also

EVENT_MASK
XVT_CXO
xvt_cxo_create
xvt_cxo_set_event_mask

Example

See example for xvt_cxo_dispatch_msg.

xvt_cxo_get_win
 Get Window Associated With a CXO

Summary

WINDOW xvt_cxo_get_win(XVT_CXO cxo)

XVT_CXO cxo

CXO whose container is being retrieved.

Description

This function gets the container WINDOW associated with the
CXO. The container is set when the CXO is created with
xvt_cxo_create.

Return Value

The WINDOW that contains the CXO.

Parameter Validity and Error Conditions

XVT issues an error if the following condition is not met:

The CXO specified must be valid.

See Also

WINDOW
XVT_CXO
xvt_cxo_create

xvt_cxo_is_valid
 Check the Validity of a CXO

Summary

BOOLEAN xvt_cxo_is_valid(cxo)

XVT_CXO cxo

CXO whose validity is being checked.

Description

This function is used to determine the validity of a CXO.

Return Value

TRUE if the CXO is valid: FALSE if not.

See Also

XVT_CXO

Example

See example for xvt_cxo_destroy.

xvt_cxo_set_data
 Associate State Data With a CXO

Summary

void xvt_cxo_set_data(XVT_CXO cxo, long state_data)

XVT_CXO cxo,

CXO whose state data is to be set.

long state_data

The state data to set.

Description

This function sest the state data for a CXO, which is similar to
setting application data for a WINDOWf0.

Parameter Validity and Error Conditions

XVT issues an error if the following condition is not met:

The CXO specified must be valid.

See Also

XVT_CXO
xvt_cxo_get_data

Example

See example for xvt_cxo_create.

xvt_cxo_set_event_handler
 Set CXO Event Handler

Summary

void xvt_cxo_set_event_handler(XVT_CXO cxo,
XVT_CXO_EVENT_HANDLER cxo_eh)

XVT_CXO cxo,

CXO whose event handler is being set.

XVT_CXO_EVENT_HANDLER cxo_eh

CXO handler function.

Description

This function is used to change the event handler for a CXO.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are not met:

• The CXO specified must be valid.

• The cxo_eh must point to a valid CXO handler.

See Also

XVT_CXO
XVT_CXO_EVENT_HANDLER
xvt_cxo_get_event_handler

Example

See example for xvt_cxo_get_event_handler.

xvt_cxo_set_event_mask
 Specify Event Restrictions For a CXO

Summary

void xvt_cxo_set_event_mask(XVT_CXO cxo, EVENT_MASK
mask)

XVT_CXO cxo,

CXO whose event mask is being set.

EVENT_MASK mask

Specified events that the CXO handler can receive.

Description

This function is used to change the EVENT_MASK for the CXO. The
event mask affects what events can be sent to a CXO’s handler. If
the mask is set to EM_ALL then all events will be sent to the CXO’s
handler.

Implementation Note

There is no mask for E_CXO events, thus if EM_NONE is set for the
EVENT_MASK, a CXO’s handler will only receive E_CXO messages.
Also note that masked out events will bypass the CXO.

Parameter Validity and Error Conditions

XVT issues an error if the following condition is not met:

The CXO specified must be valid.

See Also

E_CXO
EM_* Constants
EVENT_MASK
XVT_CXO

Example

See example for xvt_cxo_dispatch_msg.

xvt_debug_*
 Debug Functions

xvt_debug
xvt_debug_printf

xvt_debug
 Conditionally Append Debugging Information to File

Summary

void xvt_debug((char *fmt [, arg]...))char *fmt [, arg]...

Debugging information in sprintf-style format.

Description

This macro is a conditional form of xvt_debug_printf. It writes
debugging information to the debug output file if both of the
following conditions are met:

• The preprocessor symbol DEBUG is defined when the file
containing the xvt_debug call is compiled

• The debug output file is already present in the current
directory at runtime

Thus, you can control whether any code is generated as a result of
calling this macro, and, if code is generated, you can still control
whether debugging information is written at run time.

The arguments are identical to those for xvt_debug_printf except
that you must have an extra set of parentheses. That is, xvt_debug
has only one argument that consists of the arguments to
xvt_debug_printf, which it calls if debugging output is to be
written.

Implementation Note

If the preprocessor symbol DEBUG is defined in the application source
code, it must precede #include "xvt.h".

The debug output file is called "debug" by default, but you can alter
it by changing the ATTR_DEBUG_FILENAME attribute.

The THINK C compiler on the Mac doesn’t allow you to define the
symbol DEBUG from the "command line." You have to define it at the
top of the file that contains calls to xvt_debug or in one of your own
headers.

The reason for using the debug output file as a flag to enable
debugging rather than an environmental variable is that the Mac
doesn’t support an environment in which variables can be set.

See Also

ATTR_DEBUG_FILENAME
xvt_debug_printf

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

Example

Note the use of an extra set of parentheses in each call:

BOOLEAN save_ok;
xvt_debug(("About to call do_save..."));
save_ok = do_save();
xvt_debug(("do_save returned %s",

 save_ok? "TRUE" :"FALSE"));

xvt_debug_printf
 Append Debugging Information to File

Summary

void xvt_debug_printf(char *fmt [, arg]...)char *fmt
[, arg]...

Debugging information in sprintf-style format.

Description

This function writes debugging information to the debug output file
in the current directory; subsequent calls use the same file.
Arguments are the same as for sprintf.

The debug output file is called "debug" by default, but you can alter
it by changing the ATTR_DEBUG_FILENAME attribute.

If the debug output file exists, this function writes into it. If it does
not exist, no debug output will occur.

Note that xvt_debug_printf cannot be called before
xvt_app_create, as this is where it is initialized. Calling
xvt_debug_printf before xvt_app_create causes XVT to issue an
error.

See Also

ATTR_DEBUG_FILENAME
xvt_debug

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

Example

In this example, the first message is guaranteed to appear in the
debugging file even if do_save causes the application to crash.

BOOLEAN save_ok;
xvt_debug_printf("About to call do_save...");
save)ok = do_save();
xvt_debug_printf("do_save returned %s",

 save_ok? "TRUE":"FALSE");

xvt_dlg_*
 Dialog Functions

xvt_dlg_create_def
xvt_dlg_create_res

xvt_dlg_create_def
 Create a Dialog and Controls from a Data Structure

Summary

WINDOW xvt_dlg_create_def(WIN_DEF *win_def_p,
EVENT_MASK mask, EVENT_HANDLER eh, long app_data)

WIN_DEF *win_def_p

Pointer to an array of data structures. The first element in the
array defines the dialog itself. Subsequent elements of the array
define the controls contained within the dialog. The last element
of the array is a terminator whose wtype field is set to W_NONE.

EVENT_MASK mask

Bitwise-OR’d combination of the EM_* constants. These
constants restrict the events that are sent to the dialog’s event
handler. You normally set this to EM_ALL (no restriction).

EVENT_HANDLER eh

The event handling function. It receives all of the events for the
dialog.

long app_data

Contains any application data you wish to attach to the dialog.
Often this is a pointer to a data structure cast into a long.

Description

This function creates a dialog and its controls based on a description
contained in an array of WIN_DEF data structures.

For modal dialogs (WD_MODAL) this function does not return until the
user or the application dismisses (i.e., destroys) the dialog. When
you invoke a window or modeless dialog from a modal dialog, you
should immediately dismiss the modal dialog so that the newly
created window or modeless dialog can receive events and be useful.

When filling in the WIN_DEF structures that define the dialog, keep in
mind the following:

• win_def_p[n + 1].wtype = W_NONE where n is the number
of controls to be created in the dialog.The array of win_def_p
is terminated with a wtype field set to W_NONE.

• win_def_p[0].wtype should be set to WD_MODAL or
WD_MODELESS to indicate the type of dialog you want to create.

• win_def_p[0].rct should be set to the bounding rectangle
for the dialog in the coordinate system of SCREEN_WIN.

• win_def_p[0].text should point to a string containing the
title of the dialog.

• win_def_p[0].units should be set to U_PIXELS, U_CHARS, or
U_SEMICHARS to indicate which type of coordinate system
XVT uses to place the dialog.

• win_def_p[0].ctlcolors points to the array of
XVT_COLOR_COMPONENT structures that define the default
colors of the controls in the dialog. If NULL, the controls in the
dialog use the default application control colors. The last
element of the XVT_COLOR_COMPONENT array must have an

XVT_COLOR_TYPE of XVT_COLOR_NULL to indicate the end of
the array.

• win_def_p[0].v.dlg.flags can contain an OR’d
combination of DLG_FLAG_INVISIBLE and
DLG_FLAG_DISABLED dialog attributes. These options should
only be used with modeless dialogs, since they don’t make
any sense for modal dialogs and have an undefined effect.

• win_def_p[0].v.dlg.ctl_font_id is the XVT_FNTID that
defines the default font used for all the controls in the dialog.

For each control to be created, set its corresponding WIN_DEF
element, win_def_p[i], such that:

• win_def_p[i].wtype determines the type of control to be
created. The field should contain one of the WC_* constants.
For the listing of possible types, see W_*, WC_*, WD_*,
Values for WIN_TYPE.

• win_def_p[i].rct defines the bounding rectangle for the
control relative to the dialog’s client area. If you are creating
drop-down list controls of type WC_LISTEDIT or
WC_LISTBUTTON, then set this rectangle to include the area that
will be occupied by the dropped-down list when the user
activates it. XVT will ignore the height of the rectangle when
the list is not activated by the user. Instead, XVT will display
the edit field or button using the default height for the
platform. Because the user activates the drop-down list only
when he wants to see the list, it doesn’t matter that other
controls might overlap with the bounding rectangle.

• win_def_p[i].text is used to set the text of the control in the
manner appropriate for the control. For Edit controls, listedit
controls, push buttons, radio buttons, check boxes, group
boxes, and static text, it sets the label of the control. It has no
effect for other controls.

• win_def_p[i].units is filled with one of the type U_PIXELS,
U_CHARS or U_SEMICHARS, and specifies the units used to
measure the bounding rectangle defined by
win_def_p[i].rct.

• win_def_p[i]ctlcolors points to the array of
XVT_COLOR_COMPONENT structures that define the control’s
colors. If it is NULL, the control uses the default colors for the
container control colors. The last element of the
XVT_COLOR_COMPONENT array should have an
XVT_COLOR_TYPE of XVT_COLOR_NULL to indicate the end of
the array.

• win_def_p[i].v.ctl.ctrl_id is an ID number for the
control. When XVT sends an E_CONTROL event to the dialog’s
event handler, it will set the v.ctl.id field of the EVENT
structure to the ID of the control that was activated. This is a
way of uniquely identifying the control independently of its
window handle. Keep in mind that it is not necessary to use
control IDs, but if you choose to use them, all of the IDs for
the controls in the dialog must be unique. To retrieve the
WINDOW for a control, you can also call the xvt_win_get_ctl
function with an ID and the dialog’s window handle.

• win_def_p[i].v.ctl.icon_id contains the resource ID for
an icon resource to be used for controls of type WC_ICON. The
icon resource ID refers to an icon resource that is declared
non-portably in your resource file. For more information, see
the XVT Platform-Specific Books.

• win_def_p[i].v.ctl.flags controls the CTL_FLAG_*
options and the initial state of a control. The applicable
control flags vary among controls. For a complete table
listing the valid control flags for each control, see
CTL_FLAG_* Options and Window/Dialog/Control
Creation Function Parameters.

• win_def_p[i].v.ctl.font_id is the XVT_FNTID that defines
the font used in a control. It overrides any font set in
win_def_p[0].v.dlg.ctl.fond_id. If it is set to
NULL_FNTID, the control uses the default font for the
contrainer control font.

After you have set the controls for your dialog, you must set the
wtype field of the last WIN_DEF structure in the array,
win_def_p[n+1], to W_NONE to tell XVT that there are no more
controls in the dialog.

Return Value

A WINDOW if successful; NULL_WIN if unsuccessful (on error).

Note: If you are creating a modal dialog, the WINDOW returned from
xvt_dlg_create_def will be returned after the dialog has been
destroyed. Therefore, if you are creating a modal dialog, make sure
not to use this return value for anything other than to check a
successful creation of the dialog.

Parameter Validity and Error Conditions

XVT issues an error if any of the parameters passed to
xvt_dlg_create_def do not meet the following requirements:

• win_def_p[0].wtype must be WD_MODAL or WD_MODELESS.

• win_def_p[0].text must point to a valid string.

• win_def_p[0].units must be one of the following:
U_PIXELS, U_CHARS, or U_SEMICHARS.

• win_def_p[0].v.dlg.flags must be valid.

• win_def_p[i].wtype must be one of the WC_* control types
for each control to be created in the dialog.

• win_def_p[i].text must be non-NULL for controls that take
a title, such as push buttons, radio buttons, check boxes,
group boxes, or static text. If you do not want your control to
have a title, the empty string ("") is valid.

• win_def_p[i].v.ctl.flags must be appropriate for the
control you want to create, as defined in Window/Dialog/
Control Creation Function Parameters.

• win_def_p[n+1], the wtype field of the last WIN_DEF structure
in the array, must be set to W_NONE as a termination.

• eh must be set to a valid event handler function.

• win_def_p[i].ctlcolors must be either NULL or a valid
array of XVT_COLOR_COMPONENT structures.

• win_def_p[0].v.dlg.ctl_font_id must be either
NULL_FNTID or a valid logical font.

• win_def_p_[i].v.ctl.font_id must be either NULL_FNTID
or a valid logical font.

See Also

CTL_FLAG_* Options
EM_* Constants
EVENT_HANDLER
EVENT_MASK
NULL_FNTID
PTR_LONG
W_*, WC_*, WD_*, Values for WIN_TYPE
WIN_DEF
WIN_TYPE
XVT_COLOR_COMPONENT
XVT_COLOR_TYPE
xvt_ctl_create_def
xvt_dlg_create_res
xvt_font_*
xvt_res_get_dlg_def
xvt_vobj_get_data
xvt_vobj_set_data
xvt_win_create_def
xvt_win_get_ctl
Window/Dialog/Control Creation Function Parameters

The "Defining and Creating Dialogs" section of the "Dialogs"
chapter in the XVT Portability Toolkit Guide

xvt_dlg_create_res
 Creates a Dialog from a Resource Definition

Summary

WINDOW xvt_dlg_create_res(WIN_TYPE wtype, int rid,
EVENT_MASK event_mask, EVENT_HANDLER eh,
long app_data)

WIN_TYPE wtype

WD_MODAL or WD_MODELESS dialog. This parameter must match
the type of dialog specified in the resource file.

int rid

Specifies the dialog resource to be used. This resource ID must
match the dialog’s ID in the resource file.

EVENT_MASK event_mask

Indicates which events should be sent to your dialog’s event
handler. Normally, this is set to EM_ALL, indicating that all
events should be sent.

EVENT_HANDLER eh

The dialog’s event handling function.

long app_data

Data that your application can attach to the dialog when it is
created. Often this is set to a pointer to a data structure cast into
a long.

Description

This function creates a dialog according to a description specified in
a resource file. Typically, the dialog resource is specified in XRC,
but it can also be specified in the native resource language.

For modal dialogs (WD_MODAL), this function does not return until the
user or the application dismisses (i.e., destroys) the dialog. When
you invoke a window or modeless dialog from a modal dialog, you
should immediately dismiss the modal dialog so that the newly
created window or modeless dialog can receive events and be useful.

Return Value

A WINDOW if successful; NULL_WIN if unsuccessful (on error).

Note: If you are creating a modal dialog, the WINDOW returned from
xvt_dlg_create_res is returned after the dialog has been
destroyed. Therefore, if you are creating a modal dialog, make sure
not to use this return value for anything other than to check a
successful creation of the dialog.

Parameter Validity and Error Conditions

XVT issues an error if any of the following parameter conditions are
not met:

• wtype must be one of WD_MODAL or WD_MODELESS and must
match the type of dialog you specified in your resource file

• rid must be a valid dialog resource specified in the XRC file
or by some non-portable means

• eh must point to a valid event handler

See Also

EM_* Constants
EVENT_HANDLER
EVENT_MASK
NULL_WIN
W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
WIN_TYPE
xvt_dlg_create_def
xvt_res_get_dlg_def
xvt_vobj_get_data
xvt_vobj_set_data
xvt_win_create_res
dialog XRC statement

The "Defining and Creating Dialogs" section of the "Dialogs"
chapter in the XVT Portability Toolkit Guide

xvt_dm_*
 Dialog Management Functions

xvt_dm_post_about_box
xvt_dm_post_ask
xvt_dm_post_color_sel
xvt_dm_post_ctools_sel
xvt_dm_post_dir_sel
xvt_dm_post_error
xvt_dm_post_fatal_exit
xvt_dm_post_file_open
xvt_dm_post_file_save
xvt_dm_post_font_sel
xvt_dm_post_message
xvt_dm_post_note
xvt_dm_post_page_setup
xvt_dm_post_string_prompt
xvt_dm_post_warning

xvt_dm_post_about_box
 Display About Box

Summary

void xvt_dm_post_about_box(void)

Description

Each XVT Portability Toolkit provides a menu item that allows the
user to view an About box. Selection of the standard menu item
invokes xvt_dm_post_about_box rather than delivering an
E_COMMAND event to the application.

You can also implement your own calls to xvt_dm_post_about_box
from other places in your application. For example, you might want
to call xvt_dm_post_about_box when the application starts up.

xvt_dm_post_about_box invokes the About box specified by an
application resource ID defined in the about_box_ID data structure
member of XVT_CONFIG. If about_box_ID is set to zero, XVT uses
the resource defined as DB_ABOUT provided in xrc_plat.h. Otherwise
you must define resources for an About box in your XRC file. The
About box must be modal.

XVT provides all event handling for the About box dialog, whether
it is XVT’s default About box dialog or the one you defined in a
resource file. The event handler provided by XVT processes
E_CONTROL events from buttons with IDs of DLG_OK and DLG_CANCEL.
If the user presses a button with an ID equal to DLG_CANCEL, XVT
event handling dismisses the About box. If the user presses a button
with an ID equal to DLG_OK, XVT sends an E_HELP event to invoke
the help viewer. The DLG_OK button is optional.

See Also

DLG_* Control IDs
NO_STD_ABOUT_BOX
XVT_CONFIG
xvt_app_create

The "Dialogs" chapter in the XVT Portability Toolkit Guide

xvt_dm_post_ask
 Ask User a Question

Summary

ASK_RESPONSE xvt_dm_post_ask(char *lbl_dflt,
char *lbl2, char *lbl3, char *fmt [, arg] ...)

char *lbl_dflt

Text of default button.

char *lb12

Text of second button.

char *lbl3

Text of third button.

char *fmt [, arg] ...

Question in sprintf-style format.

Description

This function displays a dialog box that asks the user a question with
two (typically "Yes" and "No") or three (typically "Yes," "No," and
"Cancel") buttons. Names for the buttons are specified by supplying
appropriate values for the first three arguments. The first argument
should be the default button, which is highlighted and chosen if the
user presses the Return key. If only two buttons are wanted,
argument lbl3 should be NULL.

The arguments beginning with fmt are a format followed by optional
values, in the style of sprintf. These arguments form the question
to be asked. The total length of the question (fmt with all arguments
converted to strings according to the corresponding format
specifiers) must be less than 200 bytes.

Tip: When determining the default button, keep in mind that it should
either be the one most often chosen or the safest choice. To make
responding convenient for the user, the default button should be the
one that’s most often chosen (typically "Yes"). However, if a "Yes"
choice could result in a potentially undesirable action, it should not
be the default button. For example, if the question is "Delete file
XYZ?" then the default should be "Cancel," because an accidental
"Yes" could be disastrous.

For additional clarity, it’s a good idea to label a button with a
particular action, rather than with a literal answer to the question. In
that case, the user can safely click a button even without reading the
question and determining the meaning of "Yes" and "No." For
example, if the question is "Discard changes?" then the buttons
should be labeled "Discard" and "Save," rather than "Yes" or "No."
Regardless of the question or the user’s interpretation of it, the
meaning of "Discard" and "Save" is clear.

Note: If you want a dialog box with only one button, use
xvt_dm_post_error or xvt_dm_post_note instead of
xvt_dm_post_ask.

Return Value

RESP_DEFAULT, RESP_2, or RESP_3, depending on which button the
user clicked. Closing the window (using the window system menu
"Close" item or the "Escape" key) returns RESP_3, even if no third
button is present.

See Also

xvt_dm_post_error
xvt_dm_post_note

The "Dialogs" chapter in the XVT Portability Toolkit Guide

Example

switch (xvt_dm_post_ask("Save", "Discard", "Cancel",
"Save changes to "%s" before closing?",filename)) {

case RESP_DEFAULT:
save_drawing();/* save and close window */
discard_window();
break;

case RESP_2:
discard_window();/* discard window */
break;

case RESP_3:
break;/* don’t close the window */

default:
xvt_dm_post_error("Invalid return from ask.");

}

xvt_dm_post_color_sel
Post Standard Dialog to Select a Color

Summary

BOOLEAN xvt_dm_post_color_sel(
COLOR *color)

COLOR *color

Points to a color value that the dialog is initialized with and will
return the color selected.

Description

This function puts up a standard dialog box that allows the user to
select a color. The dialog box is consistent with the native look-and-
feel.

 Return Value

TRUE if a new color was selected, otherwise FALSE.

xvt_dm_post_ctools_sel
Set a DRAW_TOOLS struct in a Standard Modal Window

Summary

BOOLEAN xvt_dm_post_ctools_sel (DRAW_CTOOLS *ctoolsp,
long attr)

DRAW_CTOOLS *ctoolsp
It must point to a valid DRAW_CTOOLS.

long attr
Sets which DRAW_CTOOLS members will be visible to the user for
selection.

The attr parameter takes ORed values of XVT_CTOOL_* constants.

Description

This function puts up a standard dialog, which is consistent with the
native look-and-feel, that allows the user to choose colors, styles,
modes, etc. for drawing and text.

Your application must supply to xvt_dm_post_ctools_sel a valid
DRAW_CTOOLS pointer.

Return Value

TRUE if the user clicked OK (xvt_dm_post_ctools_sel does not
check whether or not any values were actually changed by the user);
FALSE otherwise.

Parameter Validity and Error Conditions

Calling this function with a pointer that is not a valid DRAW_CTOOLS
pointer results in undefined behavior. Calling this function with a
NULL DRAW_CTOOLS pointer results in a runtime error and message
and a return value of FALSE. Calls with illegal values or NULL for the
attr parameter generate a runtime error and message and a return
value of FALSE. This function cannot be called during an E_UPDATE
event.

Implementation Note

No error checking of the DRAW_CTOOLS parameter's members is done.

xvt_dm_post_ctools_sel uses resources at run time. Therefore, be
sure the file xrc.h is included during compilation of resources.

See Also

DRAW_CTOOLS
XVT_CTOOLS_* Values for attr
The "Dialogs" chapter in the XVT Portability Toolkit Guide

Example

/*NOTE: The current window is 'win' */
DRAW_CTOOLS ctool;
xvt_dwin_draw_text (win, 20, 50, "Old color.");
xvt_dwin_get_draw_ctools (win, &ctool);
if (xvt_dm_post_ctools_sel (&ctool, (XVT_CTOOL_PEN)) {

xvt_dwin_set_draw_ctools (win, &ctool);
xvt_dwin_draw_text (win, 20, 100, "Returned TRUE.");

} else
xvt_dwin_draw_text (win, 20, 100, "Returned FALSE.");

xvt_dm_post_dir_sel
Post Standard Dialog to Select a Directory

 Summary

FL_STATUS xvt_dm_post_color_sel(FILE_SPEC *fsp,
char *msg)

FILE_SPEC *fsp

File specification. It must point to a FILE_SPEC.

fsp->type
Set to the empty string ("").

fsp->dir
Set to the directory initially presented to the user. If the initial
directory doesn't matter, set fsp->dir to a directory retrieved
via xvt_fsys_get_default_dir.

fsp->name
Should be initialized to an empty string.

char *msg
String to display. msg points to a NULL-terminated character
string prompting the user for a response.

 Description

This function puts up a standard dialog box, which is consistent with
the native look-and-feel, that allows the user to select a directory.
The dialog supplies the user with a list of directories from which to
choose, and may allow the user to change the base directory.

 Return Value

FL_OK if the user clicked OK (meaning you should use the directory);
FL_CANCEL if the user clicked Cancel (meaning you should abort the
directory); FL_BAD if an error occurred, in which case an alert dialog
has already been displayed by the function. Upon return, the
FILE_SPEC->dir contains the selected directory.

See Also

DIRECTORY
FILE_SPEC
FL_* Values
xvt_dm_post_file_open
xvt_dm_post_file_save
xvt_fsys_get_default_dir

xvt_dm_post_error
 Display Alert Box with Error Icon

Summary

void xvt_dm_post_error(char *fmt [, arg] ...)char *fmt
[, arg] ...

Message in sprintf-style format.

Description

This function puts up an alert box containing a message, an OK
button, and an error icon appropriate to the native look-and-feel for
each supported platform. When the user clicks the button, the alert
box is removed and xvt_dm_post_error returns.

The message is specified by a format and arbitrary arguments,
similar to the standard C function sprintf.

The total length of the message (fmt with all arguments converted to
strings) must be less than 200 bytes.

See Also

xvt_dm_post_fatal_exit
xvt_dm_post_note
xvt_dm_post_warning

Example

See the example for xvt_dm_post_file_open.

xvt_dm_post_fatal_exit
 Display Error Message and Terminate

Summary

void xvt_dm_post_fatal_exit(char *fmt [, arg] ...)char
*fmt [, arg] ...

Message in sprintf-style format.

Description

This function displays a message which is specified using a format
and arbitrary arguments, similar to the standard C function sprintf.
When the user clicks the mouse, the alert box is removed and
xvt_app_destroy is called, ending execution. Naturally,
xvt_dm_post_fatal_exit should be called only in dire emergencies
from which your application can’t recover.

The total length of the message (fmt with all arguments converted to
strings according to the corresponding format specifiers) must be
less than 200 bytes.

Note: If your application calls xvt_dm_post_fatal_exit to put up an alert
box, the message box doesn’t require resources or additional
memory. It can be seen even when memory is exhausted or when
ordinary dialog boxes can’t be created by calling
xvt_dm_post_error or xvt_dm_post_note.

See Also

xvt_dm_post_error
xvt_dm_post_message
xvt_dm_post_note

The "Dialogs" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_dm_post_ask.

xvt_dm_post_file_open
 Get File to Open with Standard Dialog

Summary

FL_STATUS xvt_dm_post_file_open(FILE_SPEC *fsp,
char *msg)

FILE_SPEC *fsp

File specification. It must point to a FILE_SPEC.

fsp->type
Set to the type of files the user will be allowed to select. If fsp-
>type is the empty string (""), all types are allowed.

fsp->dir
Set to the directory initially presented to the user. The user can
change to other directories. If the initial directory doesn’t
matter, set fsp->dir to a DIRECTORY retrieved via
xvt_fsys_get_default_dir.

fsp->name
Should be initialized to an empty string.

char *msg
String to display. msg points to a NULL-terminated character
string prompting the user for a response. For example, the
prompt might be "Select drawing file...". On some platforms,
the length of the message string is limited.

Description

This function puts up a standard dialog box, which is consistent with
the native look-and-feel, that allows the user to supply the name of
a file to be opened for reading. The dialog normally supplies a list
of files for the user to choose from, and may allow the user to change
directories.

Your application must supply to xvt_dm_post_file_open the
starting directory and the type of files to display.

xvt_dm_post_file_open doesn’t open the file--only its name is
retrieved. Upon return, your application must change to the proper

directory, check that the file exists, check that the file is readable,
and then finally open it.

Depending on the implementation, the user may or may not be able
to specify a file type different from that specified in fsp->type when
xvt_dm_post_file_open was called. Normally, even if this were
done, you should assume that the user knew what he or she was
doing, and read the file as though it were of the correct type.

After xvt_dm_post_file_open returns, the following is true:

• fsp->dir and fsp->name is set to the user’s selections.
Before opening the file for reading, you should change
directories to fsp->dir by calling
xvt_fsys_set_dir(&fsp>dir). The fsp>name argument is a
NULL-terminated character string that can be used directly in
calls to the standard C functions fopen and open.

• xvt_dm_post_file_open might change the current directory.
To compensate for this fact, you can use xvt_fsys_save_dir
to remember the current directory before calling this
function, and xvt_fsys_restore_dir to put it back later.

Return Value

FL_OK if the user clicked OK (you should open the file); FL_CANCEL
if the user clicked Cancel (the command that tried to open the file
should be aborted); FL_BAD if an error occurred, in which case an
alert has already been displayed by xvt_dm_post_file_open. Upon
return, the FILE_SPEC contains valid data only if FL_OK is the return
value.

Implementation Note

With XVT/Win32 and XVT/XM, but not with XVT/Mac, the user
can use the dialog box to view files of types other than the one
specified in the call. Also, on these systems the user can actually
enter a name from the keyboard (which may or may not exist), but
with XVT/Mac the user can only choose from the names listed.

With XVT/Mac, the application can additionally filter the filename
patterns by setting the fsp->name field to an XVT filename pattern.
Also, directory selection can be done by setting the fsp->type field
to "Fldr." The message string is limited to 255 bytes (325 pixels
wide), but with overrun if the dialog is too long.

See Also

DIRECTORY
FILE_SPEC
FL_* Values for FL_STATUS
xvt_dm_post_file_save
xvt_fsys_get_default_dir
xvt_fsys_get_file_attr
xvt_fsys_restore_dir
xvt_fsys_save_dir
xvt_fsys_set_dir
xvt_fsys_set_file_attr

The "Dialogs" chapter in the XVT Portability Toolkit Guide

Example

FILE_SPEC fs_in;fs_in.type[0] = ’0’; /* want all types */
fs_in.name[0] = ’0’;
xvt_fsys_get_default_dir(&fs_in.dir);
switch (xvt_dm_post_file_open(&fs_in,

"Select input file...")) {
case FL_BAD:

xvt_dm_post_error("Error getting file name.");
return;

case FL_CANCEL:
return;

case FL_OK:
break;

}
xvt_fsys_set_dir(&fs_in.dir);
if ((in = fopen(fs_in.name, "r")) == NULL) {

xvt_dm_post_error("Can’t open file "%s".",
fs_in.name);

return;
}

xvt_dm_post_file_save
 Post Standard Dialog to get Filename for Saving

Summary

FL_STATUS xvt_dm_post_file_save(FILE_SPEC *fsp,
char *msg)

FILE_SPEC *fsp

File specification. It must point to a FILE_SPEC.

fsp->type

Set to the type of files the user will be allowed to select. If fsp-
>type is the empty string (""), all types are allowed.

fsp->dir

Set to the directory initially presented to the user. The user may
be allowed to change to other directories. If the initial directory
doesn’t matter, set fsp->dir to a DIRECTORY retrieved via
xvt_fsys_get_default_dir.

fsp->name

Set to a suggested filename.

char *msg

String to display. Points to a NULL-terminated character string
prompting the user for a response. For example, the prompt
might be "Enter drawing file...". On some platforms, the length
of the message string is limited.

Description

This function puts up a standard dialog box, which is consistent with
the native look-and-feel, that allows the user to supply the name of
a file to be created or opened for writing. The dialog supplies a list
of files for the user to choose from, and may allow the user to change
directories.

Your application must supply to xvt_dm_post_file_save the
starting directory and the type of files to display.

xvt_dm_post_file_save doesn’t open or create the file--only its
name is retrieved. Upon return, your application must change to the
proper directory, check that the file is writable or can be created, and
then finally open or create it.

After xvt_dm_post_file_save returns, the following is true:

• fsp->dir and fsp->name is set to the user’s selections.
Before opening the file for writing, you should change
directories to fsp->dir by calling
xvt_fsys_set_dir(&fsp>dir). The fsp>name argument is a
NULL-terminated character string that can be used directly in
calls to the standard C functions fopen, open, and create.

• xvt_dm_post_file_save might change the current directory.
To compensate for this fact, you can use xvt_fsys_save_dir
to remember the current directory before calling this
function, and xvt_fsys_restore_dir to put it back later.

Return Value

FL_OK if the user clicked OK (meaning you should write the file);
FL_CANCEL if the user clicked Cancel (meaning you should abort the
write command); FL_BAD if an error occurred, in which case an alert
dialog has already been displayed by this function. Upon return, the
FILE_SPEC contains valid data only if FL_OK is the return value.

See Also

DIRECTORY
FILE_SPEC
FL_* Values for FL_STATUS
xvt_dm_post_file_open
xvt_fsys_get_default_dir
xvt_fsys_get_file_attr
xvt_fsys_set_dir
xvt_fsys_set_file_attr

The "Dialogs" chapter in the XVT Portability Toolkit Guide

Example

FILE_SPEC *get_save_file(char *default_name,
char *file_type)
{
static FILE_SPEC fs;

xvt_fsys_set_file_attr(&fs, XVT_FILE_ATTR_FILE_STR,
(long) default_name);

xvt_fsys_set_file_attr(&fs, XVT_FILE_ATTR_TYPESTR,
 long) file_type);

xvt_fsys_get_default_dir(&fs.dir);
switch (xvt_dm_post_file_save(&fs, "Save as:")) {
case FL_OK:

return(&fs);
case FL_BAD:
case FL_CANCEL:

return(NULL);
}

}

xvt_dm_post_font_sel
 Call the XVT Native Font Selection Dialog

Summary

BOOLEAN xvt_dm_post_font_sel(WINDOW win,
XVT_FNTID font_id, PRINT_RCD *precp,
unsigned long reserved)

WINDOW win

NULL_WIN or window to which to send the E_FONT event.

XVT_FNTID font_id

Handle to the logical font used to preset font selection and
retrieve the result.

PRINT_RCD *precp

Printer record to be used for providing access to physical printer
fonts. If this parameter is NULL, no printer fonts are shown. If
this parameter is a valid PRINT_RCD pointer, then physical fonts
are shown for both the screen and the given printer.

unsigned long reserved

Reserved for future use; it must be 0.

Description

This function calls the XVT native Font Selection dialog. If the
application has set the ATTR_FONT_DIALOG attribute, the application-
customized font dialog is invoked instead of the XVT-supplied one.

By default, the Font Selection dialog operates in synchronous mode.
In this mode, the application waits for the user to make a selection.
If win is not NULL_WIN, an E_FONT event is dispatched to that
window.

If you want your application to have a Font Selection dialog that
operates in asynchronous mode, you must create a modeless dialog
using ATTR_FONT_DIALOG. In either mode, the selected font is
returned.

If the user makes a selection and exits normally, the dialog returns a
reasonable set of portable XVT logical font attributes in the
XVT_FNTID in the generated EVENT (if the calling function requests
it), and in the font_id. The native font descriptor is also set to match

the user’s selection. A "reasonable set" of portable XVT logical font
attributes consists of attributes that correspond closely to the native
font that was selected: family, style, size, and native descriptor.

The native descriptor is set for the resulting logical font and is
honored in any subsequent call to xvt_font_map or
xvt_font_map_using_default.

Sometimes an exact match cannot be made between the user’s
selection and the set of XVT portable logical font attributes. This
occurs if the selection contains some attributes that don’t correspond
to any XVT portable logical font attributes, or if it has style settings
that don’t exist in XVT. In these cases, the dialog attempts to specify
a "best fit" with the XVT portable logical font attributes.

Return Value

TRUE if the logical font passed in as the preset for selection has been
changed; FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• xvt_dm_post_font_sel is called during E_UPDATE

• font_id is NULL or invalid

• win is invalid or non-drawable

• precp is invalid

See Also

ATTR_FONT_DIALOG
E_FONT
PRINT_RCD
XVT_FNTID
xvt_font_map
xvt_font_map_using_default

The "Customized Font Selection Dialogs" section of the "Fonts and
Text" chapter in the XVT Portability Toolkit Guide

Example

void change_font(WINDOW window)
{

XVT_FNTID font_id;
font_id = xvt_dwin_get_font(window);
if (xvt_dm_post_font_sel(window, font_id,

(PRINT_RCD *) NULL, 0L))
xvt_dwin_set_font(window, font_id);
xvt_font_destroy(font_id);

}

xvt_dm_post_message
 Output Emergency Message

Summary

void xvt_dm_post_message(char *fmt [, arg] ...)char *fmt
[, arg] ...

Message in sprintf-style format.

Description

This function puts up a modal dialog containing a message. The
message is specified using a format and arbitrary arguments, similar
to the standard C function sprintf. The total length of the message
(fmt with all arguments converted to strings according to the
corresponding format specifiers) must be less than 200 bytes.

Note: The dialog put up by xvt_dm_post_message doesn’t require
resources or additional memory, so it is very likely to be seen even
when memory is exhausted or when ordinary dialog boxes can’t be
displayed.

You should call this function only in emergencies; in most cases, it’s
better to call xvt_dm_post_error or xvt_dm_post_note instead.

See Also

xvt_dm_post_error
xvt_dm_post_fatal_exit
xvt_dm_post_note

xvt_dm_post_note
 Display Alert Box with Note Icon

Summary

void xvt_dm_post_note(char *fmt [, arg] ...)char *fmt
[, arg] ...

Message in sprintf-style format.

Description

This function puts up an alert box with a message, an OK button, and
a note icon appropriate to the native look-and-feel for each

supported platform. The message is specified using a format and
arbitrary arguments, similar to the standard C function sprintf.
When the user clicks the button, the alert box is removed and
xvt_dm_post_note returns.

The total length of the message (fmt with all arguments converted to
strings according to the corresponding format specifiers) must be
less than 200 bytes.

See Also

xvt_dm_post_error
xvt_dm_post_fatal_exit
xvt_dm_post_message

Example

xvt_dm_post_note("Thank you for using %s",
 product_name);

xvt_dm_post_page_setup
 Display Standard Page Setup Dialog

Summary

BOOLEAN xvt_dm_post_page_setup(PRINT_RCD *precp)

PRINT_RCD *precp

Pointer to page setup to be displayed.

Description

This function puts up a dialog box allowing the user to adjust the
page setup stored in the PRINT_RCD pointed to by precp. The page
setup dialog is platform-specific look-and-feel, but it generally
consists of page size (e.g., US Letter, US Legal, etc.), output scale,
device resolution, and output orientation (e.g., Landscape, etc.).

xvt_dm_post_page_setup should be called in response to the user
choosing the Page Setup command on the File menu (signified by an
E_COMMAND event with v.cmd.tag set to M_FILE_PG_SETUP).

If the user modifies the PRINT_RCD, then xvt_dm_post_page_setup
returns TRUE to indicate that the altered PRINT_RCD should be stored
in memory with the document. The document should be marked as
"unsaved."

If xvt_dm_post_page_setup returns FALSE, then no change was
made to the PRINT_RCD.

If your application has just read a PRINT_RCD from a document file,
then it must call xvt_print_is_valid to check its validity before
passing the PRINT_RCD to this function. If xvt_print_is_valid
returns FALSE, your application must create a valid print record (with
xvt_print_create) to use this function.

Once the user clicks OK in the dialog box, your application can get
the page size metrics using the xvt_app_escape function. This
escape gives you the printer information from the passed print
record. Any of the return parameter pointers can be NULL. The call
signature is:

xvt_app_escape(XVT_ESC_GET_PRINTER_INFO,
PRINT_RCD* print_rcd, long* heightp,
long* widthp, long* vresp, long* hresp);

PRINT_RCD* print_rcd

Current print record.

long* heightp

Height in dots.

long* widthp

Width in dots.

long* vresp

Vertical resolution in dots per inch.

long* hresp

Horizontal resolution in dots per inch.

Return Value

TRUE if the user modified the PRINT_RCD; FALSE if the user left it
alone.

Implementation Note

On XVT/Mac, xvt_dm_post_page_setup brings up the standard
Page Setup dialog box for the current printer.

On XVT/Win32, this function allows the user to change both the
target printer and the page setup for that printer from the platform-
and driver-specific native dialogs. On these platforms, both the
current printer and its page setup are stored in a PRINT_RCD.

On XVT/XM, if the user has a Level 2 PostScript printer with
multiple paper trays, the proper paper size is automatically selected.
Otherwise, it is the user’s responsibility to be sure that the printer is
set up correctly.

See Also

PRINT_RCD
XVT_ESC_*
xvt_app_escape
xvt_print_create
xvt_print_is_valid

The "Printing" chapter in the XVT Portability Toolkit Guide

Example

DOC *doc;
switch (xdEvent->v.cmd.tag)
{

...
case M_FILE_PG_SETUP:

doc = (DOC *) xvt_vobj_get_data(xdWindow);
if (doc->print_rcd != NULL)

if (xvt_dm_post_page_setup(doc->print_rcd))
 change_page_setup(doc);

break;
...

}

xvt_dm_post_string_prompt
 Put Up a Text-response Dialog

Summary

char *xvt_dm_post_string_prompt(char *msg, char *resp,
int sz_resp)

char *msg

Message to be shown.

char *resp

User response buffer.

int sz_resp

Buffer size of resp in bytes.

Description

This function puts up a dialog that contains the message specified by
msg, an edit control, and OK and Cancel buttons. When the dialog
appears, it allows the user to type a response into its edit field.

If the user clicks OK, the response is stored into the string specified
by resp, whose maximum capacity (including the terminating NULL)
is sz_resp; the response is truncated as necessary to fit in resp.

You must initialize resp with a default response that will be placed
in the edit box when the dialog appears. If you have no default
response, set resp to the empty string, not to NULL (see the example
below for the proper way to do this).

At most 255 bytes can be typed in the edit box--your resp buffer
does not need to be larger. Approximately 100 bytes of msg text can
be displayed.

This function is intended for use when testing your application or as
a temporary fill-in while completing your user interface. For most
applications, custom-designed dialogs will look better.

Return Value

Value of resp argument if OK is clicked; NULL if Cancel is clicked.

Parameter Validity and Error Conditions

XVT issues an error if msg or resp is NULL.

See Also

The "Dialogs" chapter in the XVT Portability Toolkit Guide

Example

char s[100];s[0] = ’0’;
if (xvt_dm_post_string_prompt(

"Type something...", s, sizeof(s)) == NULL)
xvt_dm_post_warning("You canceled.");

else
xvt_dm_post_note("You typed ’%s’.", s);

xvt_dm_post_warning
 Display Alert Box with Warning Icon

Summary

void xvt_dm_post_warning(char *fmt [, arg] ...)char *fmt
[, arg] ...

Message in sprintf-style format.

Description

This function puts up an warning box containing a message, an OK
button, and a warning icon appropriate to the native look-and-feel
for each supported platform. When the user clicks the button, the
warning box is removed and xvt_dm_post_warning returns.

The message is specified by a format and arbitrary arguments,
similar to the standard C function sprintf.

The total length of the message (fmt with all arguments converted to
strings) must be less than 200 bytes.

See Also

xvt_dm_post_error
xvt_dm_post_fatal_exit
xvt_dm_post_note

The "Dialogs" chapter in theXVT Portability Toolkit Guide

Example

See the example for xvt_dm_post_string_prompt.

xvt_dwin_*
 Drawable Window Functions

xvt_dwin_clear
xvt_dwin_close_pict
xvt_dwin_draw_aline
xvt_dwin_draw_arc
xvt_dwin_draw_icon
xvt_dwin_draw_image
xvt_dwin_draw_line
xvt_dwin_draw_oval
xvt_dwin_draw_pict
xvt_dwin_draw_pie
xvt_dwin_draw_pmap
xvt_dwin_draw_polygon
xvt_dwin_draw_polyline
xvt_dwin_draw_rect
xvt_dwin_draw_roundrect
xvt_dwin_draw_set_pos
xvt_dwin_draw_text
xvt_dwin_get_clip
xvt_dwin_get_draw_ctools
xvt_dwin_get_font
xvt_dwin_get_font_app_data
xvt_dwin_get_font_family
xvt_dwin_get_font_family_mapped
xvt_dwin_get_font_metrics
xvt_dwin_get_font_native_desc
xvt_dwin_get_font_size
xvt_dwin_get_font_size_mapped
xvt_dwin_get_font_style
xvt_dwin_get_font_style_mapped
xvt_dwin_get_text_width
xvt_dwin_invalidate_rect
xvt_dwin_is_update_needed
xvt_dwin_open_pict
xvt_dwin_scroll_rect
xvt_dwin_set_back_color
xvt_dwin_set_cbrush
xvt_dwin_set_clip
xvt_dwin_set_cpen
xvt_dwin_set_draw_ctools
xvt_dwin_set_draw_mode
xvt_dwin_set_font
xvt_dwin_set_font_app_data
xvt_dwin_set_font_family
xvt_dwin_set_font_native_desc
xvt_dwin_set_font_size
xvt_dwin_set_font_style
xvt_dwin_set_fore_color
xvt_dwin_set_std_cbrush

xvt_dwin_set_std_cpen
xvt_dwin_update

xvt_dwin_clear
 Clear a Window’s Client Area

Summary

void xvt_dwin_clear(WINDOW win, COLOR color)

WINDOW win

Window whose client area is being filled with color.

COLOR color

Specified color.

Description

This function clears a window’s client area by filling it with a
specified color. If a clipping rectangle has been set for the target
window, the filled area will be limited to that of the rectangle set by
xvt_dwin_set_clip.

To clear a window with the window system’s default background
color set by the user, use xvt_dwin_clear like this:

xvt_dwin_clear(win, (COLOR)(xvt_vobj_get_attr(
NULL_WIN, ATTR_BACK_COLOR)));

If the color must match the DRAW_CTOOLS background color for that
window, use xvt_dwin_clear like this:

DRAW_CTOOLS ct;xvt_dwin_clear(
win, (xvt_dwin_get_draw_ctools (win,
&ct))->back_color);

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

On XVT/Win32 with some device drivers, clearing a print window
can result in excessively large print data being sent to the printer.

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

ATTR_BACK_COLOR
COLOR
DRAW_CTOOLS
W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
XVT_PIXMAP
xvt_dwin_get_draw_ctools
xvt_dwin_set_clip
xvt_vobj_get_attr

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

xvt_dwin_close_pict
 Finish an Encapsulated Picture

Summary

PICTURE xvt_dwin_close_pict(WINDOW win)

WINDOW win

Window in which to finish an encapsulated picture.

Description

This function completes the encapsulation of a PICTURE that was
begun with a call to xvt_dwin_open_pict, and returns the PICTURE
object. To free the memory occupied by a PICTURE, call
xvt_pict_destroy.

Return Value

A PICTURE if successful; NULL on an error (such as inadequate
memory).

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a control window, print windows, XVT_PIXMAP,
dialog, or control

See Also

CBRUSH
PICTURE
WINDOW
XVT_PIXMAP
xvt_dwin_open_pict
xvt_pict_destroy

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

Example

WINDOW win;
(PICTURE) NULL;
PICTURE pict;
RCT frame;
CBRUSH cbrsh;cbrsh.pat = PAT_DIAGCROSS;
cbrsh.color = COLOR_BLACK;xvt_rect_set(&frame, 20, 20,

100, 100);
if (xvt_dwin_open_pict(win, &frame)) {

xvt_dwin_set_cbrush(win, &cbrsh);
xvt_dwin_set_std_cpen(win, TL_PEN_BLACK);
xvt_dwin_draw_oval(win, &frame);
pict = xvt_dwin_close_pict(win);

}

xvt_dwin_draw_aline
 Draw Line with Arrows at Ends

Summary

void xvt_dwin_draw_aline(WINDOW win, PNT pnt,
BOOLEAN start_arrow, BOOLEAN end_arrow)

WINDOW win

Window in which to draw the line.

PNT pnt

Ending point of line.

BOOLEAN start_arrow

If TRUE, the starting point has an arrow head.

BOOLEAN end_arrow

If TRUE, the ending point has an arrow head.

Description

This function draws a line, from the current pen position to the point
indicated by pnt, in the client area of win. If start_arrow is TRUE,
the starting point has an arrowhead. If end_arrow is TRUE, the ending
point has an arrowhead. If both are FALSE, this function behaves
identically to xvt_dwin_draw_line.

The current pen position is set with xvt_dwin_draw_set_pos or with
a previous call to xvt_dwin_draw_aline or xvt_dwin_draw_line.
Intervening calls to other drawing functions leave the pen position
in an undefined location, so make sure to set the pen position
explicitly in that case.

The current CPEN and DRAW_MODE are used to draw the line and the
arrowheads. The current CBRUSH is not used.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on XVT/Win32, you can set the non-portable attribute
ATTR_WIN_PM_DRAWABLE_TWIN before the call to xvt_app_create. In
that case TASK_WIN would be a valid window for this function.

See Also

CBRUSH
CPEN
DRAW_MODE
PNT
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_draw_line
xvt_dwin_draw_set_pos

Example

The following code draws a line from (10, 15) to (100, 75), with an
arrowhead at (10, 15):

PNT pnt;xvt_dwin_set_std_cpen(win, TL_PEN_BLACK);
pnt.h = 10;
pnt.v = 15;
xvt_dwin_draw_set_pos(win, pnt);
pnt.h = 100;
pnt.v = 75;
xvt_dwin_draw_aline(win, pnt, TRUE, FALSE);

xvt_dwin_draw_arc
 Draw the Arc of an Oval

Summary

void xvt_dwin_draw_arc(WINDOW win, RCT *rctp,
 int start_x, int start_y, int stop_x, int stop_y)

WINDOW win

Window in which to draw the arc of an oval.

RCT *rctp

Bounding rectangle of the oval. If the RCT* parameter to this
function is an empty rectangle, nothing will be drawn.

int start_x

Arc’s starting x-coordinate.

int start_y

Arc’s starting y-coordinate.

int stop_x

Arc’s stopping x-coordinate.

int stop_y

Arc’s stopping y-coordinate.

Description

This function draws an arc that is a section of the perimeter of an
oval bounded by rctp in the client area of win. The arc is drawn
counter-clockwise along the oval, from the point (start_x,
start_y) to the point (stop_x, stop_y). If one (or both) of these
points is not exactly on the oval, an imaginary line is drawn from the
center of the bounding rectangle to the point, and the intersection of
that line and the oval is used as the starting or stopping point.

stop_x, stop_y

start_x, start_y
arc of oval

This function expects the rectangle to be normalized. That is, the
rectangle must be valid, with rctp->top less than rctp->bottom
and rctp->left less than rctp->right.

The current CPEN and DRAW_MODE are used to draw the arc. The
current CBRUSH is not used.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

CBRUSH
CPEN
DRAW_MODE
RCT
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_draw_oval
xvt_dwin_draw_pie
xvt_dwin_set_std_cpen
xvt_rect_set

Example

This code draws an arc that covers the northeast quadrant of an oval:

RCT rct;
xvt_dwin_set_std_cpen(win, TL_PEN_BLACK);
xvt_rect_set(&rct, 10, 20, 60, 80);
xvt_dwin_draw_arc(win, &rct, 60, 50, 35, 20);

xvt_dwin_draw_icon
 Draw an Icon

Summary

void xvt_dwin_draw_icon(WINDOW win, int x, int y,
 int rid)

WINDOW win

Window in which to draw the icon.

int x

Icon’s x-coordinate.

int y

Icon’s y-coordinate.

int rid

Icon’s resource ID.

Description

This function draws the icon whose resource ID is rid so that its
upper-left corner is at point x, y in the client area of win. The current

background and foreground colors are used. The current DRAW_MODE
and the current CPEN or CBRUSH are not used.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

• For XVT/Mac, the icon must have a resource type of ICON or
CICN

• For XVT/Win32, the icon must be declared in an ICON
statement in the resource script

• For XVT/XM, there must be an ICON definition in your
resource manager file

• Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the
call to xvt_app_create. In that case, TASK_WIN would be a
valid window for this function.

See Also

CBRUSH
CPEN
DRAW_MODE
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_draw_image
xvt_dwin_draw_pmap

The "Icons" section of the "Controls" chapter in the XVT Portability
Toolkit Guide
The XVT Platform-Specific Books

Example

xvt_dwin_clear(win, COLOR_WHITE);
xvt_dwin_draw_text(win, 4, 30, "Hello World!", -1);
xvt_dwin_draw_icon(win, 10, 40, ICON_RID);

xvt_dwin_draw_image
 Draw an Image in a Window or Pixmap

Summary

void xvt_dwin_draw_image(WINDOW dstwin,
 XVT_IMAGE srcimage, RCT *dstrctp, RCT *srcrctp)

WINDOW dstwin

Window in which to draw the image. It can be a drawable
window, a print window, or an XVT_PIXMAP.

XVT_IMAGE srcimage

Image to be drawn.

RCT *dstrctp

Pointer to a rectangle that defines, in the coordinates of dstwin,
the location and size of the drawn image. If the "destination"
rectangle (dstrctp) is empty, nothing will be drawn.

RCT *srcrctp

Pointer to a rectangle that defines, in the coordinates of
srcimage, the location and size of the portion of the image to be
copied to dstwin.

Description

This function draws an image in a window (including print
windows) or pixmap. The color of each pixel is mapped to the
nearest available color in the palette of the destination window or
pixmap.

If *srcrctp and *dstrctp are not congruent, this function translates
and scales the image as necessary to fit it into the destination
rectangle. Any parts of the source or destination rectangles that fall
outside of the bounds of their respective containers are ignored
(clipped).

xvt_dwin_draw_image ignores the drawing mode of dstwin, and
always uses M_COPY.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• srcimage is NULL or invalid

• dstwin is not a valid drawable window or pixmap

• dstwin is a dialog or control

• dstrctp or srcrctp is not a valid pointer to a rectangle

• srsrstp is an empty rectangle

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

M_* Values for DRAW_MODE
RCT
WINDOW
XVT_IMAGE
XVT_PIXMAP
xvt_dwin_draw_icon
xvt_dwin_draw_pmap
xvt_image_transfer

The "Color Mapping" and "Transfer Operations" sections of the
"Portable Images" chapter in the XVT Portability Toolkit Guide

Example

/* draw image at double size into window */
RCT src_rect, dst_rect;
short height, width;
xvt_image_get_dimensions(image, &width, &height);
xvt_rect_set(&src_rect, 0, 0, width, height);
xvt_rect_set(&dst_rect, 0, 0, (width-1)*2 + 1,

 (height-1)*2 + 1);
 xvt_dwin_draw_image(window, image, &dst_rect,

 &src_rect);

xvt_dwin_draw_line
 Draw Line from Current Position to Point

Summary

void xvt_dwin_draw_line(WINDOW win, PNT pnt)

WINDOW win

Window in which to draw the line.

PNT pnt

Ending point of the line.

Description

This function draws a line (without arrowheads) from the current
pen position to the point indicated by pnt, in the client area of win.

The current pen position is set with a previous call to
xvt_dwin_draw_set_pos, xvt_dwin_draw_aline, or
xvt_dwin_draw_line. Intervening calls to other drawing functions
leave the pen position in an undefined location, so make sure to set
the pen position explicitly if this is the case.

The current CPEN and DRAW_MODE are used to draw the line. The
current CBRUSH is not used.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

CBRUSH
CPEN
DRAW_MODE
PNT
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_draw_aline
xvt_dwin_draw_line
xvt_dwin_draw_set_pos

Example

This code draws a line from (10, 15) to (100, 75).

PNT pnt;pnt.h = 10;
pnt.v = 15;
xvt_dwin_draw_set_pos(win, pnt);
pnt.h = 100;
pnt.v = 75;
xvt_dwin_draw_line(win, pnt);

xvt_dwin_draw_oval
 Draw Oval

Summary

void xvt_dwin_draw_oval(WINDOW win, RCT *rctp)

WINDOW win

Window in which to draw the oval.

RCT *rctp

Bounding rectangle of an oval (ellipse). If the RCT* parameter to
this function is an empty rectangle, nothing will be drawn.

Description

This function draws an oval (ellipse) that is bounded by the rectangle
pointed to by rctp. The rectangle must be valid, with rctp->top less
than rctp->bottom and rctp->left less than rctp->right.

The current CPEN, CBRUSH, and DRAW_MODE are used to draw the oval.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• rctp must be a valid non-empty rectangle

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

CBRUSH
COLOR_*, COLOR_INVALID Constants
PAT_* Values for PAT_STYLE
RCT
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_draw_arc
xvt_dwin_draw_oval
xvt_dwin_draw_rect
xvt_dwin_set_cbrush
xvt_dwin_set_std_cpen
xvt_rect_set

Example

The following code draws a circle surrounded by an ellipse. Note
that the "circle" will be circular only if the horizontal and vertical
resolutions are equal.

RCT rct;
CBRUSH brush;xvt_dwin_set_std_cpen(

win,TL_BLACK_PEN);
brush.pat = PAT_SOLID;
brush.color = COLOR_LTGRAY;
xvt_dwin_set_cbrush(win, &brush); /* ellipse */
xvt_rect_set(&rct, 50, 75, 200, 125);
xvt_dwin_draw_oval(win, &rct);
brush.color = COLOR_DKGRAY;
xvt_dwin_set_cbrush(win, &brush);
xvt_rect_set(&rct, 100, 75, 150, 125); /* circle */
xvt_dwin_draw_oval(win, &rct);

xvt_dwin_draw_pict
 Draw Encapsulated Picture

Summary

void xvt_dwin_draw_pict(WINDOW win, PICTURE pic,
 RCT *rctp)

WINDOW win

Window in which to draw an encapsulated picture.

PICTURE pic

Picture.

RCT *rctp

win must be a valid XVT WINDOW of type W_* except W_SCREEN
and W_TASK.. Destination rectangle. If the RCT* parameter to
this function is an empty rectangle, nothing will be drawn.

Description

This function draws a PICTURE in the client area of win.

Note: The current drawing tools have no effect on the rendering of the
PICTURE. It is recommended that the PICTURE drawing rectangle be
cleared either in the PICTURE or in the window prior to calling
xvt_dwin_draw_pict.

The PICTURE will be expanded, reduced or stretched to fit in the
rectangle specified by rctp. For best results, the destination frame
should be the same shape as the frame in which the PICTURE was
originally drawn.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• rctp must be a valid non-empty rectangle

Implementation Note

On XVT/Mac, PICTUREs are Mac PICTs, which scale and stretch
nicely. On XVT/Win32 and XVT/XM, a PICTURE is a bitmap, which
tends to look "jaggy" when scaled or stretched. To avoid any of these
artifacts, you should draw the PICTURE in its original size.

On systems where PICTUREs are bitmaps, drawing the PICTURE in its
original size is significantly faster than scaling or stretching it.

Normally, TASK_WIN is not a valid window for this function.
However, on XVT/Win32, you can set the non-portable attribute
ATTR_WIN_PM_DRAWABLE_TWIN before the call to xvt_app_create. In
that case, TASK_WIN would be a valid window for this function.

See Also

PICTURE
RCT
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_open_pict
xvt_pict_create

The "Drawing and Pictures"chapter in the XVT Portability Toolkit
Guide

Example

See the example for xvt_pict_create.

xvt_dwin_draw_pie
 Draw a Pie Section of an Oval

Summary

void xvt_dwin_draw_pie(WINDOW win, RCT *rctp,
 int start_x, int start_y, int stop_x, int stop_y)

WINDOW win

Window in which to draw the pie section of an oval.

RCT *rctp

win must be a valid XVT WINDOW of type W_* except W_SCREEN
and W_TASK.. Bounding rectangle of oval. If the RCT* parameter
to this function is an empty rectangle, nothing will be drawn.

int start_x

Starting x-coordinate.

int start_y

Starting y-coordinate.

int stop_x

Stopping x-coordinate.

int stop_y

Stopping y-coordinate.

Description

This function draws a section of an oval (a pie slice) in the client area
of win. The oval is bounded by the rectangle pointed to by rctp. Just
as with xvt_dwin_draw_arc, an arc is drawn counter-clockwise
along the oval, from the point (start_x, start_y) to the point
(stop_x, stop_y).

If one (or both) of these points is not exactly on the oval, an
imaginary line is drawn from the center of the bounding rectangle to
the point, and the intersection of that line and the oval is taken as the
starting or stopping point. Then lines are drawn from the center of
the rectangle to each end of the arc to construct an enclosed shape.
xvt_dwin_draw_pie requires a normalized rectangle; that is, rctp-
>top less than rctp->bottom and rctp->left less than rctp-
>right.

The current CPEN, CBRUSH, and DRAW_MODE are used to draw the pie
section.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• rctp must be a valid non-empty rectangle

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

CBRUSH
COLOR_*, COLOR_INVALID Constants
PAT_* Values for PAT_STYLE
RCT
TASK_WIN
TL_* Constants
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_draw_arc
xvt_dwin_set_cbrush
xvt_dwin_set_std_cpen
xvt_rect_set
xvt_vobj_get_client_rect

Example

The following code draws a pie section that covers an eighth of an
oval, going from a point due south to a point southwest:

RCT rct;
CBRUSH brush;brush.pat = PAT_BDIAG;
brush.color = COLOR_WHITE;
xvt_dwin_set_cbrush(win, &brush);
xvt_dwin_set_std_cpen(win, TL_PEN_BLACK);
xvt_rect_set(&rct, 100, 40, 200, 90);
xvt_dwin_draw_pie(win, &rct, 100, 90, 150, 90);

Assuming that the piece of pie just drawn was the first piece cut, this
code draws the remaining part of the pie, by reversing the starting
and stopping points:

RCT rct;
CBRUSH brush;brush.pat = PAT_BDIAG;
brush.color = COLOR_WHITE;
xvt_dwin_set_cbrush(win, &brush);
xvt_dwin_set_std_cpen(win, TL_PEN_BLACK);
xvt_rect_set(&rct, 100, 40, 200, 90);
xvt_dwin_draw_pie(win, &rct, 150, 90, 100, 90);

xvt_dwin_draw_pmap
 Draw a Pixmap in a Window or Pixmap

Summary

void xvt_dwin_draw_pmap(WINDOW dstwin,
 XVT_PIXMAP srcpmap, RCT *dstrctp, RCT *srcrctp)

WINDOW dstwin

Window in which to draw the image. It can be a drawable
window, a print window, or an XVT_PIXMAP.

XVT_PIXMAP srcpmap

Pixmap to be drawn.

RCT *dstrctp

Pointer to a rectangle that defines, in the coordinates of dstwin,
the location and size of the drawn pixmap. If the "destination"
rectangle (dstrctp) is empty, nothing will be drawn.

RCT *srcrctp

Pointer to a rectangle that defines, in the coordinates of
srcpmap, the location and size of the portion of the pixmap to be
copied to dstwin.

Description

This function draws a pixmap in a window or pixmap. No color
mapping is performed; the colors of the pixmap are unpredictably
altered if srcpmap and dstwin do not have identical color palettes.

If *srcrctp and *dstrctp are not congruent, this function translates
and scales the image as necessary to fit it into the destination
rectangle. Any parts of the source or destination rectangles that fall
outside of the bounds of their respective containers are ignored.

xvt_dwin_draw_pmap uses the drawing mode of dstwin when
drawing the pixmap.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• dstwin is a dialog or control

• dstwin is not a valid window or pixmap

• srcpmap is NULL or invalid

• dstrctp or srcrctp are NULL, empty, or invalid rectangles

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

RCT
WINDOW
XVT_PIXMAP
xvt_dwin_draw_icon
xvt_dwin_draw_image
xvt_dwin_set_draw_mode
xvt_rect_set

The "Palettes" and "Transfer Operations" sections of the "Portable
Images" chapter in the XVT Portability Toolkit Guide

Example

/* draw Pixmap at double size into window */
RCT src_rect, dst_rect;
xvt_dwin_get_client_rect(pixmap, &src_rect);
xvt_rect_set(&dst_rect, 0, 0, (src_rect.right-1)*2 + 1,

 (src_rect.bottom-1)*2 + 1);
 xvt_dwin_draw_pmap(window, pixmap, &dst_rect,

 &src_rect);

xvt_dwin_draw_polygon
 Draw a Polygon

Summary

void xvt_dwin_draw_polygon(WINDOW win, PNT *lpnts,
 int npnts)

WINDOW win

Window in which to draw the polygon.

PNT *lpnts

Array of points.

int npnts

Number of points.

Description

This function draws a polygon described by npnts vertices in the
array lpnts. The polygon is drawn into the client area of win. If the
starting and ending points don’t coincide, an additional side is drawn
to close the shape by connecting the starting and ending points, so
that there is an enclosed interior. The points are connected in order
found in the array. If any sides intersect, the determination of what’s
inside and what’s outside is platform-specific.

The current CPEN, CBRUSH, and DRAW_MODE are used to draw the
polygon.

Note: For efficiency, set the first point equal to the last point. Otherwise,
XVT might have to allocate a temporary array with npnts + 1 points
in it.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• The list of points must not be NULL

Implementation Note

For portability, the polygon’s sides should not intersect (on some
platforms, intersecting sides result in undefined behavior).

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window for
this function.

See Also

CBRUSH
CPEN
DRAW_MODE
PICTURE
PNT
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_draw_line
xvt_dwin_draw_polyline
xvt_dwin_draw_rect
xvt_dwin_set_std_cbrush
xvt_dwin_set_std_cpen

Example

This code draws a triangle. Note that this uses only three points,
since the shape is automatically closed. Compare this example to the
one under the topic xvt_dwin_draw_polyline.

static PNT p[] = { {100, 50}, {200, 75}, {150, 125}
};xvt_dwin_set_std_cpen(win, TL_PEN_BLACK);

xvt_dwin_set_cbrush(win, &white_cbrush);
xvt_dwin_draw_polygon(win, p, 3);

As mentioned above, on some platforms it may be more efficient to
specify four points, like this:

static PNT p[] = { {100, 50}, {200, 75}, {150, 125},
 {100, 50} };

With this call:

xvt_dwin_draw_polygon(win, p, 4);

In addition, closing the polygon (i.e., setting the first point equal to
the last point) is consistent with using xvt_dwin_draw_polyline to
draw a polygon with a border.

xvt_dwin_draw_polyline
Draw a Polyline

Summary

void xvt_dwin_draw_polyline(WINDOW win, PNT *lpnts,
 int npnts)

WINDOW win

Window in which to draw the polyline.

PNT *lpnts

Array of points.

int npnts

Number of points.

Description

This function connects the npnts points in the lpnts array with
straight lines, and draws the lines in the client area of win. The last
point is not automatically connected to the first; if you want a closed
shape, make them the same. However, even if you do, the shape is
not considered to have an interior. If you want an interior, use
xvt_dwin_draw_polygon.

The current CPEN and DRAW_MODE are used to draw the polyline. The
current CBRUSH is not used.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• lpnts must be a valid list of points

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

CBRUSH
CPEN
DRAW_MODE
PNT
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_draw_line
xvt_dwin_draw_polygon
xvt_dwin_draw_rect
xvt_dwin_set_std_cpen

Example

This code draws a triangle. Note that this takes four points, not three,
since the first and last points have to be the same to create a closed
shape.

static PNT p[] = { {100, 50}, {200, 75}, {150, 125},
 {100, 50} };

xvt_dwin_set_std_cpen(win, TL_PEN_BLACK);
xvt_dwin_draw_polyline(win, p, 4);

xvt_dwin_draw_rect
 Draw a Rectangle

Summary

void xvt_dwin_draw_rect(WINDOW win, RCT *rctp)

WINDOW win

Window in which to draw the rectangle.

RCT *rctp

Rectangle. If the RCT* parameter to this function is an empty
rectangle, nothing will be drawn.

Description

This function draws the rectangle pointed to by rctp in the client
area of win. The rectangle must be normalized, with rctp->top less
than rctp->bottom and rctp->left less than rctp->right.

The current CPEN, CBRUSH, and DRAW_MODE are used to draw the
rectangle.

A special usage of xvt_dwin_draw_rect is to support the inverting
of text to show selection. Draw a rectangle over previously drawn
text in M_XOR mode using a PAT_HOLLOW pen and a COLOR_BLACK solid
brush. Other methods might display gaps between selection
rectangles that are supposed to touch. The above method doesn’t
produce this problem.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• rctp must be a valid non-empty rectangle

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

CBRUSH
COLOR_*, COLOR_INVALID Constants
CPEN
DRAW_MODE
M_* Values for DRAW_MODE
PAT_* Values for PAT_STYLE
RCT
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_draw_line
xvt_dwin_draw_polygon
xvt_dwin_draw_polyline
xvt_dwin_draw_roundrect

The "Showing Text Selections" section of the "Fonts and Text"
chapter in the XVT Portability Toolkit Guide

Example

This code draws a rectangle:

RCT rct;
CBRUSH brush;brush.pat = PAT_DIAGCROSS;
brush.color = COLOR_WHITE;
xvt_dwin_set_cbrush(win, &brush);
xvt_dwin_set_std_cpen(win, TL_PEN_BLACK);
xvt_rect_set(&rct, 100, 40, 200, 90);
xvt_dwin_draw_rect(win, &rct);

xvt_dwin_draw_roundrect
 Draw a Rectangle with Rounded Corners

Summary

void xvt_dwin_draw_roundrect(WINDOW win, RCT *rctp,
 int oval_width, int oval_height)

WINDOW win

Window in which to draw the rectangle with rounded corners.

RCT *rctp

Bounding rectangle. If the RCT* parameter to this function is an
empty rectangle, nothing will be drawn.

int oval_width

Width of corner oval.

int oval_height

Height of corner oval.

Description

This function draws the rounded rectangle bounded by rctp, in the
client area of win. This is similar to xvt_dwin_draw_rect, but the
corners are rounded. Each corner is a quadrant of an oval that is
oval_width wide and oval_height high. The rectangle must be
normalized, with rctp->top less than rctp->bottom and rctp-
>left less than rctp->right.

The current CPEN, CBRUSH, and DRAW_MODE are used to draw the
rounded rectangle.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• rctp must be a valid non-empty rectangle

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

CBRUSH
COLOR_*, COLOR_INVALID Constants
CPEN
DRAW_MODE
PAT_* Values for PAT_STYLE
PICTURE
PNT
RCT
TASK_WIN
TL_* Constants
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_draw_oval
xvt_dwin_draw_polygon
xvt_dwin_draw_rect

Example

This code draws a rounded rectangle.

RCT rct;
CBRUSH brush;brush.pat = PAT_DIAGCROSS;
brush.color = COLOR_WHITE;
xvt_dwin_set_cbrush(win, &brush);
xvt_dwin_set_std_cpen(win, TL_PEN_BLACK);
xvt_rect_set(&rct, 100, 40, 200, 90);
xvt_dwin_draw_roundrect(win, &rct, 10, 15);

xvt_dwin_draw_set_pos
 Move Pen Position to Point

Summary

void xvt_dwin_draw_set_pos(WINDOW win, PNT pnt)

WINDOW win

Window whose current pen position is to be moved.

PNT pnt

Location of the point to which the pen is being moved.

Description

This function moves the current pen position for win to the location
indicated by pnt, without drawing anything. The current pen

position is used in conjunction with the xvt_dwin_draw_aline and
xvt_dwin_draw_line functions.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid value for win. However, on XVT/
Win32, you can set the non-portable attribute
ATTR_WIN_PM_DRAWABLE_TWIN before the call to xvt_app_create. In
that case, TASK_WIN would be a valid window for this function.

See Also

PNT
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_draw_aline
xvt_dwin_draw_line
xvt_dwin_draw_polyline

Example

See the example for xvt_dwin_draw_line.

xvt_dwin_draw_text
 Draw Text String

Summary

void xvt_dwin_draw_text(WINDOW win, int x, int y,
char *s, int len)

WINDOW win

Window in which to draw the text string.

int x

Starting x-coordinate; the left side of the first character.

int y

Starting y-coordinate; the text’s baseline.

char *s

Single-byte or multbyte text string.

int len

Number of characters in the string (if -1, the entire string is
output).

Description

This function outputs the text string s starting at the point (x, y), into
the client area of win. The drawing is performed such that the text’s
baseline is at y, and the left side of the first character starts at x.

At most len characters are output, but if len is -1, the entire string
is output. The results are undefined if len is greater than the length
of the string. If len is -1, the string s must be NULL-terminated.

Text is drawn in the current font. Normally, only the "ink" or
foreground making up the characters is transferred during drawing.
Therefore, if text is drawn on top of existing graphics, the
background will show through and around the text. However, if the
opaque_text member of the current DRAW_CTOOLS is set to TRUE, the
text and its opaque background will cover whatever is behind the
text. The current CPEN and CBRUSH are ignored. Text is always drawn
in the current foreground color.

ASCII control characters (e.g., tab, backspace, or return) in the
string are ignored. Text layout implied by these controls must
instead be achieved through drawing the text in segments and
positioning each segment in the window with appropriate x and y
values.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• s must be a valid NULL-terminated string

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

DRAW_CTOOLS
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create

For a diagram that depicts the positioning of text, see the "Drawing
and Pictures" chapter in the XVT Portability Toolkit Guide

Example

In this code, the first call to xvt_dwin_draw_text draws characters
on a white background. In the second call the text is drawn on a gray
background. Note that the gray background makes the characters
hard to read on a system where gray is synthesized by "dithering"
black-and-white pixels (on a monochrome Mac, for example).

RCT rct;
CBRUSH brush; xvt_dwin_set_std_cpen(

win, TL_PEN_BLACK);
xvt_dwin_set_font_family(win, XVT_FFN_HELVETICA);
xvt_dwin_set_font_style(win, XVT_FS_BOLD);
xvt_dwin_set_font_size(win, 24);
xvt_dwin_set_std_cbrush(win, TL_BRUSH_WHITE);
xvt_rect_set(&rct, 100, 40, 300, 90);
xvt_dwin_draw_rect(win, &rct);
xvt_dwin_draw_text(win, 110, 75, "Hello World", -1);

/* very legible */
 brush.pat = PAT_DIAGCROSS;
brush.color = COLOR_GRAY;
xvt_dwin_set_cbrush(win, &brush);
win_xvt_rect_set(win, &rct, 100, 100, 300, 150);
xvt_dwin_draw_rect(win, &rct);
xvt_dwin_draw_text(win, 110, 135, "Hello World", -1);

/* barely legible */

To draw text that’s guaranteed to be readable without first drawing
a rectangle, use an opaque background:

DRAW_CTOOLS tools;
xvt_app_get_default_ctools(&tools);
tools.opaque_text = TRUE;
xvt_dwin_set_draw_ctools(win, &tools);
xvt_dwin_draw_text(win, 110, 75, "Hello World", -1);

xvt_dwin_get_clip
 Get a Clipping Rectangle for a Window

Summary

RCT *xvt_dwin_get_clip(WINDOW win, RCT *rctp)

WINDOW win

Window for which to get the clipping rectangle. It can be any
regular window, print window, or XVT_PIXMAP.

RCT *rctp

Clipping rectangle.

Description

This function gets the clipping rectangle for any regular or print
window. The clipping rectangle limits drawing in a window to a
particular rectangle, and is set by a previous call to
xvt_dwin_set_clip.

The clipping rectangle returned by xvt_dwin_get_clip is relative to
the coordinates of the WINDOW, and is stored in the RCT pointed to by
rctp. If no previous call to xvt_dwin_set_clip has been made, then
xvt_dwin_get_clip returns a rectangle at least as large as the client
area.

Return Value

RCT pointed to by rctp.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Drawable windows, print windows, and XVT_PIXMAPs are
valid values for win

• rctp must be a valid pointer to a rectangle

Implementation Note

You cannot get a clipping rectangle for the task window unless the
application is running on the XVT/Win32 platforms, and the
attribute ATTR_WIN_PM_DRAWABLE_TWIN has been set.

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

RCT
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_dwin_set_clip

xvt_dwin_get_draw_ctools
 Get Color Drawing Tools

Summary

DRAW_CTOOLS *xvt_dwin_get_draw_ctools(WINDOW win,
 DRAW_CTOOLS *ctoolsp)

WINDOW win

Window whose color drawing tools are being retrieved.

DRAW_CTOOLS *ctoolsp

Pointer to a set of color drawing tools.

Description

This function gets the current set of color drawing tools for win. The
argument points to a DRAW_CTOOLS structure that will contain the
retrieved tools. The main purpose for calling this function is to save
the tools for later restoration with a call to
xvt_dwin_set_draw_ctools. Another purpose for this function is to
allow your application to modify fields that cannot be set directly,
such as opaque_text.

Note: This function does not get the drawing font for a window. To
accomplish this task, you can call xvt_dwin_get_font.

Return Value

Value of ctoolsp argument.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• ctoolsp must not be NULL

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

CBRUSH
CPEN
DRAW_CTOOLS
M_* Values for DRAW_MODE
TASK_WIN
WINDOW
XVT_FNTID
XVT_PIXMAP
xvt_app_create
xvt_dwin_set_draw_ctools
xvt_dwin_get_font

Example

In this example, pairing the calls to xvt_dwin_get_draw_ctools
and xvt_dwin_set_draw_ctools is used to avoid disturbing the tool
settings for a window:

/* draw selection box around "objp" */
RCT rct;
DRAW_CTOOLS save_tools, t;
xvt_dwin_get_draw_ctools(win, &save_tools);
xvt_app_get_default_ctools(&t);
t.pen.width = FRM_WIDTH;
t.brush.pat = PAT_HOLLOW;
t.mode = M_XOR;
xvt_dwin_set_draw_ctools(win, &t);
xvt_rect_set(&rct,

objp->left - FRM_WIDTH, objp->top - FRM_WIDTH,
objp->right + FRM_WIDTH,
objp->bottom + FRM_WIDTH);

xvt_dwin_draw_rect(win, &rct);
xvt_dwin_set_draw_ctools(win, &save_tools);

Note: Also see the example for xvt_win_trap_pointer.

xvt_dwin_get_font*
 xvt_dwin_get_font* Funtions

xvt_dwin_get_font
xvt_dwin_get_font_app_data
xvt_dwin_get_font_family
xvt_dwin_get_font_family_mapped
xvt_dwin_get_font_metrics
xvt_dwin_get_font_native_desc
xvt_dwin_get_font_size
xvt_dwin_get_font_size_mapped
xvt_dwin_get_font_style
xvt_dwin_get_font_style_mapped

xvt_dwin_get_font
 Get Logical Font Information for a Window

Summary

XVT_FNTID xvt_dwin_get_font(WINDOW win)

WINDOW win

Window whose logical font is being inquired.

Description

This function gives an application information about the logical font
associated with a drawable window. It does this by copying the
window’s logical font information into a new logical font and
returning it. The application’s calling function owns the logical font
and is responsible for destroying it (with xvt_font_destroy).

Changes you make to this logical font do not affect the logical font
used by the window. To change the window’s logical font, you must
call xvt_dwin_set_font or any of the f0 attribute setting
functions.

Return Value

A copy of the logical font associated with the window.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• The window is NULL, invalid, or non-drawable

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

WINDOW
XVT_FNTID
XVT_PIXMAP
xvt_dwin_get_font*
xvt_dwin_set_font
xvt_dwin_set_font_*
xvt_font_destroy

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

For getting and setting font attributes for a window, is it simpler and
more efficient to use f0 and xvt_dwin_set_font* functions, like
this:

WINDOW window;
long size;
...
size = xvt_dwin_get_font_size(window);
xvt_dwin_set_font_size(window, size * 2);

than it is to use xvt_font_get_* and xvt_font_set_* with
xvt_dwin_get_font, like this:

WINDOW window;
long size;
XVT_FNTID font_id;
...
font_id = xvt_dwin_get_font(window);
size = xvt_font_get_size(font_id);
xvt_font_set_size(font_id, size * 2);
xvt_dwin_set_font(window, font_id);
xvt_font_destroy(font_id);

xvt_dwin_get_font_app_data
 Get the Application Data From a Window’s Font

Summary

long xvt_dwin_get_font_app_data(WINDOW win)

WINDOW win

Window from which to get the logical font application data.

Description

This function gets the application data from the specified window’s
logical font.

This function behaves just like xvt_font_get_app_data, except
that it applies to the logical font owned by the window, instead of to
an application-specific logical font.

Return Value

The application data from the window’s logical font if successful; 0
if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

WINDOW
XVT_PIXMAP
xvt_dwin_get_font
xvt_dwin_set_font_app_data
xvt_font_get_app_data

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

For information on the use of the xvt_dwin_get_font* and
xvt_dwin_set_font* functions, see the example for
xvt_dwin_get_font.

xvt_dwin_get_font_family
 Get the Family from a Window’s Font

Summary

BOOLEAN xvt_dwin_get_font_family(WINDOW win,
 char* buf, long max_buf)

WINDOW win

Window from which to get font family.

char* buf

Buffer into which family is put.

long max_buf

Maximum size of buffer, in bytes.

Description

This function gets the family from the specified window’s logical
font and places it into the application-supplied buffer. If an error
occurs, the buffer is filled with NULL.

This function behaves just like xvt_font_get_family, except that it
applies to the logical font owned by the window, instead of to an
application-specific logical font.

Return Value

TRUE if successful; FALSE if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• win must be a drawable window

• buf must be a valid character pointer

• family should fit into buf

• max_buf should be greater than zero

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

WINDOW
XVT_PIXMAP
xvt_dwin_get_font
xvt_dwin_set_font_family
xvt_font_get_family

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

For information on the use of the xvt_dwin_get_font_* and
xvt_dwin_set_font_* functions, see the example for
xvt_dwin_get_font.

xvt_dwin_get_font_family_mapped
 Get the Mapped Family from a Window’s Font

Summary

BOOLEAN xvt_dwin_get_font_family_mapped(WINDOW
win, char* buf, long max_buf)

WINDOW win

Window from which to get font family.

char* buf

Buffer into which family is to be put.

long max_buf

Maximum size of buffer, in bytes.

Description

This function gets the mapped family from the specified window’s
logical font and places it into the application-supplied buffer. If an
error occurs, the buffer is filled with NULL. If the window’s logical
font is not already mapped, this function maps it.

This function behaves just like xvt_font_get_family_mapped,
except that it applies to the logical font owned by the window,
instead of to an application-specific logical font. Also, unlike
xvt_font_get_family_mapped, if the logical font is not mapped,
this function maps it, rather than generating an error.

Return Value

TRUE if successful; FALSE if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• buf must be a valid character pointer

• family should fit into buf

• max_buf should be greater than zero

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

WINDOW
XVT_PIXMAP
xvt_dwin_get_font
xvt_dwin_set_font_family
xvt_font_get_family_mapped

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

For information on the use of the xvt_dwin_get_font* and
xvt_dwin_set_font* functions, see the example for
xvt_dwin_get_font.

xvt_dwin_get_font_metrics
 Get Mapped Logical Font Metrics for a Window

Summary

void xvt_dwin_get_font_metrics(WINDOW win,
int *leadingp, int *ascentp, int *descentp)

WINDOW win

Window whose mapped logical font metrics are being queried.

int *leadingp

Pointer to font’s leading.

int *ascentp

Pointer to font’s ascent.

int *descentp

Pointer to font’s descent.

Description

This function lets you quickly get metrics for a mapped logical font
in a window. It gets three attributes of win’s current logical font:
leading, ascent, and descent; see figure below. These values are
returned through the corresponding integer-pointer arguments. If
any of these three pararmeters is NULL, that particular metric isn’t
returned.

Font metrics

If the application previously set a window’s logical font with
xvt_dwin_set_font, or with any of the xvt_dwin_set_font*
attribute setting functions, this inquiry returns metrics for that
logical font.

For normally spaced text, you should use a line spacing equal to the
sum of the three metric values.

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on XVT/Win32, you can set the non-portable attribute
ATTR_WIN_PM_DRAWABLE_TWIN before calling xvt_app_create, in
which case TASK_WIN would be a valid window for this function.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• The window is NULL or invalid

See Also

TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_get_font
xvt_dwin_draw_text
xvt_dwin_set_font
xvt_dwin_set_font_*
xvt_font_get_metrics
xvt_dwin_get_text_width

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

See the examples for xvt_dwin_get_font and
xvt_dwin_get_text_width.

xvt_dwin_get_font_native_desc
 Get The Native Font Descriptor from a Window’s Font

Summary

BOOLEAN xvt_dwin_get_font_native_desc(WINDOW win,
char* buf, long max_buf)

WINDOW win

Window from which to get native font descriptor.

char* buf

Buffer into which native descriptor is to be put.

long max_buf

Maximum size of buffer, in bytes.

Description

This function gets the native font descriptor from the specified
window’s logical font and places it into the application-supplied
buffer.

This function behaves just like xvt_font_get_native_desc, except
that it applies to the logical font owned by the window, instead of to
an application-specific logical font.

Return Value

TRUE if successful; FALSE if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK))

• win is not a dialog or control

• win must be a drawable window

• Print windows and XVT_PIXMAPs are valid values for win

• The native descriptor must fit into buf

• buf must be a valid character pointer

• max_buf must be greater than zero

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

WINDOW
XVT_PIXMAP
xvt_dwin_get_font
xvt_dwin_set_font_native_desc
xvt_font_get_native_desc

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

For information on the use of the xvt_dwin_get_font_* and
xvt_dwin_set_font* functions, see the example for
xvt_dwin_get_font.

xvt_dwin_get_font_size
 Get the Size from a Window’s Font

Summary

long xvt_dwin_get_font_size(WINDOW win)

WINDOW win

Window from which to get the font size.

Description

This function gets the size from the specified window’s logical font.
This function behaves just like xvt_font_get_size, except that it
applies to the logical font owned by the window, instead of to an
application-specific logical font.

Return Value

The logical font size if successful; 0 if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

WINDOW
XVT_PIXMAP
xvt_dwin_set_font
xvt_dwin_set_font_size
xvt_font_get_size

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

For information on the use of the xvt_dwin_get_font* and
xvt_dwin_set_font* functions, see the example for
xvt_dwin_set_font.

xvt_dwin_get_font_size_mapped
 Get the Mapped Size from a Window’s Font

Summary

long xvt_dwin_get_font_size_mapped(WINDOW win)

WINDOW win

Window from which to get the mapped size.

Description

This function gets the mapped size from the specified window’s
logical font. If the window’s logical font is not already mapped, this
function maps it.

This function behaves just like xvt_font_get_size_mapped, except
that it applies to the logical font owned by the window, instead of to
an application-specific logical font. Also, unlike
xvt_font_get_size_mapped, if the logical font is not mapped, this
function maps it, rather than generating an error.

Return Value

The font size if successful; 0 if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-

portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

WINDOW
XVT_PIXMAP
xvt_dwin_get_font
xvt_dwin_set_font_size
xvt_font_get_size_mapped

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

For information on the use of the xvt_dwin_get_font* and
xvt_dwin_set_font* functions, see the example for
xvt_dwin_get_font.

xvt_dwin_get_font_style
 Get the Style from a Window’s Font

Summary

XVT_FONT_STYLE_MASK xvt_dwin_get_font_style(WINDOW win)

WINDOW win

Window from which to get the style.

Description

This function gets the style from the specified window’s logical font.

This function behaves just like xvt_font_get_style, except that it
applies to the logical font owned by the window, instead of to an
application-specific logical font.

Return Value

The style mask if successful; XVT_FS_NONE if no styles apply to the
logical font, or if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

WINDOW
XVT_FS_* Constants
XVT_FONT_STYLE_MASK
XVT_PIXMAP
xvt_dwin_get_font
xvt_dwin_set_font_style
xvt_font_get_style

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

For information on the use of the xvt_dwin_get_font* and
xvt_dwin_set_font* functions, see the example for
xvt_dwin_get_font.

xvt_dwin_get_font_style_mapped
 Get the Mapped Style from a Window’s Font

Summary

XVT_FONT_STYLE_MASK
 xvt_dwin_get_font_style_mapped(WINDOW win)

WINDOW win

Window from which to get the mapped style.

Description

This function gets the mapped style from the specified window’s
logical font. If the window’s logical font is not already mapped, this
function maps it.

This function behaves just like xvt_font_get_style_mapped,
except that it applies to the logical font owned by the window,
instead of to an application-specific logical font. Also, unlike
xvt_font_get_style_mapped, if the logical font is not mapped, this
function maps it, rather than generating an error.

Return Value

The style mask if successful; XVT_FS_NONE if no styles apply to the
mapped font, or if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

WINDOW
XVT_FS_* Constants
XVT_FONT_STYLE_MASK
XVT_PIXMAP
xvt_dwin_get_font
xvt_dwin_set_font_style
xvt_font_get_style_mapped

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

For information on the use of the xvt_dwin_get_font* and
xvt_dwin_set_font* functions, see the example for
xvt_dwin_get_font.

xvt_dwin_get_text_width
 Get Width of Text String

Summary

int xvt_dwin_get_text_width(WINDOW win, char *s,
 int len)

WINDOW win

Window whose current mapped logical font information is
being queried.

char *s

String whose width is being measured.

int len

Number of characters, or all characters if len is -1.

Description

This function gets the width in pixels of the text string s using win’s
current logical font. At most, len characters are considered, or all
characters in s if len is -1. This function is useful for calculating text
layout, especially word wrapping.

You have to set the current logical font with xvt_dwin_set_font or
with any of the xvt_dwin_set_font* attribute setting functions
before you call xvt_dwin_get_text_width, even if you don’t plan
to draw in that logical font. Otherwise, you will get the text width for
whatever logical font was set previously.

To get the width of a string made of several different logical fonts
(e.g., when the size or style varies), call xvt_dwin_get_text_width
for the substrings that share a common logical font and add up the
widths. Using a len argument other than -1 is handy for this because
the substrings need not be NULL-terminated. The text width is not
always a sum of the widths of individual characters.

Return Value

The width in pixels if successful; -1 if an error occurs.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_draw_text
xvt_dwin_set_font
xvt_dwin_set_font_*

Example

int ascent, descent, width;
char *text;
RCT rect;
...
/* draw text with box around it */
xvt_dwin_get_font_metrics(window, NULL, &ascent,

&descent);
width = xvt_dwin_get_text_width(window, text, -1);
xvt_rect_set(&rect, 50, 100 - ascent, 50 + width,

100 + descent);
xvt_dwin_draw_rect(window, &rect);
xvt_dwin_draw_text(window, 50, 100, text, -1)

xvt_dwin_invalidate_rect
 Schedule a Rectangular Area for Updating

Summary

void xvt_dwin_invalidate_rect(WINDOW win, RCT *rctp)

WINDOW win

Window containing the rectangular region to be updated. It can
be any regular XVT window, but it cannot be a screen window,
dialog, control, print window, or XVT_PIXMAP.

RCT *rctp

Pointer to the invalid rectangle. If NULL, the entire client area is
invalidated.

Description

This function tells XVT that the contents of a rectangular region of
a WINDOW is invalid and should be redrawn.

rctp should point to RCT, specifying the invalid rectangle in the
coordinates of win. If rctp is NULL, the entire client area is
considered to be invalid. RCT must not specify an empty rectangle,
as the resulting behavior is undefined.

After your application calls xvt_dwin_invalidate_rect, if the
event mask for the WINDOW does not screen out E_UPDATE events,
XVT sends an E_UPDATE event to the event handler for the WINDOW.
The v.update.rct field in the EVENT structure will contain a
rectangle the same size or larger than the rectangle defined by rctp.

Unless the conditions described in the "E_UPDATE Events" section of
"Events" in the XVT Portability Toolkit Guide apply, calling this
function is the preferred way to cause something to be drawn in a
window. For the reasons explained there, it is preferred to redrawing
the area directly.

You must not assume anything about the generation of E_UPDATE
event(s), such as when they will be generated, how many will be
generated, or what region they will cover (except that they will
include the invalidated region). To force the E_UPDATE event(s) to be
processed immediately, call the function xvt_dwin_update. When
updating disjointed regions via multiple
xvt_dwin_invalidate_rect calls, insert xvt_dwin_update
between them to speed updates on some systems. If you choose to
use this approach, be careful to handle the resulting recursion
properly.

If the rectangle you are invalidating has a border that you want
redrawn, you might need to increase the rectangle dimensions by the
line width on all sides.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• W_PIXMAPS and W_PRINT are not valid windows

• A non-NULL rectangle must be valid

• xvt_dwin_invalidate_rect must not be called during an
E_UPDATE event

Implementation Note

On XVT/Win32, xvt_dwin_invalidate_rect can be called for the
task window if the attribute ATTR_WIN_PM_DRAWABLE_TWIN was set
when the application was started.

See Also

RCT
TASK_WIN
W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
E_UPDATE
XVT_PIXMAP
xvt_dwin_update

The "E_UPDATE Events" section of the "Events" chapter in the XVT
Portability Toolkit Guide

xvt_dwin_is_update_needed
 Test if a Rectangle Requires Updating

Summary

BOOLEAN xvt_dwin_is_update_needed(WINDOW win,
 RCT *rctp)

WINDOW win

Regular or print window in which to test a rectangle.

RCT *rctp

Specified rectangle. If the RCT* parameter to this function is an
empty rectangle, this function returns FALSE.

Description

This function is used to optimize drawing in regular or print
windows. Calling xvt_dwin_is_update_needed will tell your
application whether or not the rectangle specified by rctp needs to
be redrawn. For non-print windows, it can be called only in response
to an E_UPDATE event. For print windows, it can be called within a
printing loop (when xvt_print_get_next_band returns a non-NULL
result). Like drawing functions, this function uses window-relative
coordinates.

If your application performs a lot of computation when drawing,
then you should draw only the part that needs to be redrawn. This
will make your application respond faster to updates, and print
faster.

However, calling xvt_dwin_is_update_needed is always optional,
because you can draw the entire window contents if you want to.
XVT will clip away drawing that falls outside the update region or
print band. Thus, calling xvt_dwin_is_update_needed only saves
the cost of executing the drawing functions--it doesn’t cut down on
the drawing itself, which is automatically minimized.

Applications that consist of a collection of objects drawn at arbitrary
places on the window might find calling
xvt_dwin_is_update_needed to be better suited than using the
rectangle provided in the v.update.rct field of an E_UPDATE event,
or returned by xvt_print_get_next_band. In this case, your
application calls xvt_dwin_is_update_needed once for the
bounding rectangle of each object, and draws that object only if
xvt_dwin_is_update_needed returns TRUE.

Applications that arrange drawing in regular rows and columns
might find using the rectangle provided in the v.update.rct field of
an E_UPDATE event, or returned by xvt_print_get_next_band, to be
better suited than calling xvt_dwin_is_update_needed. In this case,
your application can computationally determine the set of rows and
columns needing to be drawn in a straightforward fashion.

Return Value

TRUE if the argument rectangle overlaps the region that needs
updating; FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not an XVT_PIXMAP, dialog, or control

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

E_UPDATE
RCT
TASK_WIN
WINDOW
xvt_app_create
xvt_print_get_next_band

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

xvt_dwin_open_pict
 Prepare to Encapsulate Picture

Summary

BOOLEAN xvt_dwin_open_pict(WINDOW win, RCT *rctp)

WINDOW win

Window in which the picture is to be encapsulated.

RCT *rctp

Bounding rectangle.

Description

This function starts the process of encapsulating drawing operations
into a PICTURE by diverting all subsequent drawing operations
intended for win. Only one open picture is allowed for the window,
and only the drawing that occurs within the rectangle pointed to by
rctp becomes part of the picture. That rectangle, shifted upward and
leftward to have top and left coordinates of zero, becomes the
frame rectangle for the PICTURE. If you need to encapsulate a

PICTURE larger than the client area of win, the frame rectangle can
exceed the window boundaries.

You don’t get the PICTURE object until you call
xvt_dwin_close_pict.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not an XVT_PIXMAP, dialog, or control

• rctp must be a valid non-empty rectangle

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

Your application should clear the picture before drawing, as the
"initial" contents of the picture are not guaranteed to be portable.

See Also

PICTURE
RCT
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_clear
xvt_dwin_close_pict

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

Example

See the example under xvt_dwin_close_pict.

xvt_dwin_scroll_rect
 Scroll a Window’s Pixels

Summary

void xvt_dwin_scroll_rect(WINDOW win, RCT *rctp,
 int dh, int dv)

WINDOW win

Window whose pixels are to be scrolled.

RCT *rctp

Rectangle. If the RCT* parameter to this function is an empty
rectangle, no scrolling occurs.

int dh

Controls horizontal scrolling. If dh is positive, scrolling is to the
right by dh pixels. If dh is negative, scrolling is to the left by dh
pixels. dh can be zero.

int dv

Controls vertical scrolling. If dv is positive, scrolling is
downward by dv pixels. If dv is negative, scrolling is upward by
dv pixels. dv can be zero.

Description

This function scrolls the pixels bounded by rctp in the client area of
win. No pixels outside of the rectangle are affected. Pixels scrolled
beyond the boundary of rctp are discarded.

An E_UPDATE event is automatically generated for the part of the
rectangle whose pixels were scrolled away. Before
xvt_dwin_scroll_rect returns, this event is recursively sent to
win’s event handler. If the client area being scrolled is partially
obscured by other windows, including child windows and controls,
then the resulting E_UPDATE event might encompass a larger area
than just the rectangle exposed by the scrolling. Because of this,
your application must not make assumptions about the E_UPDATE
events that will be generated during scrolling. If the client area being
scrolled contains child windows or controls, these objects will not be
scrolled by xvt_dwin_scroll_rect.

Normally, this function is called when your application is changing
the view of a document. Usually, your application keeps an internal

data structure reflecting the view of the document, and part of the
data structure indicates the origin of the window viewport into that
document. Before you scroll a window’s contents, you should first
adjust your internal origin, so that the recursively generated
E_UPDATE event is encountered by an event handler whose origin has
already been properly set.

If you are scrolling your window in response to an E_VSCROLL event,
remember that when you receive a line up or page up event you want
to move the pixels downward so that the dv argument to
xvt_dwin_scroll_rect is positive. When you get a line down or
page down, dv is negative. A similar relationship holds for
E_HSCROLL events.

Before scrolling a window’s pixels, you must ensure that the client
area is valid, by calling xvt_dwin_update. This call to update a
window should be made even before you change your application’s
internal viewport origin.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a print window, dialog, or control

• This function must not be called during an E_UPDATE event

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

An E_UPDATE event is not generated for XVT_PIXMAPs.

See Also

CBRUSH
E_HSCROLL
E_UPDATE
E_VSCROLL
RCT
TASK_WIN
WINDOW
xvt_app_create
xvt_dwin_update

The "E_UPDATE, E_HSCROLL, and E_VSCROLL Events" section of the
"Events" and the "Windows" chapters in the XVT Portability Toolkit
Guide

xvt_dwin_set_back_color
 Set Background Color

Summary

void xvt_dwin_set_back_color(WINDOW win,
COLOR color)

WINDOW win

Window whose background color is to be set.

COLOR color

Background color.

Description

This function sets the background color for win. The background
color is used for the spaces between the hatch marks of a patterned
brush, for the background of icons, and for the text background
when opaque_text is set (see DRAW_CTOOLS).

Do not confuse the background color set by this function with any
sort of automatic background painting. Your application must
explicitly paint the background color of a window when it receives
an E_UPDATE event, usually by calling xvt_dwin_clear.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to

xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

COLOR
DRAW_CTOOLS
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_clear
xvt_dwin_set_draw_ctools
xvt_dwin_set_fore_color

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

xvt_dwin_set_cbrush
 Set Color Brush Tool

Summary

void xvt_dwin_set_cbrush(WINDOW win, CBRUSH *cbrushp)

WINDOW win

Window whose color brush tool is to be set.

CBRUSH *cbrushp

Pointer to the color brush.

Description

This function sets the current color brush for win. Setting the current
color brush affects the following:

• The brush pattern

• The color of hatched marks in hatched brushes

• The color of solid fill brushes

Recall that brushes are used for filling the interior of shapes.
cbrushp should point to a completely initialized CBRUSH structure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

CBRUSH
PAT_* Values for PAT_STYLE
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_draw_oval
xvt_dwin_set_draw_ctools

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

Example

See the example for xvt_dwin_draw_oval.

xvt_dwin_set_clip
 Set a Clipping Rectangle for Window

Summary

void xvt_dwin_set_clip(WINDOW win, RCT *rctp)

WINDOW win

Window whose clipping rectangle is to be set.

RCT *rctp

Pointer to the clipping rectangle.

Description

This function sets the clipping rectangle for any non-print window,
print window, or pixmap. The clipping rectangle limits drawing in a
window to a particular rectangle. Pixels outside of this rectangle are
not affected by subsequent drawing calls. Setting clipping rectangles
is especially useful when drawing shapes that XVT doesn’t support
directly, such as semi-circles.

The clipping rectangle you specify is relative to the coordinates of
the WINDOW, and is stored in RCT pointed to by rctp. Setting rctp to
NULL restores the clipping rectangle to the client area of win, which
is the default. If the rectangle pointed to by rctp has a height or
width of zero (i.e., it is an empty rectangle), all drawing to the
window is clipped. If the rectangle pointed to by rctp is an empty
rectangle, all drawing to the window is clipped.

As with the drawing tools, an application must be certain that the
clip area is set appropriately before any drawing. For example, if you
have set the clip area to a sub-rectangle of a window during a
drawing operation, and you receive an E_UPDATE for the entire
window, then you should reset the clip rectangle before attempting
to update the window’s client area.

After a clipping rectangle has been set by a call to
xvt_dwin_set_clip, your application can retrieve the clipping
rectangle by calling xvt_dwin_get_clip.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

E_UPDATE
RCT
WINDOW
XVT_PIXMAP
xvt_dwin_get_clip

The "Windows" chapter in the XVT Portability Toolkit Guide

Example

RCT rect;
WINDOW window;
char *text;
...
/* draw text within rect */
xvt_dwin_set_clip(window, &rect);
xvt_dwin_draw_text(window, rect.left,

 (rect.bottom + rect.top)/2, text, -1);

xvt_dwin_set_cpen
 Set Color Pen Tool

Summary

void xvt_dwin_set_cpen(WINDOW win, CPEN *cpenp)

WINDOW win

Window whose color pen tools are to be set.

CPEN *cpenp

Pointer to the color pen tool.

Description

This function sets the current color pen for win. Setting the current
color pen will affect the pen pattern and the color of hatched marks
in hatched pens, as well as the color of solid fill pens. Also recall that
pens are used for drawing the outline of shapes. cpenp should point
to a completely initialized CPEN structure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• cpenp must point to a valid CPEN structures

Implementation Note

On the XVT/Win32 platforms, you can set the non-portable
attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

CPEN
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_set_draw_ctools

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

xvt_dwin_set_draw_ctools
 Set the Color Drawing Tools

Summary

void xvt_dwin_set_draw_ctools(WINDOW win,
 DRAW_CTOOLS *ctoolsp)

WINDOW win

Window whose color drawing tools are being set.

DRAW_CTOOLS *ctoolsp

Pointer to the color drawing tools.

Description

This function sets the current DRAW_CTOOLS for win. The current
DRAW_CTOOLS affect all subsequent drawing into that window.
ctoolsp should point to a completely initialized DRAW_CTOOLS
structure, such as one obtained from either
xvt_dwin_get_draw_ctools or xvt_app_get_default_ctools.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• ctoolsp must point to a valid DRAW_CTOOLS structure

• The window’s font is not included in the window’s drawing
tools. (Call xvt_dwin_set_font to set the window’s font.)

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

DRAW_CTOOLS
DRAW_MODE
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_app_get_default_ctools
xvt_dwin_get_draw_ctools
xvt_dwin_set_font
xvt_win_trap_pointer

The "Drawing and Pictures" chapter in the DSC Guide

Example

See the examples for xvt_dwin_get_draw_ctools and
xvt_win_trap_pointer.

xvt_dwin_set_draw_mode
 Set the Current Drawing Mode

Summary

void xvt_dwin_set_draw_mode(WINDOW win, DRAW_MODE mode)

WINDOW win

Window whose current drawing mode is to be set.

DRAW_MODE mode

Drawing mode.

Description

This function sets the DRAW_MODE for win. The drawing mode for a
window affects all subsequent drawing into that window.

Note: For print windows, only the M_COPY draw mode is assured to work
properly, since some print drivers can’t handle other modes.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case TASK_WIN would be a valid window
for this function.

See Also

DRAW_CTOOLS
DRAW_MODE
M_* Values for DRAW_MODE
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_set_draw_ctools

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

xvt_dwin_set_font*
 xvt_dwin_set_font_* Functions

xvt_dwin_set_font_app_data
xvt_dwin_set_font_family
xvt_dwin_set_font_native_desc
xvt_dwin_set_font_size
xvt_dwin_set_font_style

xvt_dwin_set_font
 Set Logical Font Information for a Window

Summary

void xvt_dwin_set_font(WINDOW win, XVT_FNTID font_id)

WINDOW win

Window whose logical font is to be set.

XVT_FNTID font_id

Handle of logical font.

Description

This function sets the logical font to be used for drawing in the client
area of a window.

The function copies the font_id contents into an internal logical
font that is owned by the window. This allows the application to
reuse font_id for other purposes after making this call.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a drawable window, dialog, or control

• Print windows and XVT_PIXMAPs are valid values for win

• font_id must be valid

• font_id must be a valid logical font

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on XVT/Win32, you can set the non-portable attribute
ATTR_WIN_PM_DRAWABLE_TWIN before calling xvt_app_create. In
that case, TASK_WIN would be a valid window for this function.

See Also

XVT_FNTID
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_get_font

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

XVT_FNTID fid = xvt_dwin_get_font(window2);
xvt_dwin_set_font(window1, fid);
xvt_font_font_destroy(fid);

xvt_dwin_set_font_app_data
 Set Application Data for a Logical Font in a Window

Summary

void xvt_dwin_set_font_app_data(WINDOW win,
 long app_data)

WINDOW win

Window whose logical font application data is to be set.

long app_data

Application data.

Description

This function behaves just like xvt_font_set_app_data, except
that it applies to the logical font owned by the window, instead of to
an application-specific logical font.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

WINDOW
xvt_dwin_get_font_app_data
xvt_font_set_app_data

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

For information on the use of the xvt_dwin_get_font* and
xvt_dwin_set_font* functions, see the example for
xvt_dwin_get_font.

xvt_dwin_set_font_family
 Set Logical Font Family for a Window

Summary

void xvt_dwin_set_font_family(WINDOW win,
 char *family)

WINDOW win

Window whose logical font family is to be changed.

char *family

String containing family name.

Description

This function behaves just like xvt_font_set_family, except that it
applies to the logical font owned by the window, instead of to an
application-specific logical font.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• family must be a valid string

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

WINDOW
xvt_dwin_get_font_family
xvt_dwin_get_font_family_mapped
xvt_font_set_family

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

For information on the use of the xvt_dwin_get_font* and
xvt_dwin_set_font* functions, see the example for
xvt_dwin_get_font.

xvt_dwin_set_font_native_desc
 Set Logical Font Native Descriptor for a Window

Summary

void xvt_dwin_set_font_native_desc(WINDOW win,
 char *native_font_desc)

WINDOW win

Window whose logical font native descriptor is to be set.

char *native_font_desc

String specification of native font.

Description

This function behaves just like xvt_font_set_native_desc, except
that it applies to the logical font owned by the window, instead of to
an application-specific logical font.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• native_font_desc must be a valid string

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

WINDOW
xvt_dwin_get_font
xvt_dwin_get_font_native_desc
xvt_font_set_native_desc

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

For information on the use of the xvt_dwin_get_font* and
xvt_dwin_set_font* functions, see the example for
xvt_dwin_get_font.

xvt_dwin_set_font_size
 Set Logical Font Size for a Window

Summary

void xvt_dwin_set_font_size(WINDOW win, long size)

WINDOW win

Window whose logical font size is to be changed.

long size

Value of new font size.

Description

This function behaves just like xvt_font_set_size, except that it
applies to the logical font owned by the window, instead of to an
application-specific logical font.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• size must be positive

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

WINDOW
xvt_dwin_get_font
xvt_dwin_get_font_size
xvt_dwin_get_font_size_mapped
xvt_font_set_size

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

For information on the use of the xvt_dwin_get_font* and
xvt_dwin_set_font* functions, see the example for
xvt_dwin_get_font.

xvt_dwin_set_font_style
 Set Logical Font Style for a Window

Summary

void xvt_dwin_set_font_style(WINDOW win,
 XVT_FONT_STYLE_MASK mask)

WINDOW win

Window whose logical font style is to be changed.

XVT_FONT_STYLE_MASK mask

Font style mask composed of one or more XVT_FS_* flag values.

Description

This function behaves just like xvt_font_set_style, except that it
applies to the logical font owned by the window, instead of to an
application-specific logical font.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

WINDOW
XVT_FONT_STYLE_MASK
XVT_FS_* Constants
xvt_dwin_get_font
xvt_dwin_get_font_style
xvt_dwin_get_font_style_mapped
xvt_font_set_style

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

For information on the use of the xvt_dwin_get_font* and
xvt_dwin_set_font* functions, see the example for
xvt_dwin_get_font.

xvt_dwin_set_fore_color
 Set Foreground Color

Summary

void xvt_dwin_set_fore_color(WINDOW win, COLOR color)

WINDOW win

Window whose foreground color is to be set.

COLOR color

The foreground color.

Description

This function sets the foreground color for win.

Foreground color is used only by the xvt_dwin_draw_text and
xvt_dwin_draw_icon functions, and only for the ink.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before calling
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

COLOR
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_app_create
xvt_dwin_draw_icon
xvt_dwin_draw_text
xvt_dwin_set_back_color
xvt_dwin_set_draw_ctools

The "Drawing and Pictures" chapter in the XVT Portability Toolkit
Guide

xvt_dwin_set_std_cbrush
 Set a Standard Brush

Summary

void xvt_dwin_set_std_cbrush(WINDOW win, long flag)

WINDOW win

Window whose standard brush tool is to be set.

long flag

TL_BRUSH_* constants used to set the standard brush.

Description

This function sets one of several predefined brushes into the drawing
tools for win. This is a convenience function that allows you to set a
common brush tool without taking the normal route of first filling in
a CBRUSH structure, and then calling xvt_dwin_set_cbrush.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• win must be a valid drawable window

• Print windows and XVT_PIXMAPs are valid values for win

• flag must be either TL_BRUSH_BLACK or TL_BRUSH_WHITE

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before calling
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

CBRUSH
TASK_WIN
TL_* Constants
WINDOW
xvt_app_create
xvt_dwin_draw_text
xvt_dwin_set_cbrush
xvt_dwin_set_draw_ctools

Example

See the example for xvt_dwin_draw_text.

xvt_dwin_set_std_cpen
 Set a Standard Pen Tool

Summary

void xvt_dwin_set_std_cpen(WINDOW win, long flag)

WINDOW win

Window whose standard pen tool is to be set.

long flag

TL_PEN_* flags used to set a standard pen.

Description

This function sets one of several predefined pens into the drawing
tools for win. This is a convenience function that allows you to set a
common pen tool without taking the normal route of first filling in a
CPEN structure and then calling xvt_dwin_set_cpen.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a dialog or control

• Print windows and XVT_PIXMAPs are valid values for win

• flag must be of type TL_PEN_BLACK, TL_PEN_WHITE,
TL_PEN_HOLLOW, or TL_PEN_ROBBER

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on the XVT/Win32 platforms, you can set the non-
portable attribute ATTR_WIN_PM_DRAWABLE_TWIN before the call to
xvt_app_create. In that case, TASK_WIN would be a valid window
for this function.

See Also

CPEN
TASK_WIN
WINDOW
XVT_PIXMAP
TL_* Constants
xvt_app_create
xvt_dwin_set_cpen
xvt_dwin_set_draw_ctools

Example

See the example for xvt_dwin_draw_aline.

xvt_dwin_update
 Force Update Events to be Processed

Summary

void xvt_dwin_update(WINDOW win)

WINDOW win

Window to update.

Description

This function updates win immediately by expediting all pending
E_UPDATE events. To insure that the window’s contents are correct
before moving any of the windows pixels, this function should be
called prior to calling xvt_dwin_scroll_rect.

Note: If there are any E_UPDATE events to be processed, this function
causes an immediate recursive call to the event handler for win.
Your application must be prepared for this.

Parameter Validity and Error Conditions

XVT issues an error if any of the following error conditions are not
met:

• win must be a valid XVT WINDOW of type W_* (except
W_SCREEN and W_TASK)

• win is not a print window, XVT_PIXMAP, dialog, or control

• ATTR_SUPPRESS_UPDATE_CHECK must be set to TRUE when this
function is called during an E_UPDATE event

See Also

ATTR_SUPPRESS_UPDATE_CHECK
E_UPDATE
WINDOW
XVT_PIXMAP
xvt_dwin_invalidate_rect
xvt_dwin_scroll_rect

Example

RCT rect;
WINDOW window;
int dh, dv;
...
/* scroll window by dh, dv */
xvt_vobj_get_client_rect(window, &rect);
xvt_dwin_update(window);
xvt_dwin_scroll_rect(window, &rect, dh, hv);

xvt_errid_*
 Error Message Identifiers

xvt_errid_create_*
xvt_errid_get_*
xvt_errid_is_*

xvt_errid_create_*
 Generate Error Message Identifiers

Summary

XVT_ERRID xvt_errid_create_*(XVT_ERRID base,
 unsigned short number)

XVT_ERRID base

Base error message category.

unsigned short number

Message number within base category.

Description

This set of macros creates error message identifiers:

Function Message Identifier Created
xvt_errid_create_mjr Major error category; base is ignored
xvt_errid_create_cat Error category; base must be major

category
xvt_errid_create_num Non-standard error message; base must

be error category
xvt_errid_create_std Standard error message; base must be

error category

Error messages are identified using an opaque data type XVT_ERRID,
which is composed of several fields:

• Message number (16 bits unsigned short)

• Standard message flag (1 bit: distinguishes predefined,
standard toolkit messages from the ones defined by an
xvt_errmsg_sig call)

• Message category minor portion (4 bit)

• Message category major portion (4 bit)

You should not make any assumptions about the individual field
position within the identifier. The recommended way to define error
message identifiers is by using xvt_errmsg_def_* macros, which
are processed by the errscan tool. This in turn uses the
xvt_errid_create_* macros in a generated header file.

Return Value

XVT_ERRID number identifying an error message or message
category.

Parameter Validity and Error Conditions

These macros do not perform any validity checking.

See Also

XVT_ERRID
xvt_errid_get_*
xvt_errid_is_*
xvt_errmsg_def_*
xvt_errmsg_sig

The"Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

Example

The XVT_ERRID value is created using a hierarchy of definitions,
defining the major category first, then deriving a category from it
and defining ERR_ARG_NULL_WIN as an error within that category.

#define ERR_ARGxvt_errid_create_mjr(ERR, 1)
#define ERR_ARG_NULLxvt_errid_create_cat(ERR_ARG, 1)
#define ERR_ARG_NULL_WIN
xvt_errid_create_num(ERR_ARG_NULL, 1)

xvt_errid_get_*
 Access Error Identifier Components

Summary

unsigned long xvt_errid_get_*(XVT_ERRID msg_id)

XVT_ERRID msg_id

Parsed error message identifier.

Description

This set of macros provides access to individual components of the
error identifier:

Function Component Accessed
xvt_errid_get_cat Error category
xvt_errid_get_mjr Major category portion
xvt_errid_get_mnr Minor category portion
xvt_errid_get_num Message number

Components are returned as numbers, inverting the process of
xvt_errid_create_*.

Return Value

A number corresponding to the value of number in the
xvt_errid_create_* function, hiding the actual value position
within the identifier.

Parameter Validity and Error Conditions

These macros do not perform any validity checking.

See Also

XVT_ERRID
XVT_ERRMSG_HANDLER
xvt_ctl_create
xvt_ctl_create_def
xvt_dlg_create_def
xvt_dlg_create_res
xvt_errid_create_*
xvt_errid_is_*
xvt_errmsg_def_*
xvt_errmsg_push_handler
xvt_errmsg_sig
xvt_win_create
xvt_win_create_def
xvt_win_create_res

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

xvt_errid_is_*
 Compare Error Message Identifier Components

Summary

BOOLEAN xvt_errid_is_*(XVT_ERRID msg_1,
 XVT_ERRID msg_2)

XVT_ERRID msg_1

First message identifier compared.

XVT_ERRID msg_2

Second message identifier compared.

Description

This set of macros compares individual components of an error
message identifier. You can use them to check for a particular error
category, major or minor category, or message number. You can
also check for a standard message:

Function Component Compared
xvt_errid_is_cat Error category
xvt_errid_is_mjr Major category portion
xvt_errid_is_mnr Minor category portion
xvt_errid_is_num Message number
xvt_errid_is_std Checks for standard message (msg_2 is not

used)

Return Value

TRUE if a given field matches; FALSE otherwise.

Parameter Validity and Error Conditions

These macros do not perform any validity checking.

See Also

XVT_ERRID
XVT_ERRMSG_HANDLER
xvt_errid_create_*
xvt_errid_get_*
xvt_errmsg_def_*
xvt_errmsg_push_handler
xvt_errmsg_sig

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

Example

if (xvt_errid_is_cat (msg_id, ERR_ARG_NULL_WIN))
 /* compares complete category */
...

if (xvt_errid_is_mjr (msg_id, ERR_ARG_NULL_WIN))
 /* compares major category portion only */
...

if (xvt_errid_is_mnr (msg_id, ERR_ARG_NULL_WIN))
 /* compares minor category portion only */
...

if (xvt_errid_is_std (msg_id, 0))
 /* checks for standard message */
...

xvt_errmsg_*
 Error Handling Functions

xvt_errmsg_def_*
xvt_errmsg_get_*
xvt_errmsg_get_text
xvt_errmsg_pop_handler
xvt_errmsg_push_handler
xvt_errmsg_sig
xvt_errmsg_sig_if
xvt_errmsg_sig_std
xvt_errmsg_sig_std_if

xvt_errmsg_def_*
 Predefine Error Messages for errscan

Summary

void xvt_errmsg_def_*(XVT_ERRID category,
 const char* suffix, unsigned short number,
 const char *text)

XVT_ERRID category

Base error message category.

const char* suffix

Constant name suffix of the error message identifier.

unsigned short number

Message number within a given category.

const char *text

Message text.

Description

This set of macros predefines error messages for the errscan tool:

Function Error Message Defined
xvt_errmsg_def_mjr Major error category; category must be

ERR
xvt_errmsg_def_cat An error category; category must be an

existing major category
xvt_errmsg_def_num An error number; category must be an

existing application category
xvt_errmsg_def_std A standard message; category must be an

existing error category

These macros do not generate any executable code; they can appear
even outside a code section. Within each category, the suffix and
corresponding number must be unique.

Application-defined errors should be derived from the ERR_APP
major category. Within ERR_APP, there can be up to 15 minor
categories. For each category, you can define up to 3000 distinct
standard messages. You can define another 3000 non-standard
messages directly by using the xvt_errmsg_sig and
xvt_errmsg_sig_if macros.

The errscan tool uses such definitions to generate the message file
ERRCODES.TXT and a platform-specific header file xvt_perr.h.
For each definition, errscan generates a message file entry and two
constants in a header file.

Return Value

None.

Parameter Validity and Error Conditions

These macros do not generate any executable code. errscan reports
any syntactically incorrect xvt_errmsg_def_* statements; however,
its validity checks are limited.

See Also

XVT_ERRID
xvt_errid_create_*
ERRCODES.TXT
xvterr.h
xvt_perr.h

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

Example

An application can define the category ERR_APP_DOC and the
message ERR_APP_DOC_EMPTY using message definition, like this:

xvt_errmsg_def_cat (ERR_APP, "DOC", 5, "Document
error")

xvt_errmsg_def_std (ERR_APP_DOC, "EMPTY", 1,
"Document is empty")

errscan will then generate the following file entries:

ERRCODES.TXT:

0x00150000 ERR_APP_DOC "Document error"
0x00150001 ERR_APP_DOC_EMPTY "Document is empty"

xvt_perr.h:

#define ERR_APP_DOCxvt_errid_create_cat
(ERR_APP,5)

#define ERR_APP_DOC_EMPTYxvt_errid_create_std
(ERR_APP_DOC,1)

#define TXT_ERR_APP_DOC"Document error"
#define TXT_ERR_APP_DOC_EMPTY"Document is empty"

xvt_errmsg_get_*
 Get Information About a Signaled Error

Summary

return_type xvt_errmsg_get_*(XVT_ERRMSG err)

XVT_ERRMSG err

Error message object handle.

Description

These functions give an error handler all the information about an
error signaled by one of the xvt_errmsg_sig call forms.

The information is valid only during the error handler scope. If any
of the strings returned by one of the inquiries is to be preserved, an
error handler must make a copy of this string. Do not attempt to use
xvt_mem_free to free any const char* arguments; they are owned by
the XVT_ERRMSG object.

The xvt_errmsg_get_* functions listed below differ only in what
they return:

xvt_errmsg_get_api_name
Return type: const char*
Return description: Called XVT API function name string

(concatenation in case of nested API
calls)

xvt_errmsg_get_cat_text
Return type: const char*
Return description: Text describing message category

xvt_errmsg_get_code_file
Return type: const char*
Return description: Source filename string

xvt_errmsg_get_code_line
Return type: long
Return description: Number of the source code line signaling

an error

xvt_errmsg_get_msg_id
Return type: XVT_ERRID
Return description: Error message

xvt_errmsg_get_msg_text
Return type: const char*
Return description: Message string associated with error

message identifier

xvt_errmsg_get_sev_id
Return type: XVT_ERRSEV
Return description: Severity code from the xvt_errmsg_sig

call

xvt_errmsg_get_sev_text
Return type: const char*
Return description: Localized severity code name string

xvt_errmsg_get_tgt_object
Return type: WINDOW
Return description: NULL_WIN or handle to the operation

target (window argument from
xvt_errmsg_sig call)

Implementation Note

All strings returned by the XVT_ERRMSG object inquiries are retrieved
from the error message file, ERRCODES.TXT. In case this file
cannot be accessed, XVT provides hardcoded English messages for
the most frequently used messages. Remaining messages are
represented by message number, both decimal and hexadecimal,
which allows you to look them up manually in ERRCODES.TXT.

You can localize the ERRCODES.TXT file (that is, translate it into
another language), by replacing quoted message text with other
language equivalents.

Parameter Validity and Error Conditions

XVT_ERRMSG object inquiries do not signal any errors. If an argument
is invalid, they return an empty ("") string or zero value.

See Also

ATTR_ERRMSG_FILENAME
XVT_ERRMSG
xvt_errmsg_pop_handler
xvt_errmsg_push_handler
xvt_errmsg_sig

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

xvt_errmsg_get_text
 Get a Message from the Error Message File

Summary

const char xvt_errmsg_get_text(XVT_ERRMSG errmsg,
 XVT_ERRID msg_id, char* buf, long int bufsiz)

XVT_ERRMSG errmsg

Error message object pointer.

XVT_ERRID msg_id

Desired message identifier.

har* buf

Buffer for retrieved message.

long int bufsiz

Buffer size in bytes.

Description

This function retrieves an arbitrary message from the error message
file. The message is processed replacing C language escapes "<fcn",
"<fct", "\" and "<f0" with a single character. The message is
truncated to the size of the provided buffer.

Contrary to xvt_errmsg_get_msg_text, which returns a message
for an XVT_ERRID contained within an XVT_ERRMSG object, this
function retrieves an arbitrary message given an explicit msg_id.

The errmsg argument is required, because this function is intended
solely for use within error handlers.

Return Value

Pointer to message string stored in buf argument.

Parameter Validity and Error Conditions

This function does not signal any errors. A string of msg_id value
represents non-existent messages.

See Also

ATTR_ERRMSG_FILENAME
XVT_ERRID
XVT_ERRMSG
xvt_errmsg_get_*

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

xvt_errmsg_pop_handler
 Remove a Temporary Error Handler

Summary

void xvt_errmsg_pop_handler(XVT_ERRMSG_HANDLER handler)

XVT_ERRMSG_HANDLER handler

Error handler function pointer.

Description

This function removes a temporary error handler pushed by the
xvt_errmsg_push_handler. Popping the handler automatically
removes any handler(s) pushed above the specified one. Any
stacked handlers not removed at the point of return from the XVT
window event handler are removed automatically; this generates a
warning.

Return Value

None.

Parameter Validity and Error Conditions

If you use an invalid handler argument (i.e., if you try to remove a
handler that was not previously pushed onto the stack with
xvt_errmsg_push_handler), this function signals a warning.

See Also

XVT_ERRMSG_HANDLER
xvt_errmsg_push_handler
xvt_errmsg_sig

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

xvt_errmsg_push_handler
 Establish a Temporary Error Handler

Summary

void xvt_errmsg_push_handler
 (XVT_ERRMSG_HANDLER handler, DATA_PTR context)

XVT_ERRMSG_HANDLER handler

Error handler function pointer.

DATA_PTR context

Context delivered to the application’s error handler.

Description

This function establishes a temporary error handler. Any error
messages signaled by xvt_errmsg_sig (and other signaling calls)
are delivered to handlers in this order (from top to bottom):

• The most recently pushed handler

• The less recently pushed handlers

• An application-supplied permanent error handler

• The XVT-provided "last chance" handler

Each of those handlers can either handle the error (returning TRUE),
or pass it to a subsequent handler (returning FALSE).

Any handlers pushed onto the stack within an XVT window event
handler must be removed prior to the return from the event handler.
Failure to do so results in a warning, which is signaled when the
window event handler returns. Stacked handler lifetime is limited to
the scope of the XVT window event handler.

Return Value

None.

Parameter Validity and Error Conditions

This call is illegal inside an error handler. If you try to push a handler
from within error handler code, this function generates a warning.
The warning is delivered to subsequent handlers and the request is
ignored.

See Also

DATA_PTR
XVT_ERRMSG_HANDLER
xvt_errmsg_push_handler
xvt_errmsg_sig

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

xvt_errmsg_sig
 Signal an Error

Summary

void xvt_errmsg_sig
 (WINDOW object, XVT_ERRSEV severity,
 XVT_ERRID category, const char* suffix,
 unsigned short number, const char* message)

WINDOW object

NULL_WIN or window handle to object in error.

XVT_ERRSEV severity

Error severity.

XVT_ERRID category

One of the predefined error categories.

const char* suffix

Unique error ID constant suffix literal (for errscan only).

unsigned short number

Unique error message number within specified category.

const char* message

Message prototype literal (for errscan only).

Description

This macro signals an abnormal condition to the error message
handling facility, which in turn calls one or more error handler(s).
Unless caught by application-provided error handlers, the error
signal reaches the XVT-provided "last chance" error handler, which
posts a dialog corresponding to the error message severity.

The macro strips the suffix and message arguments. They are used
only by the errscan tool to generate message file entry, and to
generate #define constants identifying this message. The constant
is formed by adding the suffix to the category name. The suffix
and corresponding message number must be unique within a given
message category.

Return Value

None.

See Also

ATTR_ERRMSG_HANDLER
WINDOW
XVT_ERRID
XVT_ERRSEV
xvt_errmsg_def_*
xvt_errmsg_pop_handler
xvt_errmsg_push_handler
xvt_errmsg_sig_if
xvt_errmsg_sig_std
xvt_errmsg_sig_std_if

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide
For a list of predefined error categories and messages, see the
xvt_perr.h file

xvt_errmsg_sig_if
 Conditionally Signal an Error

Summary

void xvt_errmsg_sig_if(BOOLEAN cond, WINDOW object,
 XVT_ERRSEV severity, XVT_ERRID category,
 const char* suffix, unsigned short number,
 const char* message)

BOOLEAN cond

Conditional statement (TRUE evaluation triggers error signal).

WINDOW object

NULL_WIN or window handle to object in error.

XVT_ERRSEV severity

Error severity.

XVT_ERRID category

One of the predefined error categories.

const char* suffix

Unique error ID constant suffix literal (for errscan only).

unsigned short number

Unique error message number within specified category.

const char* message

Message prototype literal (for errscan only).

Description

This macro conditionally signals an abnormal condition to the error
message handling facility, which in turn calls one or more error
handler(s). Unless caught by application-provided error handlers,
the error signal reaches the XVT-provided "last chance" error
handler, which posts a dialog corresponding to the error message
severity.

The macro strips the suffix and message arguments. They are used
only by the errscan tool to generate message file entry, and to
generate #define constants identifying this message. The constant
is formed by adding the suffix to the category name. The suffix
and corresponding message number must be unique within a given
message category.

Return Value

None.

See Also

ATTR_ERRMSG_HANDLER
WINDOW
XVT_ERRID
XVT_ERRSEV
xvt_errmsg_pop_handler
xvt_errmsg_push_handler
xvt_errmsg_sig
xvt_errmsg_sig_std
xvt_errmsg_sig_std_if

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide
For a list of predefined error categories and messages, see the
xvt_perr.h file

xvt_errmsg_sig_std
 Signal an Error with a Predefined Error Message

Summary

void xvt_errmsg_sig_std(WINDOW object,
 XVT_ERRSEV severity, XVT_ERRID msg_id)

WINDOW object

NULL_WIN or window handle to object in error.

XVT_ERRSEV severity

Error severity.

XVT_ERRID msg_id

One of the predefined message identifiers.

Description

This macro signals an abnormal condition to the error message
handling facility, which in turn calls one or more error handler(s).
Unless caught by application-provided error handlers, the error
signal reaches the XVT-provided "last chance" error handler, which
posts a dialog corresponding to the error message severity.

This macro differs from xvt_errmsg_sig in that msg_id must be one
of the predefined error messages. For list of predefined error
categories and messages, see the xvt_perr.h file.

Return Value

None.

See Also

ATTR_ERRMSG_HANDLER
WINDOW
XVT_ERRID
XVT_ERRSEV
xvt_errmsg_def_*
xvt_errmsg_pop_handler
xvt_errmsg_push_handler
xvt_errmsg_sig
xvt_errmsg_sig_if
xvt_errmsg_sig_std_if

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

xvt_errmsg_sig_std_if
 Conditionally Signal an Error with a Predefined Error Message

Summary

void xvt_errmsg_sig_std_if(BOOLEAN cond, WINDOW object,
 XVT_ERRSEV severity, XVT_ERRID msg_id)

BOOLEAN cond

Conditional statement (TRUE evaluation triggers error signal).

WINDOW object

NULL_WIN or window handle to object in error.

XVT_ERRSEV severity

Error severity.

XVT_ERRID msg_id

One of the predefined message identifiers.

Description

This macro conditionally signals an abnormal condition to the error
message handling facility, which in turn calls one or more error
handler(s). Unless caught by application-provided error handlers,
the error signal reaches the XVT-provided "last chance" error
handler, which posts a dialog corresponding to the error message
severity.

Unlike xvt_errmsg_sig_if, this macro must use one of the
predefined error messages.

Return Value

None.

See Also

ATTR_ERRMSG_HANDLER
WINDOW
XVT_ERRID
XVT_ERRSEV
xvt_errmsg_pop_handler
xvt_errmsg_push_handler
xvt_errmsg_sig
xvt_errmsg_sig_if
xvt_errmsg_sig_std

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide
For list of predefined error messages, see the xvt_perr.h file

xvt_event_*
 Event Access Functions

xvt_event_get_font
xvt_event_is_virtual_key
xvt_event_set_font

xvt_event_get_font
 Get XVT_FNTID Contained In E_FONT Event

Summary

XVT_FNTID xvt_event_get_font(EVENT *ep)

EVENT *ep

E_FONT event.

Description

This function returns an XVT_FNTID contained in the E_FONT event.
This function always returns the XVT encapsulated-font-model
XVT_FNTID--as long as the event is the most recent one that has been
dispatched and received by a window event handler. This function is
primarily for use in programs that might use both the encapsulated
and exposed font models simultaneously.

This function provides a "safe" way for event handlers to obtain the
logical font information from an E_FONT event without having to
determine whether the event is based on the exposed font model or
the encapsulated font model.

Parameter Validity and Error Conditions

If the event is not an E_FONT event, or if it is not the "current" event,
XVT issues an error.

Return Value

XVT_FNTID

See Also

E_FONT
XVT_FNTID
xvt_event_set_font
xvt_win_dispatch_event

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

xvt_event_is_virtual_key
 Check Virtual Key

Summary

BOOLEAN xvt_event_is_virtual_key(EVENT *ep)

EVENT *ep

E_CHAR event.

Description

This function checks if the ch field of the E_CHAR event represents a
virtual key.

Return Value

TRUE if the ch field represents a virtual key; FALSE if not.

This function behaves the same in both single-byte and multibyte
aware (ATTR_MULTIBYTE_AWARE is TRUE) modes.

See Also

ATTR_MULTIBYTE_AWARE
E_CHAR
XVT_MOD_KEY

The "Diagnostics and Debugging" chapter in the XVT Portability
Toolkit Guide

xvt_event_set_font
 Set Logical Font Data in the E_FONT Structure

Summary

void xvt_event_set_font(EVENT *ep, XVT_FNTID
font_id)EVENT *ep

E_FONT event.

XVT_FNTID font_id

Handle of logical font.

Description

This function takes an encapsulated-font-model XVT_FNTID and sets
the logical font data in the E_FONT event structure. Even if the
application is using the exposed font model, this function correctly
places the passed-in font_id into the event--as long as the event is
the most recent one that has been dispatched and received by a
window event handler. This function is primarily for use in
programs that might use both the encapsulated and exposed font
models simultaneously.

This function provides a "safe" way for event handlers to change the
logical font information inside an E_FONT event without having to
determine whether the event is based on the exposed font model or
the encapsulated font model.

Parameter Validity and Error Conditions

XVT issues an error under the following conditions:

• The event is not an E_FONT event

• The event is not the "current" event

• The font_id is invalid

See Also

E_FOCUS
xvt_win_dispatch_event

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

xvt_fmap_*
 Font Mapper Functions

xvt_fmap_get_families
xvt_fmap_get_family_sizes
xvt_fmap_get_family_styles
xvt_fmap_get_familysize_styles
xvt_fmap_get_familystyle_sizes

xvt_fmap_get_families
 List All Logical Font Families

Summary

long xvt_fmap_get_families(PRINT_RCD *precp,
 char **family_array, long max_families)

PRINT_RCD *precp

Print record or NULL.

char **family_array

Array of family names filled in by this function. The calling
function must pre-allocate this array.

long max_families

Maximum number of logical font families to return.

Description

This function lists all logical font families supported by the XRC and
default XVT font mappers. It does not reflect any families supported
by application-supplied font mappers.

If the print record is NULL, the inquiry is for the screen window; if it
is non-NULL, the inquiry is for the specified printer.

The filled-in char** array contains the ASCII names of all
supported logical font families. The calling function must
previously have allocated this array, but xvt_fmap_get_families
will allocate the individual family names.

The max_families parameter indicates the maximum number of
logical font family names to put into the family_array.

Return Value

Number of families actually placed into family_array. When this
array of strings is no longer needed, the application is responsible for
freeing the strings with xvt_mem_free.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• family_array is NULL

• max_families is less than 1

• precp is non-NULL but does not point to a valid PRINT_RCD

See Also

PRINT_RCD
xvt_fmap_get_family_sizes
xvt_fmap_get_family_styles
xvt_fmap_get_familysize_styles
xvt_fmap_get_familystyle_sizes

Example

This code adds available logical font families to a list box:

int f;
WINDOW listbox;
long num_families;
char *families[MAX_FAMILIES];
...
/* show available families in a listbox */
num_families = xvt_fmap_get_families(NULL, families,

 MAX_FAMILIES);
 xvt_list_suspend(listbox);
xvt_list_clear(listbox);
for (f = 0; f < num_families; f++)
{

 xvt_list_add(listbox, f, families[f]);
xvt_mem_free(families[f]);

 }
xvt_list_resume(listbox);

xvt_fmap_get_family_sizes
 List Available Sizes for a Logical Font Family

Summary

long xvt_fmap_get_family_sizes(PRINT_RCD *precp,
 char *family, long *size_array, BOOLEAN *scalable,
 long max_sizes)

PRINT_RCD *precp

Print record or NULL.

char *family

Logical font family name.

long *size_array

Array of sizes filled in by this function. The calling function
must pre-allocate this array.

BOOLEAN *scalable

Set to TRUE on output if a scalable font (such as TrueType) is
available.

long max_sizes

Maximum number of sizes to return in size_array.

Description

Given a logical font family, this function lists all available sizes
supported by the XRC and default XVT font mappers. It does not
reflect any sizes supported by application-supplied font mappers.

If the print record is NULL, the inquiry is for the screen window; if it
is non-NULL, the inquiry is for the specified printer.

The filled-in array of longs contains the list of all supported logical
font sizes for the specified family. The max_sizes parameter
indicates the maximum number of logical font sizes to put into
size_array. Your application must allocate size_array and
specify the maximum number of elements in size_array with
max_sizes.

If the BOOLEAN Scalable parameter is returned as TRUE, the font is
continuously scalable in size. In this instance, the return value of the
function and the contents of size_array are not relevant.

Return Value

Number of logical font sizes actually placed into size_array.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• family is NULL

• size_array is NULL

• scalable is NULL

• max_sizes is less than 1

• precp is non-NULL but does not point to a valid PRINT_RCD

See Also

PRINT_RCD
xvt_fmap_get_families
xvt_fmap_get_family_styles
xvt_fmap_get_familysize_styles
xvt_fmap_get_familystyle_sizes

Example

long sizes[MAX_SIZES];
long num_sizes;
BOOLEAN scalable;
WINDOW listbox;
char buffer[10];
long s;
...
/* add avaliable sizes to a listbox */
num_sizes = xvt_fmap_get_family_sizes(NULL, family,

 sizes, &scalable, MAX_SIZES);
 xvt_list_suspend(listbox);
xvt_list_clear(listbox);
if (scalable == TRUE)

 for (s = 1; s = 128; s++) {
 sprintf(buffer, "%d", s);
xvt_list_add(listbox, -1, buffer);

 }
 else

 for (s = 0; s < num_sizes; s++) {
 sprintf(buffer, "%d", sizes[s]);
 xvt_list_add(listbox, -1, buffer);

 }
 xvt_list_resume(listbox);

xvt_fmap_get_family_styles
 List Available Styles for a Logical Font Family

Summary

long xvt_fmap_get_family_styles
 (PRINT_RCD *precp, char *family,
 XVT_FONT_STYLE_MASK *style_array, long max_styles)

PRINT_RCD *precp

Print record or NULL.

char *family

Logical font family name.

XVT_FONT_STYLE_MASK *style_array

Array of styles filled in by this function. The calling function
must pre-allocate this array.

long max_styles

Maximum number of styles to return in style_array.

Description

Given a logical family, this function lists all available styles
supported by the XRC and default XVT font mappers. It does not
reflect any styles supported by application-supplied font mappers.

If the print record is NULL, the inquiry is for the screen window; if it
is non-NULL, the inquiry is for the specified printer.

The filled-in XVT_FONT_STYLE_MASK array represents all supported
logical font styles for the specified family. Your application must
previously have allocated this array and is responsible for freeing it.

The max_styles parameter indicates the maximum number of
logical font styles to put into the style_array.

Return Value

Number of logical font styles actually placed into style_array.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• family or style_array is NULL

• max_styles is less than 1

• precp is non-NULL but does not point to a valid PRINT_RCD

See Also

PRINT_RCD
XVT_FONT_STYLE_MASK
xvt_fmap_get_families
xvt_fmap_get_family_sizes
xvt_fmap_get_familysize_styles
xvt_fmap_get_familystyle_sizes

xvt_fmap_get_familysize_styles
 List Available Styles for a Logical Font Family and Size

Summary

long xvt_fmap_get_familysize_styles
 (PRINT_RCD *precp, char *family, long size,
 XVT_FONT_STYLE_MASK *style_array, long max_styles)

PRINT_RCD *precp

Print record or NULL.

char *family

Logical font family name.

long size

Logical font size.

XVT_FONT_STYLE_MASK *style_array

Array of styles filled in by this function. The calling function
must pre-allocate this array.

long max_styles

Maximum number of styles to return in style_array.

Description

Given a logical family and size, this function lists all available
logical font styles supported by the XRC and default XVT font
mappers. It does not reflect any styles supported by application-
supplied font mappers.

If the print record is NULL, the inquiry is for the screen window; if it
is non-NULL, the inquiry is for the specified printer.

The filled-in XVT_FONT_STYLE_MASK array represents all supported
logical font styles for the specified family and size. Your application
must have previously allocated the array and is responsible for
freeing it.

The max_styles parameter indicates the maximum number of
logical font styles to put into style_array.

Return Value

Number of logical font styles actually placed into style_array.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• family or style_array is NULL

• size or max_styles is less than 1

• precp is non-NULL but does not point to a valid PRINT_RCD

See Also

PRINT_RCD
XVT_FONT_STYLE_MASK
xvt_fmap_get_families
xvt_fmap_get_family_sizes
xvt_fmap_get_familysize_styles
xvt_fmap_get_family_styles

xvt_fmap_get_familystyle_sizes
 List Available Sizes for a Logical Font Family and Style

Summary

long xvt_fmap_get_familystyle_sizes(PRINT_RCD *precp,
char *family, XVT_FONT_STYLE_MASK style,
long *size_array, BOOLEAN *scalable, long max_sizes)

PRINT_RCD *precp

Print record or NULL.

char *family

Logical Font family name.

XVT_FONT_STYLE_MASK style

Logical font style.

long *size_array

Array of sizes filled in by this function. The calling function
must pre-allocate this array.

BOOLEAN *scalable

Set to TRUE on output if a scalable font (such as TrueType) is
available.

long max_sizes

Maximum number of sizes to return.

Description

Given a logical family and style, this function lists all available sizes
supported by the XRC and default XVT font mappers. It does not
reflect any sizes supported by application-supplied font mappers.

If the print record is NULL, the inquiry is for the screen window; if it
is non-NULL, the inquiry is for the specified printer.

The filled-in array of longs contains the list of all supported logical
font sizes for the specified family and style. The max_sizes
parameter indicates the maximum number of sizes to put into the
size_array. Your application must allocate size_array and
specify the maximum number of elements in size_array with
max_sizes.

If the scalable parameter is returned as TRUE, the return value of the
function is 2, indicating that size_array has two entries. The two
size_array entries show the range of the scalable font: from the
smallest point size available (the entry in element zero) to the largest
(the entry in element one).

Return Value

Number of logical font sizes actually placed into size_array.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• family is NULL

• size_array is NULL

• scalable is NULL

• max_sizes is less than 1

• precp is non-NULL but does not point to a valid PRINT_RCD

See Also

PRINT_RCD
XVT_FONT_STYLE_MASK
xvt_fmap_get_families
xvt_fmap_get_family_sizes
xvt_fmap_get_familysize_styles
xvt_fmap_get_family_styles

xvt_font_*
 Font Functions

xvt_font_copy
xvt_font_create
xvt_font_deserialize
xvt_font_destroy
xvt_font_get_app_data
xvt_font_get_family
xvt_font_get_family_mapped
xvt_font_get_metrics
xvt_font_get_native_desc
xvt_font_get_size
xvt_font_get_size_mapped
xvt_font_get_style
xvt_font_get_style_mapped
xvt_font_get_win
xvt_font_has_valid_native_desc
xvt_font_is_mapped
xvt_font_is_print
xvt_font_is_scalable
xvt_font_is_valid
xvt_font_map
xvt_font_map_using_default
xvt_font_serialize
xvt_font_set_app_data
xvt_font_set_family
xvt_font_set_native_desc
xvt_font_set_size
xvt_font_set_style
xvt_font_unmap

xvt_font_copy
 Copy a Logical Font

Summary

void xvt_font_copy(XVT_FNTID dest_font_id,
 XVT_FNTID src_font_id, XVT_FONT_ATTR_MASK mask)

XVT_FNTID dest_font_id

Destination logical font handle.

XVT_FNTID src_font_id

Source logical font handle.

XVT_FONT_ATTR_MASK mask

Mask of the XVT_FA_* flag values.

Description

This function copies logical font values from the logical font
specified by src_font_id to the logical font specified by
dest_font_id, based on the font attribute mask.

Only the portions of the logical font specified by the mask are
copied. A mask of XVT_FA_ALL copies all attributes.

This function does not create or allocate a new logical font. Both the
source and destination must be valid logical fonts. Note that if
XVT_FA_APP_DATA is specified in the mask, only the pointer to the
application data is copied, not the application data itself.

Parameter Validity and Error Conditions

If either scr_font_id or dest_font_id is invalid, XVT issues an
error.

See Also

XVT_FA_* Constants
XVT_FNTID
XVT_FONT_ATTR_MASK
xvt_font_create
xvt_font_destroy
xvt_menu_set_font_sel

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

DOCUMENT *doc = (DOCUMENT*) xvt_vobj_get_data(win);
switch (ep->type){
case E_FONT:

 xvt_font_copy(doc->font_id, ep->v.font.font_id,
XVT_FA_ALL);

xvt_menu_set_font(win, doc->font_id);
break;

 case E_CREATE:
 ...
doc->font_id = xvt_font_create();
...
break;

 case E_DESTROY:
 xvt_font_destroy(doc->_id);
break;

 }

xvt_font_create
 Create a Logical Font

Summary

XVT_FNTID xvt_font_create(void)

Description

This function creates a logical font by allocating an internal
XVT_FNTID and giving it a set of standard default values: family is
XVT_FFN_SYSTEM ("system"), style is XVT_FS_NONE, size is 12 points,
app_data is NULL, native descriptor is NULL, and window is
NULL_WIN. It then returns the XVT_FNTID to the calling function.

If the application needs to change the logical font by giving it non-
default values, it can call any of the logical font attribute setting
functions. The newly allocated XVT_FNTID is not mapped at the time
this function is called.

This function, xvt_ctl_get_font, xvt_dwin_get_font,
xvt_menu_get_font_sel, xvt_res_get_font, and
xvt_win_get_ctl_font, are the only ones that create a new logical
font.

To remove this logical font from the system, you must use
xvt_font_destroy.

Return Value

A handle to a newly-allocated logical font.

See Also

NULL_WIN
XVT_FFN_* Constants
XVT_FNTID
XVT_FS_* Constants
xvt_ctl_get_font
xvt_dwin_get_font
xvt_font_destroy
xvt_font_set_app_data
xvt_font_set_family
xvt_font_set_native_desc
xvt_font_set_size
xvt_font_set_style
xvt_font_get_win
xvt_menu_get_font_sel
xvt_res_get_font
xvt_win_get_ctl_font

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_font_copy.

xvt_font_deserialize
 Deserialize a Previously Serialized Logical Font

Summary

BOOLEAN xvt_font_deserialize(XVT_FNTID font_id,
 char *buf)

XVT_FNTID font_id

Handle of the logical font to deserialize.

char *buf

Buffer containing serialized logical font.

Description

This function sets a logical font to correspond to the one previously
serialized by xvt_font_serialize. Your application must have
created a logical font identified by font_id before passing it as a

parameter to this function. The font_id is filled with the logical font
attributes stored in buf.

xvt_font_deserailize is useful for reading a previously serialized
and archived logical font from a file.

Return Value

TRUE if deserialization is successful; FALSE if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• font_id is invalid

• buf is NULL

• buf does not contain a serialized logical font

See Also

XVT_FNTID
xvt_font_create
xvt_font_serialize

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

#define BUF_SIZE 256
void read_font_from_file(FILE *fp, XVT_FNTID font_id)
{

 EOL_FORMAT format;
long length;
char buffer[BUF_SIZE];
fgets(buffer, BUF_SIZE, fp);
xvt_str_find_eol(buffer,

xvt_str_get_byte_count(buffer),
 &length, &format);

 if (format != EOL_NONE)
 buffer[length] = ’0’;

 if (!xvt_font_deserialize(font_id, buffer))
 xvt_dm_post_warning(

 "Could not deserialize font");
 }

xvt_font_destroy
 Destroy a Logical Font

Summary

void xvt_font_destroy(XVT_FNTID font_id)

XVT_FNTID font_id

Handle of the logical font to be destroyed.

Description

This function destroys the logical font identified by font_id. If this
logical font is mapped at the time it is destroyed, the physical font to
which it is mapped is released back to the window system on which
the application is running.

This function destroys a logical font, but does not destroy
application data. You must create, manage, and destroy your own
application data.

Parameter Validity and Error Conditions

If the font_id is not NULL_FNTID and invalid, XVT issues an error.

See Also

NULL_FNTID
NULL_WIN
XVT_FNTID
xvt_dwin_get_font
xvt_font_copy
xvt_font_create

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

See the examples for xvt_dwin_get_font and xvt_font_copy.

xvt_font_get_app_data
 Get Logical Font Application Data

Summary

long xvt_font_get_app_data(XVT_FNTID font_id)

XVT_FNTID font_id

Handle of the logical font whose application data is retrieved.

Description

This function gets the application data for a logical font and returns
it as a long value. The default value for application data is NULL.

Any logical font can have a long data word associated with it for
your application’s use. This function retrieves that data.

Frequently the application data is a pointer to a structure of your own
design. In this case, your application should cast the return value
from xvt_font_get_app_data into a pointer of the correct type.

Return Value

long integer for the application data associated with the XVT_FNTID.

Parameter Validity and Error Conditions

If font_id is not a valid XVT_FNTID, XVT issues an error.

See Also

XVT_FNTID
xvt_font_set_app_data
xvt_dwin_get_font_app_data

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

xvt_font_get_family
 Get Logical Font Family

Summary

BOOLEAN xvt_font_get_family(XVT_FNTID font_id,
 char *buf, long max_buf)

XVT_FNTID font_id

Handle of the logical font for which family is retrieved.

char *buf

Buffer into which the logical font family is placed.

long max_buf

Available buffer size in bytes.

Description

This function gets the "desired" (as opposed to "mapped") family
value from the logical font identified by font_id. The returned
logical font family string must be pre-allocated and owned by the
application.

Return Value

TRUE if successful; FALSE if an error is detected.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• font_id is invalid

• buf is NULL

• max_buf is less than 1

• returned family name requires more bytes than max_buf

If an error occurs,the contents of the returned string should be
considered invalid.

See Also

XVT_FNTID
xvt_dwin_get_font_family
xvt_font_get_family_mapped
xvt_font_set_family

The "Font Definitions" section of the "Fonts and Text" chapter in the
XVT Portability Toolkit Guide

xvt_font_get_family_mapped
 Get Mapped Logical Font Family

Summary

BOOLEAN xvt_font_get_family_mapped(XVT_FNTID font_id,
 char *buf, long max_buf)

XVT_FNTID font_id

Handle of the logical font for which family is retrieved.

char *buf

Buffer into which the mapped logical font family is placed.

long max_buf

Available buffer size in bytes.

Description

This function gets the mapped logical font family value of the
logical font identified by font_id. The returned logical font family
string must be pre-allocated and owned by the application.

This inquiry function is intended for use in implementing
application-supplied font mappers, but you can also use it to obtain
information outside of an application font mapper.

Return Value

TRUE if successful; FALSE if an error is detected.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• font_id is invalid

• buf is NULL

• max_buf is less than 1

• font is not mapped

• returned family name requires more bytes than max_buf

If an error occurs,the contents of the returned string should be
considered invalid.

See Also

XVT_FNTID
xvt_dwin_get_font_family_mapped
xvt_font_get_family
xvt_font_map
xvt_font_set_family

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

xvt_font_get_metrics
 Get a Logical Font’s Leading, Ascent, and Descent

Summary

void xvt_font_get_metrics(XVT_FNTID font_id,
 int *leadingp, int *ascentp, int *descentp)

XVT_FNTID font_id

Handle of the logical font for which metrics are being retrieved.

int *leadingp

Pointer to the logical font’s leading.

int *ascentp

Pointer to the logical font’s ascent.

int *descentp

Pointer to the logical font’s descent.

Description

This function gets three mapped attributes of a logical font: leading,
ascent, and descent. These values are returned through the
corresponding integer-pointer arguments. If an argument is NULL,
that particular metric isn’t returned.

xvt_font_get_metrics requires that font_id already be associated
with a valid window (i.e., xvt_font_get_win does not return
NULL_WIN). This is the case if the logical font was retrieved from a
window (xvt_dwin_get_font), or if the logical font has already
been mapped (xvt_font_map). If the logical font is not mapped

when you call this function, and if xvt_font_get_win returns a valid
window, this function automatically maps it to that window.

For normally spaced text, you should use a line spacing equal to the
sum of the leading, ascent, and descent values.

Parameter Validity and Error Conditions

If font_id is invalid, or if the window associated with the logical
font is NULL_FNTID is invalid, XVT issues an error.

See Also

NULL_FNTID
XVT_FNTID
xvt_dwin_get_font
xvt_dwin_get_font_metrics
xvt_font_get_win
xvt_font_map

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

This code gets the logical font from a window, inquires its metrics,
and then draws text using the leading and ascent to specify the text
baseline:

static void do_update(WINDOW win)
{

 int leading, ascent, descent;
XVT_FNTID font_id = xvt_dwin_get_font(win);
xvt_dwin_clear(win, COLOR_WHITE);
xvt_font_get_metrics(font_id, &leading, &ascent,

 &descent);
 xvt_font_destroy(font_id);
xvt_dwin_draw_text(win, 4, leading + ascent,

 "Hello World!", -1);
 xvt_dwin_draw_icon(win, 10, 40, ICON_RID);

 }

xvt_font_get_native_desc
 Get Native Font Descriptor

Summary

BOOLEAN xvt_font_get_native_desc(XVT_FNTID font_id,
 char *buf, long max_buf)

XVT_FNTID font_id

Handle of the logical font for which the native descriptor is
being returned.

char *buf

Buffer into which the native descriptor is copied.

long max_buf

Available buffer size in bytes.

Description

This function gets the native font descriptor data from the logical
font identified by font_id. If the native descriptor has been set, it
will be returned in buf. Otherwise, buf will be empty.

Note: The native descriptor can be set by a call to
xvt_font_set_native_desc, xvt_font_map,
xvt_font_map_using_default, by any function that causes implicit
font mapping to occur, or by the font dialog. The native descriptor is
NULL by default.

Return Value

TRUE if successful; FALSE if an error is detected.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• font_id is invalid

• buf is NULL

• if the native descriptor does fit into max_buf bytes

• max_buf is less than 1

See Also

XVT_FNTID
xvt_dwin_get_font_native_desc
xvt_font_map
xvt_font_map_using_default
xvt_font_set_native_desc

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

xvt_font_get_size
 Get Logical Font Size

Summary

long xvt_font_get_size(XVT_FNTID font_id)

XVT_FNTID font_id

Handle of the logical font for which size is retrieved.

Description

This function gets the "desired" (as opposed to "mapped") size value
of the logical font identified by font_id. The default size is 12
points.

Return Value

The logical font size in points, if successful; zero if an error is
detected.

Parameter Validity and Error Conditions

If font_id is invalid, XVT issues an error.

See Also

XVT_FNTID
xvt_dwin_get_font_size
xvt_font_get_size_mapped
xvt_font_set_size

The "Font Definitions" section of the "Fonts and Text" chapter in the
XVT Portability Toolkit Guide’’’’

xvt_font_get_size_mapped
 Get Mapped Logical Font Size

Summary

long xvt_font_get_size_mapped(XVT_FNTID font_id)

XVT_FNTID font_id

Handle of the logical font for which size is retrieved.

Description

This function gets the mapped size value of the logical font
identified by font_id.

This inquiry function is intended for use in implementing
application-supplied font mappers, but you can also use it to obtain
information outside of a font mapper.

Return Value

The mapped logical font size in points if successful; zero if an error
is detected.

Parameter Validity and Error Conditions

If font_id is invalid, or if the logical font is not mapped, XVT issues
an error.

See Also

XVT_FNTID
xvt_dwin_get_font_size_mapped
xvt_font_get_size
xvt_font_map
xvt_font_map_using_default
xvt_font_set_size

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

xvt_font_get_style
 Get Logical Font Style

Summary

XVT_FONT_STYLE_MASK xvt_font_get_style
 (XVT_FNTID font_id)

XVT_FNTID font_id

Handle of the logical font for which styles are being inquired.

Description

This function gets the "desired" (as opposed to "mapped") style
value of the logical font identified by font_id. The default font style
is XVT_FS_NONE.

Return Value

The desired logical font style if successful; XVT_FS_NONE if an error
is detected.

Parameter Validity and Error Conditions

If font_id is invalid, XVT issues an error.

See Also

XVT_FNTID
XVT_FONT_STYLE_MASK
XVT_FS_* Constants
xvt_dwin_get_font_style
xvt_font_get_style_mapped
xvt_font_set_style

The "Font Definitions" section of the "Fonts and Text" chapter in the
XVT Portability Toolkit Guide

xvt_font_get_style_mapped
 Get Mapped Logical Font Style

Summary

XVT_FONT_STYLE_MASK xvt_font_get_style_mapped
 (XVT_FNTID font_id)

XVT_FNTID font_id

Handle of the logical font for which mapped styles are being
retrieved.

Description

This function gets the mapped style value of the logical font
identified by font_id. As an inquiry function, it is intended for use
in implementing application-supplied font mappers, but you can
also use it to obtain information outside of a font mapper.

Return Value

The mapped logical font style if successful; XVT_FS_NONE if
unsuccessful.

Parameter Validity and Error Conditions

If font_id is invalid or if the logical font is not mapped, XVT issues
an error.

See Also

XVT_FNTID
XVT_FONT_STYLE_MASK
XVT_FS_* Constants
xvt_dwin_get_font_style_mapped
xvt_font_get_style
xvt_font_map
xvt_font_map_using_default
xvt_font_set_style

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

xvt_font_get_win
 Get Window Associated With a Logical Font

Summary

WINDOW xvt_font_get_win(XVT_FNTID font_id)

XVT_FNTID font_id

Handle of the logical font whose window is being retrieved.

Description

This function gets the window associated with a logical font. The
font mapping controller associates a window with a logical font
during mapping. The default window value for a logical font is
NULL_WIN.

Return Value

The associated window if successful; NULL_WIN on error.

Parameter Validity and Error Conditions

If font_id is invalid, XVT issues an error.

See Also

XVT_FNTID
WINDOW
xvt_font_create
xvt_font_map

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

font_id = xvt_font_create();
xvt_font_map(font_id, window);
xvt_font_get_metrics(font_id, ...);
...
/* later, when you have forgotten the window of the

 font */
win1 = xvt_font_get_win(font_id);

xvt_font_has_valid_native_desc
 Determine if Native Font Descriptor Is Valid

Summary

BOOLEAN xvt_font_has_valid_native_desc
 (XVT_FNTID font_id)

XVT_FNTID font_id

Handle of the logical font whose native descriptor is being
verified.

Description

This function determines if the native descriptor in the font_id
refers to a valid physical font.

Return Value

TRUE if the native descriptor in the font_id refers to a valid physical
font; FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• font_id is invalid

• The window associated with the logical font is not a valid
drawable window

See Also

NULL_FNTID
XVT_FNTID
xvt_font_map
xvt_font_map_using_default
xvt_font_set_native_desc

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_font_map_using_default.

xvt_font_is_mapped
 Determine if a Logical Font is Mapped

Summary

BOOLEAN xvt_font_is_mapped(XVT_FNTID font_id)

XVT_FNTID font_id

Handle of the logical font whose mapped status is being
determined.

Description

This function determines if a logical font is mapped. By default, a
logical font is "not mapped."

Return Value

TRUE if the logical font is mapped; FALSE if an error is detected.

Parameter Validity and Error Conditions

If font_id is invalid, XVT issues an error.

See Also

XVT_FNTID
xvt_font_map
xvt_font_map_using_default
xvt_font_unmap

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

xvt_font_is_print
 Determine if a Logical Font is Mapped to a Print Window

Summary

BOOLEAN xvt_font_is_print(XVT_FNTID font_id)

XVT_FNTID font_id

Handle of the logical font whose "printer mapped" status is
being determined.

Description

This function determines if a logical font is mapped to a print
window.

Return Value

TRUE if the logical font is mapped and the mapping is for a print
window font; FALSE otherwise.

Parameter Validity and Error Conditions

If font_id is invalid, or if the logical font is not mapped, XVT issues
an error and returns FALSE.

See Also

XVT_FNTID
xvt_font_get_win
xvt_font_map
xvt_font_map_using_default

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

xvt_font_is_scalable
 Determine if a Mapped Logical Font can be Scaled

Summary

BOOLEAN xvt_font_is_scalable(XVT_FNTID font_id)

XVT_FNTID font_id

Handle of the logical font whose "scalable" status is being
determined.

Description

This function determines if a mapped logical font can be scaled to a
continuous arbitrary size.

Return Value

TRUE if the logical font is mapped and the mapped logical font is
scalable; FALSE otherwise.

Parameter Validity and Error Conditions

If font_id is invalid, or if the logical font is not mapped, XVT issues
an error.

See Also

XVT_FNTID
xvt_font_map

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

xvt_font_is_valid
 Determine if Font ID is Defined

Summary

BOOLEAN xvt_font_is_valid(XVT_FNTID font_id)

XVT_FNTID font_id

Handle of the logical font whose validity is being determined.

Description

This function determines if a font_id has been defined (i.e., if a
logical font is valid). A valid logical font is one that has been created
and not yet destroyed.

Return Value

TRUE if the font_id is valid; FALSE otherwise.

Parameter Validity and Error Conditions

None.

See Also

XVT_FNTID
xvt_font_create

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

xvt_font_map
 Map a Logical Font in the Context of a Window

Summary

void xvt_font_map(XVT_FNTID font_id, WINDOW win)

XVT_FNTID font_id

Handle of the logical font to be mapped.

WINDOW win

Window to map against.

Description

This function forces a logical font to be mapped in the context of the
specified window. It invokes the same mapping that would be done
automatically if you used an unmapped logical font in a call to
xvt_dwin_set_font followed by xvt_dwin_draw_text.

The function attempts to map the logical font with the following
methods, in order: (1) honor the logical font’s native descriptor if it
is set and valid in the context of the window parameter, (2) use the
application-supplied font mapper, (3) use the application-supplied
XRC mapping extensions, and (4) use the default XVT font mapper.

You can use a logical font in this function immediately after it is
created (with xvt_font_create), but typically the application sets at
least the family, style, and size first. As a result, the mapping process
consists of setting the logical font’s window and native font
descriptor (if not already set), and marking the logical font as
"mapped." Once this has occurred, the logical font is considered to
be mapped.

If no errors are detected, xvt_font_map always succeeds in
mapping. However, the physical font to which the logical font is
mapped might not necessarily closely match the portable logical
font attributes. This would occur only if no physical font was a good
match for the portable logical font attributes.

Tip: This function is very useful if you need to set a single logical font in
several windows simultaneously. By allowing the logical font to be
mapped "up front," the system can avoid having to map several
times when text is drawn in the windows.

It is also useful to call this function in an application if you need to
create a logical font and then immediately inquire about mapped
font attributes before the logical font is actually assigned to a
window with xvt_dwin_set_font. If the logical font is already
mapped, this function checks its validity and returns if valid, or
remaps if invalid.

Parameter Validity and Error Conditions

If font_id is invalid, or if a window parameter is not a valid,
drawable window, XVT issues an error. Print windows and
XVT_PIXMAPs are valid values for win.

See Also

ATTR_FONT_MAPPER
XVT_FNTID
WINDOW
XVT_PIXMAP
xvt_dwin_draw_text
xvt_dwin_get_font
xvt_dwin_set_font
xvt_font_create
xvt_font_get_win
xvt_font_map_using_default
font XRC statement
font_map XRC statement

The "Font Mapping and the Font Mapping Controller" section of the
"Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_font_get_win.

xvt_font_map_using_default
 Invoke XVT Default Font Mapper

Summary

void xvt_font_map_using_default(XVT_FNTID font_id)

XVT_FNTID font_id

Handle of the logical font to be mapped.

Description

This function invokes the XVT default font mapper only. It does not
use any XRC-based or application-supplied font mappers. Normally
this function is used inside an application-supplied font mapper that
has been registered with XVT by means of the ATTR_FONT_MAPPER
attribute.

The function assumes that the logical font’s window attribute is
valid. The window is not settable from the application, but it is set
implicitly by xvt_font_map. If the logical font’s native descriptor
field is set and is valid in the context of the window associated with
the font, this function uses it in the mapping. If that field is not set or
is not valid, the function uses the portable logical font attributes to
derive a native descriptor with which to map the font.

If no errors are detected, xvt_font_map_using_default always
succeeds in mapping. However, the resulting physical font is not
necessarily a close approximation of the portable logical font
attributes.

XVT’s font mapping controller invokes this function after it has
already tried to map the logical font using the registered application-
supplied font mapper and the XRC font mapper.

Tip: This function is particularly useful when called from an application-
supplied font mapper. Your application-supplied font mapper might
iteratively change the portable logical font attributes, call this
function, and get the mapped results until the desired mapping is
achieved.

Parameter Validity and Error Conditions

If the font_id is invalid, or if a window associated with a logical
font is invalid, XVT issues an error.

See Also

ATTR_FONT_MAPPER
XVT_FNTID
xvt_font_map
font XRC statement
font_map XRC statement

The "Font Mapping and the Font Mapping Controller" section of the
"Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

#define NATIVE_DESC "X1101/b&h/lucidatypewriter/medium/
r/normal/sans/12/120/75/75/m/70/iso8859/1"
...
xvt_vobj_set_attr(NULL_WIN, ATTR_FONT_MAPPER,

 (long) application_font_mapper);
 ...
BOOLEAN XVT_CALLCONV1
application_font_mapper(XVT_FNTID font_id)
{

 /* map font_id to NATIVE_DESC if it is valid */
BOOLEAN native_desc_ok;
xvt_font_set_native_desc(font_id, NATIVE_DESC);
native_desc_ok = xvt_font_has_valid_native_desc(

 font_id);
 if (native_desc_ok)

 xvt_font_map_using_default(font_id);
 return native_desc_ok;

 }

xvt_font_serialize
 Serialize a Logical Font

Summary

long xvt_font_serialize(XVT_FNTID font_id,
 char *buf, long max_buf)

XVT_FNTID font_id

Handle of the logical font to be serialized.

char *buf

Buffer for serialized font to fill. NULL is a valid value for this
parameter.

long max_buf

Maximum buffer size in bytes.

Description

This function serializes a logical font into a stream of bytes in a
buffer. The serialized logical font is tagged with the serialization
version. The resulting buffer can be written to a file for storage. You
can later retrieve it and turn it back into a valid logical font by using
xvt_font_deserialize.

However, if your application passes a NULL buffer, this function
returns as its value the number of bytes in the serialized font (plus 1
for the NULL-termination character), but does not attempt to serialize
it. Also, if the buffer is NULL, no error check is performed on the
max_buf parameter.

Return Value

Number of bytes used in the non-NULL buffer, or the required size of
the buffer (the serialized font plus 1) if the buffer is NULL; zero if an
error occurred.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• font_id is invalid

• buf (if non-NULL) is too small to contain the serialized font
string (including the NULL-termination character)

• max_buf is less than 1 (this is checked only if buf is non-NULL)

See Also

XVT_FNTID
xvt_font_deserialize

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

This code shows how xvt_font_serialize can be used to first
determine the necessary buffer size, and then to serialize the font
into the buffer:

void save_font_to_file(FILE *fp, XVT_FNTID font_id)
{

 char *buffer;
long length;
length = xvt_font_serialize(font_id, NULL, 0);
buffer = xvt_mem_alloc(length);
if (buffer)
{

 if (xvt_font_serialize(font_id, buffer,
length))

fputs(buffer, fp);
 else

xvt_dm_post_warning(
"Could not serialize font");

 xvt_mem_free(buffer);
 }
else

xvt_dm_post_warning(
"Could not serialize font");

 }

xvt_font_set_app_data
 Set Application Data for a Logical Font

Summary

void xvt_font_set_app_data(XVT_FNTID font_id,
 long app_data)

XVT_FNTID font_id

Handle of the logical font whose application data is being set.

long app_data

Application data.

Description

This function sets the application data for a logical font. If used by
the application, application data provides a hook so that the
application can attach additional information to the logical font for
use by application-supplied font mappers.

If the logical font was previously mapped, this function unmaps it.
app_data is long instead of void* to support non-ANSI C
compilers.

Parameter Validity and Error Conditions

If font_id is invalid, XVT issues an error.

See Also

XVT_FNTID
xvt_dwin_set_font_app_data
xvt_font_get_app_data

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

xvt_font_set_family
 Set Logical Font Family

Summary

void xvt_font_set_family(XVT_FNTID font_id,
 char *family)

XVT_FNTID font_id

Handle of the logical font for which family is being set.

char *family

String containing family name.

Description

This function sets the family value in the font_id to the logical font
family specified by family. The family is copied into the
underlying XVT_FNTID. If the logical font was previously mapped
and the family changes, this function unmaps it.

The family parameter can be any string. The font mapper
guarantees that the family will be mapped, regardless of what the
family name is. However, if the family is the name of a logical font
that does not exist as a physical font, is not handled by an
application-supplied font mapper, or is not handled by XRC
extensions to the font mapper, the mapping result may not be a close
fit.

At the time that xvt_font_set_family is called, there is no check to
determine if the family is a "valid" family. The only check is to make
sure that the family is a valid string. The reasons for this are three-
fold:

• It would be expensive to go through the mapping logic to
determine if this family can, indeed, be mapped into a
physical font

• It may be that the family does not currently exist in the font
mapper, but will exist by the time this logical font is actually
mapped

• If the application sets the family several times before drawing
text, deferring the validity check on the family until it is
actually used provides a performance benefit

Parameter Validity and Error Conditions

If font_id is invalid, or if family is NULL, XVT issues an error.

See Also

XVT_FNTID
xvt_dwin_set_font_family
xvt_font_get_family
xvt_font_get_family_mapped

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

/* set window font to Helvetica, 24, Bold */
XVT_FNTID font_id;
font_id = xvt_font_create();
xvt_font_set_family(font_id, "helvetica");
xvt_font_set_size(font_id, 24);
xvt_font_set_style(font_id, XVT_FS_BOLD);
xvt_dwin_post_font_sel(window, font_id, NULL, OL);
xvt_font_destroy(font_id);

xvt_font_set_native_desc
 Set Native Font Descriptor

Summary

void xvt_font_set_native_desc(XVT_FNTID font_id,
 char *native_font_desc)

XVT_FNTID font_id

Handle of the logical font whose native descriptor is being set.

char *native_font_desc

String specification of physical font.

Description

This function sets the native font descriptor in the logical font
identified by font_id. The application-supplied font mapper should
set this attribute to tell the XVT font mapping controller which
physical font to use in mapping.

The native_font_desc format is the same one that you would use
in an XRC font or font_map statement.

Note: This function is primarily intended for use in application-supplied
font mappers, although it is legal to call it from anywhere. The XVT
default font mapper and the XRC font mapper (both internal to the
XVT Portability Toolkit) implicitly call
xvt_font_set_native_desc if they detect that a logical font’s
native descriptor is either NULL or invalid in the context of the logical
font’s window. If you specifically want to "unset" the native font
descriptor, XVT recommends that you use the string ("") as the
second parameter.

Parameter Validity and Error Conditions

If font_id is invalid, or if native_font_desc is NULL, XVT issues
an error.

See Also

ATTR_FONT_MAPPER
XVT_FNTID
xvt_dwin_set_font_native_desc
xvt_font_get_native_desc
xvt_font_map_using_default
font XRC statement
font_map XRC statement

The "Application-Supplied Font Mappers" and "Setting Native Font
Descriptors" sections of the "Fonts and Text" chapter in the XVT
Portability Toolkit Guide
The XVT Platform-Specific Books

Example

See the example for xvt_font_map_using_default.

xvt_font_set_size
 Set Logical Font Size

Summary

void xvt_font_set_size(XVT_FNTID font_id, long size)

XVT_FNTID font_id

Handle of the logical font for which size is being set.

long size

Value of new size.

Description

This function sets the logical font size value in the font_id to the
size specified by size. If the logical font was previously mapped and
the size changes, this function unmaps it.

Parameter Validity and Error Conditions

If font_id is invalid, or if the size is not positive, XVT issues an
error.

See Also

XVT_FNTID
xvt_dwin_set_font_size
xvt_font_get_size
xvt_font_get_size_mapped
xvt_font_set_family
xvt_font_set_style

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_font_set_family.

xvt_font_set_style
 Set Logical Font Style

Summary

void xvt_font_set_style(XVT_FNTID font_id,
 XVT_FONT_STYLE_MASK mask)

XVT_FNTID font_id

Handle of the logical font for which styles are being set.

XVT_FONT_STYLE_MASK mask

Font style mask composed of one or more XVT_FS_* flag values.

Description

This function sets the logical font style attributes of the font_id as
specified by mask. This function overrides any existing style
attributes of the specified logical font. If the logical font was
previously mapped and the style changes, this function unmaps it.

Parameter Validity and Error Conditions

If font_id is invalid, XVT issues an error.

See Also

XVT_FNTID
XVT_FONT_STYLE_MASK
XVT_FS_* Constants
xvt_dwin_set_font_style
xvt_font_get_style
xvt_font_get_style_mapped
xvt_font_set_family
xvt_font_set_size

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_font_set_family.

xvt_font_unmap
 Unmap a Logical Font

Summary

void xvt_font_unmap(XVT_FNTID font_id)

XVT_FNTID font_id

Handle of the logical font to be unmapped.

Description

This functions unmaps a logical font. Native resources associated
with the logical font may not be released immediately, but they will
be freed when the unmapped logical font is removed from the font
cache. Unmapping does not affect the XVT portable font attributes
associated with the logical font. If the logical font is not mapped
when this function is called, the function simply returns.

This function is called internally whenever something occurs to
invalidate a font mapping. For example, if the application sets the
family, style_mask, size, application_data, or
native_description for a mapped logical font, the system may
automatically unmap the logical font.

Parameter Validity and Error Conditions

If font_id is invalid, XVT issues an error.

See Also

XVT_FNTID
xvt_font_map
xvt_font_map_using_default

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide.

xvt_fsys_*
 File System Functions

xvt_fsys_build_pathname
xvt_fsys_convert_dir_to_str
xvt_fsys_convert_str_to_dir
xvt_fsys_get_default_dir
xvt_fsys_get_dir
xvt_fsys_get_file_attr
xvt_fsys_list_files
xvt_fsys_parse_pathname
xvt_fsys_rem_file
xvt_fsys_restore_dir
xvt_fsys_save_dir
xvt_fsys_set_dir
xvt_fsys_set_dir_startup
xvt_fsys_set_file_attr

xvt_fsys_build_pathname
 Construct a Native Pathname

Summary

BOOLEAN xvt_fsys_build_pathname (char *mbs,
const char *volname, const char *dirname,
const char *leafroot, const char *leafext,
char *leafvers)

char *mbs

String for full pathname.

const char *volname

Volume name.

const char *dirname

Directory name.

const char *leafroot

File leaf root.

const char *leafext

File extension.

char *leafvers

File version number.

Description

This function constructs a native pathname in the multibyte string
mbs from the pathname parts passed in. The appropriate delimiters
are added between parts if necessary. It has the reverse effect of
xvt_fsys_parse_pathname.

Return Value

TRUE if the construction of the pathname is successful (wbs! =
NULL); FALSE if no pathname is constructed (mbs == NULL).

Parameter Validity and Error Conditions

Severity error "NULL handle" if the pointer to the path is NULL.

See Also

xvt_fsys_convert_dir_to_str
xvt_fsys_convert_str_to_dir
xvt_fsys_parse_pathname

The "Files" chapter in the XVT Portability Toolkit Guide

xvt_fsys_convert_dir_to_str
 Convert Directory to String Form

Summary

BOOLEAN xvt_fsys_convert_dir_to_str(DIRECTORY *dirp,
char *path, int sz_path)

DIRECTORY *dirp

DIRECTORY to be converted to string form.

char *path

String into which converted directory is stored.

int sz_path

Maximum capacity of path.

Description

This function converts a DIRECTORY object to a NULL-terminated
string in the form used by the local system for path names. The

output string is stored into path, whose maximum capacity
(including NULL) is sz_path.

The string form of the directory is complete, in that it includes
volume or drive designators and a complete path hierarchy from the
root of the file system.

Note: The XVT constant SZ_FNAME is the maximum filename length in
bytes used in XVT, and is platform-specific.

Return Value

TRUE if the successful; FALSE if unsuccessful (on error).

Parameter Validity and Error Conditions

Severity error "NULL handle" if the *dirp or *path is NULL.

Implementation Note

On XVT/Mac, the string begins with the volume name and ends with
a colon (e.g., HD:XVT:Examples:). On UNIX, HPFS, and NTFS
implementations it does not end with a slash or back-slash (e.g.,
c:examples). You must take this into account when concatenating
additional path or filename components onto the end of the directory
string.

See Also

DIRECTORY
SZ_FNAME
xvt_fsys_convert_str_to_dir
xvt_fsys_get_dir

The "Files" chapter in the XVT Portability Toolkit Guide

Example

In this code, the third argument to xvt_fsys_convert_dir_to_str
uses sizeof, which is the usual case when the second argument is a
character array:

DIRECTORY d;
char path[SZ_FNAME];if (!xvt_fsys_get_dir(&d))

xvt_dm_post_error(
"Can’t get current directory.");

else if (!xvt_fsys_convert_dir_to_str(&d, path,
SZ_FNAME(path)))

xvt_dm_post_error(
"Can’t show current directory.");

else
xvt_dm_post_note("Current directory is %s",

path);

xvt_fsys_convert_str_to_dir
 Convert String Path to Directory

Summary

BOOLEAN xvt_fsys_convert_str_to_dir(char *path,
DIRECTORY *dirp)

char *path

String to be converted to directory.

DIRECTORY *dirp

Pointer to a DIRECTORY.

Description

This function converts the NULL-terminated string path, using local
path-name syntax, to a DIRECTORY, returned through dirp. The
path parameter must represent a valid platform-specific pathname.

This function is handy when pathnames are typed directly by the
user, or stored as string resources.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

See Also

DIRECTORY
xvt_fsys_convert_dir_to_str
xvt_fsys_set_dir

The "Files" chapter in the XVT Portability Toolkit Guide

Example

char buf[100];
DIRECTORY dir;if
(xvt_dm_post_string_prompt("Directory?", buf,

sizeof(buf)) != NULL) {
if (!xvt_fsys_convert_str_to_dir(buf, &dir))

xvt_dm_post_error("Can’t convert dir to str.");
if (!xvt_fsys_set_dir(&dir))

xvt_dm_post_error("Can’t change directory.");
}

xvt_fsys_get_default_dir
 Get Default Directory

Summary

void xvt_fsys_get_default_dir(DIRECTORY *dirp)

DIRECTORY *dirp

Pointer to a DIRECTORY.

Description

This function retrieves a DIRECTORY equivalent to the native
system’s concept of current or default directory specified in a
relative sense. xvt_fsys_get_default_dir produces a DIRECTORY
that is equivalent to using "." on UNIX, HPFS, or NTFS file
systems.

You can use this function to assign a value to the dir member of a
FILE_SPEC so as to specify a file in the current directory.

Return Value

xvt_fsys_get_default_dir has no return value. Instead, it stores
the current directory in dirp.

Implementation Note

The difference between xvt_fsys_get_default_dir and
xvt_fsys_get_dir can be clarified by considering the following
XVT/Win32 or XVT/XM implementations:

• xvt_fsys_get_default_dir returns an empty string or "."

• xvt_fsys_get_dir returns its argument as an absolute path
(e.g., c:examples)

See Also

DIRECTORY
FILE_SPEC
XVT_FILESYS_* Values
xvt_fsys_get_dir
xvt_fsys_set_dir

The "Files" chapter in the XVT Portability Toolkit Guide

Example

DIRECTORY d1, d2;xvt_fsys_get_default_dir(&d1);if
(!xvt_fsys_get_dir(&d2))
xvt_dm_post_fatal_exit("Can’t get current directory.");
/*

At this point d1 and d2 refer to the current directory.
The variable d3 (declared and initialized elsewhere)

refers to some other directory.
*/
if (!xvt_fsys_set_dir(&d3))

xvt_dm_post_fatal_exit("Can’t change directory.");
/* At this point d1 refers to the new current directory

(same as d3), but d2 refers to the same directory it
did before (which is no longer the current directory).

*/

xvt_fsys_get_dir
 Get Current Directory

Summary

BOOLEAN xvt_fsys_get_dir(DIRECTORY *dirp)

DIRECTORY *dirp

Pointer to a directory.

Description

This function gets the current directory specified as an absolute path
and returns its specification through the argument dirp.

The directory pointed to by dirp can be used in the dir field of a
FILE_SPEC so as to specify a file located in the current directory. To
change the returned directory into a string the user can recognize,
you can pass it to the following:

char path [SZ_FNAME]
xvt_fsys_convert_dir_to_str(dirp, path,

sizeof(path));

Note: The directory pointed to by dirp when xvt_fsys_get_dir returns is
not the same as the directory pointed to by dirp when
xvt_fsys_get_default_dir returns. xvt_fsys_get_dir specifies
an absolute path, indicating the current directory, whereas
xvt_fsys_get_default_dir specifies the current directory in a
relative sense (e.g., an empty string or ".") on NTFS, or UNIX file
systems.

Return Value

TRUE if successful; FALSE if unsuccessful (on error). A FALSE return
usually indicates that the current directory has somehow become
invalid. An example of this happening is on network file systems
where the file server becomes unreachable by the client.

Parameter Validity and Error Conditions

Severity error if dirp is NULL.

See Also

DIRECTORY
FILE_SPEC
SZ_FNAME
XVT_FILE_ATTR_* Constants
XVT_FILESYS_* Values
xvt_fsys_convert_dir_to_str
xvt_fsys_get_default_dir
xvt_fsys_get_file_attr
xvt_fsys_set_dir

The "Files" chapter in the XVT Portability Toolkit Guide

Example

static void showdir()
{

DIRECTORY d;
char path[SZ_FNAME];if (!xvt_fsys_get_dir(&d))

xvt_dm_post_error(
"Can’t get current directory.");

else if (xvt_fsys_get_file_attr ((FILE_SPEC*) (&d),
XVT_FILE_ATTR_DIRSTR) == -1L)
xvt_dm_post_error(

"Can’t show current directory.");
else

xvt_dm_post_note("Current directory is %s",
path);

}

xvt_fsys_get_file_attr
 Get a File Attribute

Summary

long xvt_fsys_get_file_attr(FILE_SPEC *file,
long attr)

FILE_SPEC *file

File to query for attributes.

long attr

Defined constant for attribute to query.

Description

This function retrieves information about the file specified by the
file parameter. The information available is equivalent to a subset
of that provided by the stat(3) system call; this function is intended
to be a portable replacement for stat(3).

The attr parameter takes return values of XVT_FILE_ATTR_*
Constants.

Return Value

If an error condition outside the scope of the current operation
occurs, this function returns -1. Returned values from your time
queries are in the appropriate format for the native platforms ANSI
C time conversion functions. You can convert these values to useful
strings by using the ctime function.

Parameter Validity and Error Conditions

Calling this function with a pointer that cannot be de-referenced as
the file parameter results in a serious runtime error and a return
value of -1. Calls with illegal values for the attr parameter generate
a runtime warning and a return value of -1.

Implementation Note

The value of time_t type is dependent on the native implementation
of the ANSI C Library, and it is not necessarily portable. If you need
to transport time values between platforms, you can convert the
time_t value into a string using strftime, or you might be able to
save the values of the struct tm time structures.

On XVT/Mac, the string returned from XVT_FILE_ATTR_DIRSTR
begins with the volume name and ends with a colon (e.g., Mac
HD:XVT:Examples:). However, on other platforms the string does
not end with a slash or back-slash (e.g., c:examples). You must take
this into account when concatenating additional path or filename
components onto the end of the directory string.

On XVT/Mac, the value returned from XVT_FILE_ATTR_SIZE
represents the size of the data fork. On all platforms, the size
represents the number of logical bytes present in the file and not
necessarily the amount of space occupied by the file on the physical
device.

See Also

FILE_SPEC
XVT_FILE_ATTR_* Constants
xvt_fsys_convert_dir_to_str
xvt_fsys_set_file_attr

The "Files" chapter in the XVT Portability Toolkit Guide
ctime in your C documentation

Example

...
FILE_SPEC aSpec;
long fileLen;
xvt_str_copy(aSpec.name, "foo.c");
fileLen = xvt_fsys_get_file_attr(&aSpec,

XVT_FILE_ATTR_SIZE);
...

xvt_fsys_list_files
 List Filenames

Summary

SLIST xvt_fsys_list_files(char *type, char *pat,
BOOLEAN dirs)

char *type

File type or DIR_TYPE to list.

char *pat

Pattern to match.

BOOLEAN dirs

If TRUE, directory names are included; if FALSE, they are not
included.

Description

This function gets an SLIST of files in the current directory with the
specified type, or all types if type is an empty string. The order of
filenames is indeterminate.

If type is equal to DIR_TYPE, only directories are listed.

If the string pat is non-NULL, only names matching that pattern,
which can contain "*" and "?" wildcards, are listed. The wildcard "*"

matches a sequence of zero or more characters; the wildcard "?"
matches any single character. Any number of these wildcards can be
mixed arbitrarily with other characters. (XVT’s matching is
different from that performed by the NTFS file system, which allows
only one "*" in the name part and one in the extension part.) The
matching used by xvt_fsys_list_files is identical to the matching
performed by xvt_str_match.

When calling xvt_fsys_list_files, all patterns are matched
against the entire name; any characters to the right of a period (the
extension on NTFS) is not treated any differently from the part
before the period. Since only the names in the current directory are
listed, no path separators or path components appear in the name.
Pattern matching is case-insensitive.

If dirs is TRUE, directory names are included; if FALSE, they are
omitted. To get directories only, set type to DIR_TYPE and dirs to
TRUE. To get only non-directory files, set type to whatever you want
and set dirs to FALSE. If type is DIR_TYPE and dirs is FALSE, you
get an empty SLIST.

Return Value

SLIST containing names if successful; NULL if unsuccessful (on
error).

Parameter Validity and Error Conditions

Severity error in the case of NULL type.

Implementation Note

On NTFS the extension is compared to the type argument, in
addition to being matched against the pat argument. On the Mac any
characters to the right of a period aren’t considered to be special, nor
is the period itself. The type is a separate attribute of the file, not part
of the name.

Most types are different on the Mac from what they are on NTFS.
For portability, you might want to store them as string resources, to
be retrieved with xvt_res_get_str or xvt_res_get_str_list.

On UNIX, the type argument is meaningless.

On file systems that support drive letters, xvt_fsys_list_files
inserts the names of the drives after the directories.

See Also

DIR_TYPE
FILE_SPEC
SLIST
XVT_FILESYS_* Values
xvt_slist_*
xvt_str_match

The "Files" chapter in the XVT Portability Toolkit Guide

Example

To list all files and directories:

SLIST x;
x = xvt_fsys_list_files("", "", TRUE);

To list all C source files:

x = xvt_fsys_list_files("", "*.c", FALSE);

This call also lists all C files on NTFS, but not on the other
platforms, and is therefore wrong:

x = xvt_fsys_list_files("c", "*.*", FALSE);

This call also lists all C files on the Mac, but not on other platforms,
so it too is wrong:

x = xvt_fsys_list_files("TEXT", "*.c", FALSE);

This call lists only directories whose names contain the letter "T"
anywhere:

x = xvt_fsys_list_files(DIR_TYPE, "*T*", TRUE);

xvt_fsys_parse_pathname
 Parse Multibyte String into Pathname Components

Summary

BOOLEAN xvt_fsys_parse_pathname (const char *mbs,
char *volname, char *dirname, char *leafroot,
char *leafext, char *leafvers)

const char *mbs

Full pathname string.

char *volname

Volume name string.

char *dirname

Directory name string.

char *leafroot

File leaf root string.

char *leafext

File extension string.

char *leafvers

File version string.

Description

This function parses the multibyte string mbs containing a file
pathname and breaks it into pathname components. It places copies
of the components into the passed arguments.

A pathname can be divided into the volume name, directory path,
leaf root name, leaf extension, and leaf version. Not all of the parts
are defined for all platforms. A leaf is defined as any specific file or
directory at the end of the path. Leaf extension has a superficial
meaning on UNIX and Mac. The convention used here, is that all
text of one or more characters following the last "." in the leaf name
is defined to be the extension.

The parts are broken down and returned to reflect the pathname
passed in. Relative pathnames are allowed. This function does not
expand any part of the pathname or attempt to interpret the
pathname, it only parses it syntactically.

The directory and file do not need to exist to use this function. The
function can be recursively called on the directory name to isolate
any leaf in the path. Any output (volname, dirname, leafroot,
leaftext, leafvers) pointer can be NULL; if NULL, that part is not
returned.

The output arrays are assumed to be a minimum size. dirname must
be at least SZ_FNAME, all others must be at least SZ_LEAFNAME.

Return Value

TRUE if successful; FALSE if a syntax error exists in the pathname for
the current platform or any other error.

Parameter Validity and Error Conditions

Severity error is wbs in a NULL parameter.

See Also

SZ_FNAME
SZ_LEAFNAME
XVT_FILESYS_* Values
xvt_fsys_build_pathname
xvt_fsys_convert_dir_to_str
xvt_fsys_convert_str_to_dir

The "Files" chapter in the XVT Portability Toolkit Guide

Example

Macintosh Example

The Mac pathname HD:xvt:mac.68k:pathname:file.ext parses
into the parts:

Recursively calling the function with dirname results in:

The relative Mac pathname :foo:::bar:file.ext recursively parses
into the parts (recursively passing in Directory):

Note: "::" on Mac means parent directory.

UNIX Example

The UNIX pathname /xvt/unix.sparc/pathname/file.ext parses into
the parts:

Recursively calling the function with dirname results in:

The relative UNIX pathname foo/../../bar/file.ext recursively parses
into the parts (recursively passing in Directory):

Note: ".." on UNIX means parent directory.)

Win32 Example

The Win32 pathname C:dos.dirpathnamefile.ext parses into the
parts:

Recursively calling the function with dirname results in:

The relative Win32 pathname foo....barfile.ext recursively parses
into the parts (recursively passing in Directory):

Note: ".." on Win32 means parent directory.)

xvt_fsys_rem_file
 Delete a File from the System

Summary

BOOLEAN xvt_fsys_rem_file(FILE_SPEC *file)

FILE_SPEC *file

File to be deleted.

Description

This file system function deletes a file from the system. An XVT
FILE_SPEC identifies the file to be deleted.

Return Value

FALSE if the function succeeds; TRUE if it fails.

Parameter Validity and Error Conditions

If the file specifier is NULL, or if either the directory or file does not
exist, XVT issues an error.

See Also

FILE_SPEC

The "Files" chapter in the XVT Portability Toolkit Guide

xvt_fsys_restore_dir
 Restore Saved Directory

Summary

void xvt_fsys_restore_dir(void)

Description

This function restores the current directory to what it was when
xvt_fsys_save_dir was called. If you want to avoid changing the
current directory, then your application should bracket calls to
functions that might change the current directory (such as
xvt_dm_post_file_open) with calls to xvt_fsys_save_dir and
xvt_fsys_restore_dir.

Parameter Validity and Error Conditions

If xvt_fsys_save_dir was not previously called, XVT issues an
error.

See Also

DIRECTORY
xvt_dm_post_file_open
xvt_fsys_save_dir

The "Files" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_fsys_save_dir.

xvt_fsys_save_dir
 Save Current Directory

Summary

void xvt_fsys_save_dir(void)

Description

This function saves the current directory in a variable that XVT
keeps internally, for restoration by a later call to
xvt_fsys_restore_dir. Calls to xvt_fsys_save_dir and
xvt_fsys_restore_dir do not stack; each call to
xvt_fsys_save_dir causes the previously saved directory to be
forgotten.

If you want to avoid changing the current directory, your application
should bracket calls to functions that might change the current
directory (such as xvt_dm_post_file_open) with calls to
xvt_fsys_save_dir and xvt_fsys_restore_dir.

See Also

DIRECTORY
xvt_dm_post_file_open
xvt_fsys_restore_dir
xvt_fsys_set_dir_startup

The "Files" chapter in the XVT Portability Toolkit Guide

Example

xvt_fsys_save_dir();
xvt_fsys_set_dir_startup();
reprocess_startup_files();
xvt_fsys_restore_dir();

xvt_fsys_set_dir
 Change Current Directory

Summary

BOOLEAN xvt_fsys_set_dir(DIRECTORY *dirp)

DIRECTORY *dirp

Pointer to an abstract object representing a directory in the local
file system.

Description

This function changes to the directory specified by its argument. The
dirp argument is a pointer to an abstract object representing a
directory in the local file system. You must call xvt_fsys_set_dir
whenever you use the standard C function fopen to open a file in
directories other than the current directory. fopen does not accept a

DIRECTORY argument. It does accept a path as part of the filename,
but the syntax of such paths is not portable.

Return Value

TRUE if successful; FALSE on error.

Parameter Validity and Error Conditions

Severity error in the case of NULL arguement dirp.

See Also

DIRECTORY
FILE_SPEC
FL_* Values for FL_STATUS
xvt_fsys_get_default_dir
xvt_fsys_restore_dir
xvt_fsys_save_dir
xvt_fsys_set_dir_startup

The "Files" chapter in the XVT Portability Toolkit Guide

Example

FILE_SPEC fs_in;memset(&fs_in, 0, sizeof(FILE_SPEC));
fs_in.type[0] = ’0’; /* want all types */
xvt_fsys_get_default_dir(&fs_in.dir);
switch (xvt_dm_post_file_open(&fs_in,

"Select input file...")) {
case FL_BAD:

return;
case FL_CANCEL:

return;
case FL_OK:

break;
}
xvt_fsys_set_dir(&fs_in.dir);
if ((in = fopen(fs_in.name, "rb")) == NULL) {

xvt_dm_post_error("Can’t open file "%s".",
fs_in.name);

return;
}

xvt_fsys_set_dir_startup
 Change to Startup Directory

Summary

void xvt_fsys_set_dir_startup(void)

Description

This function changes the default directory to the directory that was
current when the xvt_app_create was called.

See Also

DIRECTORY
xvt_app_create
xvt_fsys_get_default_dir
xvt_fsys_save_dir
xvt_fsys_set_dir

The "Files" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_fsys_save_dir.

xvt_fsys_set_file_attr
 Set the File Attribute

Summary

BOOLEAN xvt_fsys_set_file_attr
(FILE_SPEC *file, long attr, long value)

FILE_SPEC *file

File for which to set the attribute.

long attr

Attribute to set.

long value

Value to be assigned to the attribute.

Description

This function sets the attributes for the file represented by the input
FILE_SPEC structure. The following attribute values are supported
for set operations:

XVT_FILE_ATTR_TYPESTR

Assumes the value parameter is a pointer to a NULL-terminated
char array, which is copied into the type member of the
FILE_SPEC pointed to by the file parameter. The string is

truncated to four bytes. On XVT/Mac, if the file exists, this also
sets the native system file type attribute.

XVT_FILE_ATTR_CREATORSTR

Assumes the value parameter is a pointer to a NULL-terminated
char array, which is copied into the creator member of the
FILE_SPEC pointed to by the file parameter. The string is
truncated to four bytes. On XVT/Mac, if the file exists, this also
sets the native system file creator attribute.

Return Value

TRUE if successful; FALSE if an error condition or problem occurs that
makes it impossible to correctly complete the attribute set.

Parameter Validity and Error Conditions

Calling this function with a pointer that cannot be de-referenced as
the file parameter results in a serious runtime error and returns a
value of FALSE. If the file specified by file does not exist, XVT
issues a warning and returns FALSE. Calls with illegal values for the
attr parameter generate a runtime warning and a return value of
FALSE.

Implementation Note

If the input string is too large for the destination field in the
FILE_SPEC, the string is copied and truncated, and the function
returns FALSE.

See Also

FILE_SPEC
xvt_fsys_get_file_attr
xvt_fsys_convert_str_to_dir

The "Files" chapter in the XVT Portability Toolkit Guide

xvt_gmem_*
 Global Memory Management (Mac relocatable)

xvt_gmem_alloc
xvt_gmem_free
xvt_gmem_get_size
xvt_gmem_lock
xvt_gmem_realloc
xvt_gmem_unlock

xvt_gmem_alloc
 Allocate Global Memory Block

Summary

GHANDLE xvt_gmem_alloc(long size)

long size

Size of the memory block to be allocated from the "global"
heap.

Description

This function allocates memory from the "global" heap. The global
heap is a separate memory manager that has special characteristics
that vary between platforms. You might want to consider using
global memory to reduce the heap fragmentation that can occur on
XVT/Mac.

This function returns a GHANDLE representing the memory allocated.
However, this is not a pointer. To get a pointer to the memory, call
xvt_gmem_lock. When you are not using the pointer, call
xvt_gmem_unlock to allow the system to possibly move the memory
block and defragment the heap.

Once a global memory block is allocated, you can get its size with
xvt_gmem_get_size, resize it with xvt_gmem_realloc, or free it
with xvt_gmem_free.

You must not assume that the portable use of XVT global memory
supports any of the tricks available on XVT/Mac. In particular,
global memory is not shared memory! Do not attempt to pass
GHANDLEs from one application to another, any more than you would
pass a pointer from one application to another.

Return Value

A GHANDLE that identifies the block if successful; (GHANDLE)0 if no
suitable block can be allocated.

Implementation Note

XVT/Mac

If you are planning to run your application on the Mac, then you
can use xvt_gmem_alloc to allocate memory that can be moved
by the Mac operating system to another location. Doing so

avoids heap fragmentation, and allows your application to use
less memory. Typically, the memory saved is on the order of
20%. Of course, the trade-off is that your application requires
more complexity to manage the locking and unlocking required
to use global memory, and performance suffers due to the
locking and unlocking overhead.

All other platforms

xvt_gmem_alloc is implemented in terms of malloc. In this
case, a GHANDLE is the same as a character pointer, and
xvt_gmem_lock is a macro that returns its argument. Because of
this, the global heap is the same as the local heap on those
platforms. Therefore, using global memory has no benefit.

See Also

GHANDLE
xvt_gmem_free
xvt_gmem_get_size
xvt_gmem_lock
xvt_gmem_realloc
xvt_gmem_unlock
xvt_mem_alloc

The "Memory Allocation" chapter in the XVT Portability Toolkit
Guide

xvt_gmem_free
 Free Global Memory Block

Summary

BOOLEAN xvt_gmem_free(GHANDLE h)

GHANDLE h

Handle to the global memory block.

Description

This function frees the global memory block identified by the
GHANDLE given as its argument. The block must have been previously
allocated by a call to xvt_gmem_alloc or xvt_gmem_realloc. If
locked (via xvt_gmem_lock), then it must be unlocked (with
xvt_gmem_unlock) before it can be freed.

The topic xvt_gmem_alloc includes a discussion of global memory.

Return Value

TRUE if successful; FALSE on error. A FALSE return is usually the
result of an attempt to free a locked block.

See Also

GHANDLE
xvt_gmem_alloc
xvt_gmem_lock
xvt_gmem_realloc
xvt_gmem_unlock

Example

GHANDLE h;if ((h = xvt_gmem_alloc(sizeof(DOC))) == NULL)
return(FALSE);

...
if (!xvt_gmem_unlock(h) || !xvt_gmem_free(h))

xvt_errmsg_sig(NULLWIN, SEV_ERROR,
ERR_FAIL, "UNLOCK", 295,

"Failed to unlock and free memory");

xvt_gmem_get_size
 Get Size of Global Memory Block

Summary

long xvt_gmem_get_size(GHANDLE h)

GHANDLE h

Handle to the global memory block.

Description

This function returns the size in bytes of a memory block identified
by the GHANDLE given as its argument. The block can either be locked
or unlocked, but it cannot have already been freed. The size returned
can be larger than the size given as the argument to xvt_gmem_alloc
or xvt_gmem_realloc when the block was allocated, but it can’t be
smaller.

See the topic xvt_gmem_alloc for a discussion of global memory.

Return Value

The size of the block in bytes if successful; zero if h is not a valid
memory handle. Blocks of size zero are not allowed.

See Also

GHANDLE
xvt_gmem_alloc
xvt_gmem_realloc

Example

See xvt_gmem_alloc.

xvt_gmem_lock
 Lock Global Memory Block

Summary

char *xvt_gmem_lock(GHANDLE h)

GHANDLE h

Handle to the global memory block.

Description

This function is intended to lock a global memory block and return
a pointer to it. A locked piece of global memory can’t be moved by
the system while it’s locked (which would invalidate the pointer), so
you should unlock it with xvt_gmem_unlock as soon as you can. The
next time you need to access the block, you can get a fresh pointer
with another call to xvt_gmem_lock.

For a discussion of global memory, see xvt_gmem_alloc.

Return Value

A pointer to the block if successful; NULL if the block cannot be
locked. A NULL return usually means that the block is already locked.

Parameter Validity and Error Conditions

It is important to remember that calls to xvt_gmem_lock do not stack.
Therefore, never attempt to lock a block that has already been
locked. The result of doing so is undefined.

Implementation Note

On XVT/Mac, the memory is physically locked. xvt_gmem_lock
should still be used to convert the GHANDLE to a pointer. On other
systems, this function has no effect.

See Also

GHANDLE
xvt_gmem_alloc
xvt_gmem_realloc
xvt_gmem_unlock

xvt_gmem_realloc
 Reallocate Global Memory Block

Summary

GHANDLE xvt_gmem_realloc(GHANDLE h, long size)

GHANDLE h

Handle to the global memory block.

long size

New size of the memory block.

Description

This function reallocates the global memory block associated with
handle h to be of size bytes. The returned handle should be used to
refer to the resized block. Since a new block might have been
allocated (the data having been moved automatically), the returned
handle might be different from the argument h. In this case, the old
block is freed before xvt_gmem_realloc returns.

Before calling xvt_gmem_realloc, make sure that the block is
unlocked with xvt_gmem_unlock.

Return Value

New handle to block (not necessarily equal to h) if successful;
(GHANDLE)0 on error, indicating insufficient memory.

See Also

GHANDLE
xvt_gmem_alloc
xvt_gmem_get_size
xvt_gmem_unlock

Example

GHANDLE h;...
if (xvt_gmem_get_size(h) < TBLK_SZ)

if ((h = xvt_gmem_realloc(h, TBLK_SZ)) == NULL)
return(FALSE);

xvt_gmem_unlock
 Unlock Global Memory Block

Summary

BOOLEAN xvt_gmem_unlock(GHANDLE h)

GHANDLE h

Handle to the global memory block.

Description

This function unlocks the global memory block identified by the
GHANDLE given as its argument. The block must have previously been
allocated with xvt_gmem_alloc or xvt_gmem_realloc and locked
with xvt_gmem_lock.

Unlocking a block doesn’t disturb its contents, but it does invalidate
the pointer that the previous call to xvt_gmem_lock returned. Be
careful to avoid using this pointer after calling xvt_gmem_unlock. If
you need to re-access the block, call xvt_gmem_lock again. The
result of calling xvt_gmem_unlock on an unlocked block is
undefined.

Don’t keep blocks locked for a long period. Instead, bracket your
accesses with paired calls to xvt_gmem_lock and xvt_gmem_unlock.

See the topic xvt_gmem_alloc for a discussion of global memory.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

Parameter Validity and Error Conditions

If h is invalid, or if h is not locked, XVT issues an error.

See Also

GHANDLE
xvt_gmem_alloc
xvt_gmem_lock
xvt_gmem_realloc

xvt_help_*
 Help Functions

xvt_help_assoc_all
xvt_help_begin_objclick
xvt_help_close_helpfile
xvt_help_disassoc_all
xvt_help_display_topic
xvt_help_end_objclick
xvt_help_get_flavor
xvt_help_get_menu_assoc
xvt_help_get_win_assoc
xvt_help_open_helpfile
xvt_help_process_event
xvt_help_search_topic
xvt_help_set_menu_assoc
xvt_help_set_win_assoc

xvt_help_assoc_all
 Associate Help Topics with all Objects

Summary

void xvt_help_assoc_all(XVT_HELP_INFO hi, WINDOW win,
 long rid, WIN_DEF *wdef)

XVT_HELP_INFO hi

Help file information handle.

WINDOW win

Container; top-level window or dialog.

long rid

Resource ID of container.

WIN_DEF *wdef

Window definition.

Description

This function associates help topics with all GUI objects (controls
and menus) contained by a window or dialog. The association
between topics (by topic identifier) and GUI objects is provided by
a help association file.

xvt_help_assoc_all requires a WIN_DEF structure for associating
help topics with a container window. If wdef in NULL, the resource
ID of the window (rid) is obtains the WIN_DEF structure.

Parameter Validity and Error Conditions

XVT issues an error for any of the following conditions:

• hi is not a valid help file information handle

• win is not a valid container window

• rid is not a valid resource ID

Return Value

None.

See Also

WIN_DEF
XVT_HELP_INFO
xvt_help_disassoc_all

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

xvt_help_begin_objclick
 Begin Object-Click Help Mode

Summary

void xvt_help_begin_objclick(XVT_HELP_INFO hi,
 WINDOW win, unsigned long flags)

XVT_HELP_INFO hi

Help file information handle.

WINDOW win

Container window.

unsigned long flags

Not currently used; pass zero for this parameter.

Description

This function initiates the object-click help mode. In the object-click
help mode, the cursor changes to a "help" cursor (often a question
mark) to indicate the change in mode. When the user selects an
object, the help engine displays the help topic associated with the
selected object. The cursor reverts to its previous state, and object-
click mode is terminated.

Pass your application’s currently active container window as the win
parameter of this function. While object-click mode is in effect, the
mouse cursor is trapped to this window.

Your application won’t usually need to call this function, since it is
generally called automatically in response to a menu selection. This
function has no effect if object-click mode is already active.

Return Value

None.

Parameter Validy and Error Conditions

XVT issues an error if:

• hi is not valid

• win is not a valid container window

See Also

XVT_HELP_INFO
xvt_help_end_objclick
xvt_help_open_helpfile

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

xvt_help_close_helpfile
 Close an Open Help File

Summary

void xvt_help_close_helpfile(XVT_HELP_INFO hi)

XVT_HELP_INFO hi

Help file information handle.

Description

This function closes and frees all information associated with the
opened help file hi. Call this function when your application no
longer needs access to the help file.

Caution: Do not use free or xvt_mem_free to deallocate help file information
handles.

Return Value

None.

Parameter Validity and Error Conditions

If hi is not valid, XVT issues an error.

See Also

XVT_HELP_INFO
xvt_help_open_helpfile

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Example

static XVT_HELP_INFO hi;hi = xvt_help_open_helpfile
(fileSpec, 0L);
if (hi == (XVT_HELP_INFO)0){

/* display an informative error message, or try
another directory */

}
...
xvt_help_close_helpfile(hi);

xvt_help_disassoc_all
 Remove Help Topic Associations from all Objects

Summary

void xvt_help_disassoc_all(XVT_HELP_INFO hi,
WINDOW parent_win)

XVT_HELP_INFO hi

Help file information handle.

WINDOW parent_win

Window whose help associations are to be removed.

Description

Removes all help topic associations for a window, and any controls,
child windows, and menu items it contains. This function is called
internally when the parent WINDOW is destroyed; your application
does not need to call this function.

Return Value

None.

See Also

XVT_HELP_INFO
xvt_help_open_helpfile
xvt_help_set_menu_assoc
xvt_help_set_win_assoc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Example

See the example for xvt_help_set_win_assoc.

xvt_help_display_topic
 Display a Help Topic

Summary

void xvt_help_display_topic(XVT_HELP_INFO hi,
XVT_HELP_TID topic_id)

XVT_HELP_INFO hi

Help file information handle.

XVT_HELP_TID topic_id

Help topic identifier.

Description

This function displays the topic with reference identifier topic_id
from the compiled help file hi. The topic will be displayed within
the viewer window (either the help system viewer or native viewer).
If the viewer window is already active for the application, then the

topic will replace the currently viewed topic; otherwise a new
viewer window is invoked.

Return Value

None.

Parameter and Validity Conditions

XVT issues an error if:

• hi is not valid

• topic_id is NULL_TID

See Also

XVT_HELP_INFO
XVT_HELP_TID, NULL_TID
xvt_help_open_helpfile

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Example

static XVT_HELP_INFO hi;hi =
xvt_help_open_helpfile(fileSpec, 0L);/* Display a topic,
and create new window */
xvt_help_display_topic(hi, XVT_TPC_INDEX);
.../* Display a different topic: */
xvt_help_display_topic(hi, XVT_TPC_KEYBOARD);

xvt_help_end_objclick
 Cancel Object-Click Help Mode

Summary

void xvt_help_end_objclick(XVT_HELP_INFO hi)

XVT_HELP_INFO hi

Help file information handle.

Description

This function terminates the object-click help mode. Usually your
application does not need to call this function, since the object-click
mode is normally terminated automatically by the help system in
response to the user’s selection.

See Also

XVT_HELP_INFO
xvt_help_begin_objclick
xvt_help_open_helpfile

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

xvt_help_get_flavor
 Get Help Viewer Flavor to be Used by the Application

Summary

XVT_HELP_FLAVOR xvt_help_get_flavor(void)

Description

This function returns the flavor (configuration) of the help viewer
that is to be used by the application. The configuration of the help
viewer is established at application build (link) time. A help file
must be opened prior to calling this function in order for the return
value to be accurate. Otherwise, it returns XVT_HELP_FLAVOR_NONE.

Return Value

The flavor of the help viewer in use by the application, of type
XVT_HELP_FLAVOR.

See Also

XVT_HELP_* Values for XVT_HELP_FLAVOR
xvt_help_open_helpfile

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Example

/* do something based on the viewer configuration */
switch (xvt_help_get_flavor())

{
case XVT_HELP_FLAVOR_PORTBND:

/* do something for the portable bound
viewer */

break;
case XVT_HELP_FLAVOR_NTVSRV:

/* do something else for the native
stand-alone viewer */

break;
}

xvt_help_get_menu_assoc
 Get Help Topic Associated with a Menu Item

Summary

XVT_HELP_TID xvt_help_get_menu_assoc(XVT_HELP_INFO hi,
WINDOW win, MENU_TAG tag)

XVT_HELP_INFO hi

Help file information handle.

WINDOW win

Window that contains the menu item.

MENU_TAG tag

Identifier tag of the menu item.

Description

This function returns the help topic identifier associated with the
menu item tag. win is the window that contains the menu. The
association must be previously created with a call to
xvt_help_set_menu_assoc.

Return Value

The help topic identifier, of type XVT_HELP_TID, if successful;
NULL_TID if no topic is associated with the menu item.

Parameter and Validity Conditions

XVT issues an error if:

• hi is not valid

• win is not a valid window

See Also

XVT_HELP_INFO
xvt_help_open_helpfile
xvt_help_set_menu_assoc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

xvt_help_get_win_assoc
 Retrieve the Help Topic Associated with an Object

Summary

XVT_HELP_TID xvt_help_get_win_assoc(XVT_HELP_INFO hi,
WINDOW win)

XVT_HELP_INFO hi

Help file information handle.

WINDOW win

Window, dialog, or control.

Description

This function returns the identifier of the help topic associated with
win, a window, dialog, or control.

Return Value

A help topic identifier if successful; NULL_TID if no topic is
associated with win.

Parameter and Validity Conditions

If hi or win is not valid, XVT issues an error.

See Also

XVT_HELP_INFO
xvt_help_get_menu_assoc
xvt_help_open_helpfile
xvt_help_set_win_assoc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

xvt_help_open_helpfile
 Load a Help File

Summary

XVT_HELP_INFO xvt_help_open_helpfile(FILE_SPEC *fs,
unsigned long flags)

FILE_SPEC *fs

Pointer to help file specification.

unsigned long flags

Help system options (see description below).

Description

This function opens the specified help file and returns a handle to the
help file’s information. The help file specification pointer should be
to a valid, compiled help file; if not, xvt_help_open_helpfile
returns an error.

xvt_help_open_helpfile uses the following search procedure to
locate the help file:

1. If a full path is specified, look only there (e.g., /usr/apps/
help1.csc, d:apps
elp1.csc or HD:Applications:help1.csc indicates that the
compiled help file named help1.csc must be in the specified
directory).

2. Look in the current directory (current when this function is
called).

3. Look in the directory given by the HELP environment
variable.

4. Look in XVTPATH directories.

5. Look in PATH directories.

The following is a list of the help system flags that apply to the
portable viewer. The flags information can contain zero or more of
the following values, OR’d together:

HSF_APPNAME_TITLE

Normally, the help system displays the current topic in a help
topic window title bar. If the HSF_APPNAME_TITLE flag option is

set, your application name, as defined in the XVT_CONFIG
structure, is used instead.

HSF_INDEX_ON_DISK

If this flag option is used, the topic index is maintained on disk.
By default, the index is maintained in application memory. This
option is useful for low-memory environments.

HSF_NO_HELPMENU_ASSOC

Normally, the help system automatically associates help topics
with the help menu items (e.g., "Help On Help," "Search"). If
the this flag is set, the association is not performed.

HSF_NO_TOPIC_WARNING

If this flag option is used, the help system does not display any
error messages when a requested topic is not found in the help
file. If this flag is not set, a "topic not found" message is
displayed if a topic cannot be found.

HSF_NO_BEEP_MODAL

Most native window systems do not allow the user to manipulate
menus and windows when a modal dialog is active. Therefore, the
user could not operate the help viewer if help was requested for a
modal dialog. If HSF_NO_BEEP_MODAL is set, the system beeps if help
is requested for a modal dialog. If this flag is not set, requests for
help on modal dialogs are silently ignored.

Note: The HSF_NO_BEEP_MODAL flag only applies to the application-bound
help viewer. It has no effect on native and standalone help viewers.

Return Value

A valid XVT_HELP_INFO help file descriptor if successful; zero on
error.

Note: The returned XVT_HELP_INFO value is passed to every other help
system function.

Implementation Note

The HSF_APPNAME_TITLE flag has no effect on the native MS-
Windows help viewer.

The native help system (Win32 WinHelp) is passed a complete path
name, according to the above search rules, to the specified .hlp file.

On XVT/Mac, the help file must be located in the directory where
the application or help viewer (if using client-server help) is
installed.

See Also

FILE_SPEC
XVT_CONFIG
XVT_HELP_INFO
xvt_help_close_helpfile

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Example

FILE_SPEC fspec;
XVT_HELP_INFO hi;xvt_fsys_get_default_dir (&fspec);
fspec.type[0] = ’0’;
fspec.creator[0] = ’0’;
xvt_str_copy(fspec.name, xvt_config. base_appl_name);
hi = xvt_help_open_helpfile(&&fspec, 0L);
if(!hi){

 xvt_dm_post_note("Unable to open help file")
}

xvt_help_process_event
 Pass Event to Help Event Handler

Summary

BOOLEAN xvt_help_process_event(XVT_HELP_INFO hi,
 WINDOW win, EVENT *ev)

XVT_HELP_INFO hi

Help file information handle.

WINDOW win

Window in which the event occurred.

EVENT *ev

XVT event pointer.

Description

This function processes any events intended for the help system.
Call this function in your window and dialog event handlers before
processing any events. If this call returns TRUE, then the event was
consumed by the help system, and your event handler function
should return without any further action.

You call this function only if you are customizing the behavior of the
help system. Normally, it is called for you automatically.

Return Value

If TRUE, the event was processed by the help system, and no further
action is necessary for this event. If FALSE, the event is not useful to
the help system, and should be processed by your event handler.

Parameter and Validity Conditions

XVT issues an error if:

• hi is not valid

• win is not valid

• ev is NULL

See Also

ATTR_HELP_CONTEXT
ATTR_HELP_HOOK
XVT_HELP_INFO
xvt_help_open_helpfile

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Example

See the example under xvt_help_set_win_assoc.

xvt_help_search_topic
 Display a Help Topic and Begin a Keyword Search

Summary

void xvt_help_search_topic(XVT_HELP_INFO hi,
 XVT_HELP_TID topic_id, char *str)

XVT_HELP_INFO hi

Help file information handle.

XVT_HELP_TID topic_id

Help topic identifier.

char *str

Search keyword.

Description

This function displays the topic identified by topic_id with the help
viewer, and starts a keyword search. str contains the search
keyword.

Return Value

None.

Parameter and Validity Conditions

XVT issues an error if hi is not valid

See Also

XVT_HELP_INFO
XVT_HELP_TID, NULL_TID
xvt_help_display_topic
xvt_help_open_helpfile

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

xvt_help_set_menu_assoc
 Associate a Help Topic with a Menu Item

Summary

void xvt_help_set_menu_assoc(XVT_HELP_INFO hi,
 WINDOW win, MENU_TAG menu_tag,
XVT_HELP_TID topic_id, unsigned long flags)

XVT_HELP_INFO hi

Help file information handle.

WINDOW win

Parent window of menu item.

MENU_TAG menu_tag

Menu item identifier.

XVT_HELP_TID topic_id

Help topic identifier.

unsigned long flags

Currently not used--pass zero for this parameter.

Description

This function associates the help topic with the given menu item.
The association remains in effect until a subsequent call with a
topic_id of NULL_TID.

The parent_window can be a valid top-level or task window, or
NULL_WIN. If it is NULL_WIN, then any parent that has menu_tag in its
menubar will use the topic identified by topic_id.

Call this function on each MENU_TAG with a topic_id of NULL_TID to
remove the help topic associations.

Note: The help system automatically removes associations for all
MENU_TAG values when the parent_window is being destroyed.

Return Value

None.

Parameter and Validity Conditions

XVT issues an error if:

• hi is not valid

• win is not NULL_WIN and not valid

See Also

MENU_TAG
XVT_HELP_INFO
XVT_HELP_TID, NULL_TID
xvt_help_disassoc_all
xvt_help_open_helpfile
xvt_help_set_win_assoc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Example

See the example under xvt_help_set_win_assoc.

xvt_help_set_win_assoc
 Associate a Help Topic with a Window, Dialog, or Control

Summary

void xvt_help_set_win_assoc(XVT_HELP_INFO hi,
 WINDOW win, XVT_HELP_TID id, unsigned long flags)

XVT_HELP_INFO hi

Help file information handle.

WINDOW win

Window, dialog, or control.

XVT_HELP_TID id

Help topic identifier.

unsigned long flags

Currently not used; pass zero for this parameter.

Description

This function associates the help topic identifier id with the window
object win. The association remains in effect until a subsequent call
with a topic_id of NULL_TID.

When you no longer require associated help, call this function on
each object with a copic_id of NULL_TID.

Note: When a parent window is being destroyed, the help system
removes associations for its child WINDOWs and controls.

Return Value

None.

Parameter and Validity Conditions

If hi or win are not valid, XVT issues an error.

See Also

XVT_HELP_INFO
XVT_HELP_TID, NULL_TID
xvt_help_assoc_all
xvt_help_disassoc_all
xvt_help_open_helpfile
The "Hypertext Online Help" chapter in the XVT
Portability Toolkit Guide

Example

static XVT_HELP_INFO hi = NULL_HELP_INFO;long
XVT_CALLCONV1 task_eh(WINDOW win, EVENT *ep)
{

switch (ep->type)
{
...
case E_CREATE:

{
FILE_SPEC fs;/* open help file */
memset(&fs, 0, sizeof(FILE_SPEC));
strcpy(fs.name, "MyHelpFile");
hi = xvt_help_open_helpfile(&fs, 0L);
if (!hi) xvt_dm_post_note ("Unable to open

help file");
}
break;

case E_DESTROY:
/* close help file */
if (hi != NULL_HELP_INFO)

xvt_help_close_helpfile(hi);
hi = NULL_HELP_INFO;
break;

...
}
return 0L;

}
long XVT_CALLCONV1 win_eh(WINDOW win, EVENT *ep)
{

WINDOW ctlWin;
MENU_TAG my_menu_tag;switch (ep->type)
{
...
case E_CREATE:

/* associate a help topic with a top level
container and a menu tag */

if (hi) {
xvt_help_set_win_assoc(hi, win,

MY_WIN_TOPIC_ID, 0L);
xvt_help_set_menu_assoc(hi, win, my_menu_tag,

MY_MENU_TOPIC_ID, 0L);
/* associate a help topic with a control */
ctlWin = xvt_win_get_ctl(win,

MY_PUSHBUTTON_RES_ID);
xvt_help_set_win_assoc(hi, ctlWin,

MY_PUSHBUTTON_TOPIC_ID, 0L);
}
break;

...
}
return 0L;

}

xvt_html_*
HTML Control Functions

xvt_html_get_url
xvt_html_set_url
xvt_html_get_url_intercept
xvt_html_set_url_intercept

xvt_html_get_url
Get url of HTML Control

Summary

char *xvt_html_get_url(WINDOW win, char *url, int sz_url)

WINDOW win

HTML control whose url is to be retrieved.

char *url

Buffer to hold url.

int sz_url

Maximum buffer capacity.

Description

This function gets the Universal Resource Locator (URL) of an
HTML control and stores it in url. The maximum capacity of url
(including the NULL-terminator) is sz_url. The URL is truncated as
necessary to fit into url.

Calling xvt_html_get_url on other controls issues an error.

Return Value

Pointer to url if successful; NULL if the control type does not have
a valid URL.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

• win must be a valid WINDOW of type WC_HTML

• url must not be NULL

• sz_url must be greater than zero

See Also

WC_* Values for WIN_TYPE
WINDOW
xvt_html_set_url
xvt_vobj_get_title

xvt_html_set_url
Set url of HTML Control

Summary

void xvt_html_set_url(WINDOW win, char *url)

WINDOW win

HTML control whose URL is to be retrieved.

char *url

URL to be set.

Description

This function changes the Universal Resource Locator (URL) of an
HTML control to the NULL-terminated string pointed to by url. The
URL must be fully qualified and adhere to composition standards,
i.e. 'file:///C:/mydoc.htm' or 'http://www.xvt.com'. Depending on the
URL, some platforms might spawn the default Internet browser or
application to complete the request.

Control update will not occur for an invalid URL.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

• win must be a valid WINDOW of type WC_HTML

• url must not be NULL

See Also

WC_* Values for WIN_TYPE
WINDOW
xvt_html_get_url
xvt_vobj_get_title

xvt_html_get_url_intercept
Retrieve URL Intercept Handler for HTML Control

Summary

XVT_HTML_URL_INTERCEPT_HANDLER
xvt_html_get_url_intercept(WINDOW win)

WINDOW win

HTML control whose URL intercept handler is to be retrieved.

Description

This function gets the current Universal Resource Locator (URL)
intercept handler for an HTML control. The following are typical
uses for xvt_html_get_url_intercept:

• You can temporarily save the current intercept handler and
restore it later with a call to xvt_html_set_url_intercept; you
may want to do this if you temporarily override the intercept
handler and wish to put it back later.

• You can retrieve the current intercept handler from one
HTML control and assign it to another HTML control.

• You can save the intercept handler, reassign a new intercept
handler, and "preprocess" URLs with the new intercept
handler before it invokes the original intercept handler,
effectively chaining together intercept handlers.

Return Value

The XVT_HTML_URL_INTERCEPT_HANDLER registered to
the HTML control.

Parameter Validity and Error Conditions

XVT issues an error if the following condition is not met:

• win must be a valid WINDOW of type WC_HTML

See Also

XVT_HTML_URL_INTERCEPT_HANDLER
WC_* Values for WIN_TYPE
WINDOW
xvt_html_set_url_intercept

Example

This code uses xvt_html_get_url_intercept to get the URL intercept
handler so that it can be assigned to another HTML control.

/* Get the URL intercept handler */
XVT_HTML_URL_INTERCEPT_HANDLER urlIH =
xvt_html_get_url_intercept(myHTMLCtl);
xvt_html_set_url_intercept(myNewHTMLCtl, urlIH);

 xvt_html_set_url_intercept
Set url Intercept Handler for HTML Control

Summary

void xvt_html_set_url_intercept(WINDOW win,
 XVT_HTML_url_INTERCEPT_HANDLER fcn)

WINDOW win

HTML control whose url intercept handler is to be set.

XVT_HTML_url_INTERCEPT_HANDLER fcn

Application-defined url intercept handler. Passing a value of
NULL removes any previously set url intercept handlers.

Description

This function sets the current Universal Resource Locator (url)
intercept handler for an HTML control. The url intercept handler
provides the ability to intercept the requested url prior to processing.
Possible uses of an url intercept handler include:

• Implementation of a history list

• Redirection of urls

Parameter Validity and Error Conditions

XVT issues an error if the following condition is not met:

• win must be a valid WINDOW of type WC_HTML

See Also

XVT_HTML_url_INTERCEPT_HANDLER
WC_* Values for WIN_TYPE
WINDOW
xvt_html_get_url_intercept

Example

This code uses xvt_html_set_url_intercept to set an url intercept
handler to redirect urls.

BOOLEAN myInterceptHdlr(WINDOW win, char **url)
{
 char localurl[] = "http://www.xvt.com";
 char errurl[] = "file://c:/my_app/errpage.htm";

 /* If url is not local, redirect to error page. */
 if (strncmp(*url, localurl, sizeof(localurl)) == 0)
 {
 /* url was allocated using xvt_mem_alloc.

According to documentation, if we want to
change url, it must be freed using
xvt_mem_free to avoid memory leaks. */

xvt_mem_free(*url);

 /* Allocate memory for url based on the length of
our new url */

 *url = xvt_mem_alloc(sizeof(errurl));

 /* Copy the new url into url */
 strcpy(*url, errurl);
 }
 /* Returning TRUE notifies calling function to process

the url in url Returning FALSE notifies the
calling function not to process the url in url */

 return TRUE;
}

long XVT_CALLCONV1 myWindow_eh(WINDOW win, EVENT *ep)
{
 switch(ep->type)
 {
 case E_CREATE:
 ...
 xvt_html_set_url_intercept(xvt_win_get_ctl(win,

HTML_CTL), myInterceptHdlr);
 ...
 break;
...
}
return (*save_eh)(win, ep);
}

xvt_image_*
 Image Functions

xvt_image_create
xvt_image_duplicate
xvt_image_destroy
xvt_image_fill_rect
xvt_image_get_clut
xvt_image_get_dimensions
xvt_image_get_format
xvt_image_get_from_pmap
xvt_image_get_ncolors
xvt_image_get_pixel
xvt_image_get_resolution
xvt_image_get_scanline
xvt_image_read_*
xvt_image_read_bmp
xvt_image_read_bmp_from_iostr
xvt_image_read_gif
xvt_image_read_gif_from_iostr
xvt_image_read_jpg
xvt_image_read_jpg_from_iostr
xvt_image_read_macpict
xvt_image_read_macpict_from_iostr
xvt_image_read_xbm
xvt_image_read_xbm_from_iostr
xvt_image_read_xpm
xvt_image_read_xpm_from_iostr
xvt_image_set_clut
xvt_image_set_ncolors
xvt_image_set_pixel
xvt_image_set_resolution
xvt_image_transfer
xvt_image_write_bmp_to_iostr
xvt_image_write_macpict_to_iostr

xvt_image_create
 Create a New Image

Summary

XVT_IMAGE xvt_image_create(XVT_IMAGE_FORMAT format,
short width, short height,
XVT_IMAGE_ATTR reserved)

XVT_IMAGE_FORMAT format

Color format of the new image.

short width

Width of the new image, in pixels.

short height

Height of the new image, in pixels.

XVT_IMAGE_ATTR reserved

Currently not used; pass NULL for this parameter.

Description

This function creates an XVT_IMAGE object of the specified format,
width, and height. Use this function to allocate memory for images,
rather than using malloc or xvt_mem_alloc.

The contents (pixel values) of the image are not defined after
creation. Use xvt_image_fill_rect to fill the image with a solid
color.

A newly created image with color format XVT_IMAGE_CL8 or
XVT_IMAGE_MONO has a color look-up table with two entries (the
colors black and white). The number of colors in use by the image is
set to two.

Return Value

The newly created XVT_IMAGE handle if successful; NULL if there is
insufficient memory to create the image, or if height or width is less
than zero.

Parameter Validity and Error Conditions

XVT issues an error if format is not one of the supported color
format types.

See Also

XVT_IMAGE
XVT_IMAGE_ATTR
XVT_IMAGE_FORMAT
xvt_dwin_draw_image
xvt_image_destroy
xvt_image_fill_rect
xvt_image_get_pixel
xvt_image_set_clut
xvt_image_set_ncolors
xvt_image_set_pixel
xvt_image_read_*

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

/* rotates an image 180 degrees */
void

image_rotate_180(XVT_IMAGE image)
{

XVT_IMAGE new_image;
short height, width;
/* create new_image for rotated image */
xvt_image_get_dimensions(image, &width, &height);
new_image = xvt_image_create(

xvt_image_get_format(image), width, height,
(XVT_IMAGE_ATTR) NULL);

if (new_image)
{

short h, v;
RCT rect;
/* set up colors for new_image */
short ncolors, c;
ncolors = xvt_image_get_ncolors(image);
xvt_image_set_ncolors(new_image, ncolors);
for (c = 0; c < ncolors; c++)

xvt_image_set_clut(new_image, c,
xvt_image_get_clut(image, c));

/* rotate image pixels */
for (v = 0 ; v < height; v++)

for (h = 0; h < width; h++)
xvt_image_set_pixel(new_image,

width-1-h, height-1-v,
xvt_image_get_pixel(image, h, v));
/* transfer new_image to image */
xvt_rect_set(&rect, 0, 0, width, height);
xvt_image_transfer(image, new_image, &rect,

&rect);
/* destroy new_image */
xvt_image_destroy(new_image);

}
}

xvt_image_duplicate
Make a copy of an image

Summary

XVT_IMAGE xvt_image_duplicate (XVT_IMAGE image);

XVT_IMAGE image

The image to duplicate.

Description

This function returns a copy of the image passed. The new image
has all of the same attributes as the original image. The returned
image is a true copy so xvt_image_destroy should be used to
destroy it.

Return Value

The image iin an XVT_IMAGE variable if successful; NULL on
error.

Parameter Validity and Error Conditions

XVT issues an error if the image is NULL or invalid.

See Also

xvt_image_destroy

xvt_image_destroy
 Destroy an Image

Summary

void xvt_image_destroy(XVT_IMAGE image)

XVT_IMAGE image

Image to be destroyed.

Description

This function destroys an image, freeing the memory it occupies.
The image variable is not valid after calling this function, and its
value should not be used.

Caution: Do not use free or xvt_mem_free to deallocate the memory
occupied by an image. Use this function instead.

Return Value

None.

Parameter Validity and Error Conditions

XVT issues an error if image is NULL or invalid.

See Also

XVT_IMAGE
xvt_image_create

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_create.

xvt_image_fill_rect
 Fill a Rectangular Area of an Image

Summary

void xvt_image_fill_rect(XVT_IMAGE image, COLOR color,
 RCT *rectp)

XVT_IMAGE image

Destination image.

COLOR color

Color with which to fill area.

RCT *rectp

Pointer to rectangle delimiting area to fill.

Description

This function fills a rectangular region in an image with one color
value. If there is no color in the image that matches the fill color
exactly, the nearest color is used.

If any portion of rectp lies outside the boundary of the image, the
portion(s) will be clipped.

Return Value

None.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• image is NULL or invalid

• rectp is NULL

See Also

COLOR
RCT
XVT_IMAGE
xvt_image_set_pixel

The "Portable Images" chapter in the XVT Portability Toolkit Guide

xvt_image_get_clut
 Get a Color Entry Look-up Table

Summary

COLOR xvt_image_get_clut(XVT_IMAGE image, short index)

XVT_IMAGE image

Image from which to retrieve the look-up table.

short index

Index of color entry to retrieve.

Description

This function retrieves the color entry in an image’s look-up table.
image must have color format XVT_IMAGE_CL8 or XVT_IMAGE_MONO.

Return Value

The COLOR value if successful; COLOR_INVALID if unsuccessful (on
error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• image is NULL or invalid

• index is outside of the range [0, 255] for XVT_IMAGE_CL8 or
[0,1] for XVT_IMAGE_MONO.

• The image’s color format is not XVT_IMAGE_CL8 or
XVT_IMAGE_MONO.

See Also

XVT_IMAGE
XVT_IMAGE_FORMAT
xvt_image_set_clut

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_create.

xvt_image_get_dimensions
 Get an Image’s Width and Height

Summary

void xvt_image_get_dimensions(XVT_IMAGE image,
 short *width, short *height)

XVT_IMAGE image

Image from which to retrieve the dimensions.

short *width

Pointer to the image’s width (in pixels).

short *height

Pointer to the image’s height (in pixels).

Description

This function returns the dimensions of an image object, in the
variables pointed to by width and height.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• image is NULL or invalid

• width or height is NULL

See Also

XVT_IMAGE
xvt_dwin_draw_image
xvt_image_create

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the examples for xvt_dwin_draw_image and
xvt_image_create.

xvt_image_get_format
 Get an Image’s Format Type

Summary

XVT_IMAGE_FORMAT xvt_image_get_format(XVT_IMAGE image)

XVT_IMAGE image

Image from which to retrieve the format.

Description

This function returns the color format of an image.

Parameter Validity and Error Conditions

XVT issues an error if image is NULL or invalid.

See Also

XVT_IMAGE
XVT_IMAGE_* Values for XVT_IMAGE_FORMAT
xvt_image_create

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_create.

xvt_image_get_from_pmap
 Transfer a Pixmap to an Image

Summary

void xvt_image_get_from_pmap(XVT_IMAGE dst_image,
 XVT_PIXMAP src_pmap, RCT *dst_rectp,
RCT *src_rectp)

XVT_IMAGE dst_image

Destination image.

XVT_PIXMAP src_pmap

Source pixmap.

RCT *dst_rectp

Pointer to a rectangle that delimits the destination region, in the
coordinates of dst_image. If this rectangle is empty, no image
data is transferred.

RCT *src_rectp

Pointer to a rectangle that delimits the source region, in the
coordinates of src_pmap.

Description

This function copies the contents of a rectangular region in the
source pixmap into a rectangular region in the destination image.
Colors in the source pixmap are mapped into the closest matching
colors in the destination image.

If *src_rctp and *dst_rctp are not congruent, this function
translates and scales the source region as necessary to fit it into the
destination rectangle. Any parts of the source or destination
rectangles that fall outside of the bounds of their respective
containers are ignored.

To copy the entire source pixmap, use the rectangle (0, 0, width,
height) for the source rectangle, where width and height are the
dimensions of the source pixmap. To fill the entire destination
image, use a similar rectangle for the destination rectangle. In this
case, width and height are the dimensions of the destination image.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• dst_image is NULL or invalid

• src_pmap is NULL or invalid

• src_rectp is NULL or empty

See Also

RCT
XVT_IMAGE
XVT_PIXMAP
xvt_dwin_draw_image
xvt_dwin_draw_pmap
xvt_image_create
xvt_image_get_dimensions
xvt_image_transfer
xvt_pmap_create

The "Portable Images" chapter in the XVT Portability Toolkit Guide

xvt_image_get_ncolors
 Get the Number of Colors in an Image

Summary

short xvt_image_get_ncolors(XVT_IMAGE image)

XVT_IMAGE image

Image from which to retrieve the number of colors.

Description

This function returns the number of colors in an image’s look-up
table and is useful only for images with XVT_IMAGE_CL8 or
XVT_IMAGE_MONO formats. (The value 2 is always returned for
XVT_IMAGE_MONO.)

Return Value

If successful, the number of colors in the image’s look-up table. If
the image’s color format is not XVT_IMAGE_CL8 or XVT_IMAGE_MONO,
this function returns zero.

Parameter Validity and Error Conditions

XVT issues an error if image is NULL or invalid.

See Also

XVT_IMAGE
XVT_IMAGE_* Values for XVT_IMAGE_FORMAT
xvt_image_create
xvt_image_set_ncolors

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_create.

xvt_image_get_pixel
 Get the Color of a Pixel in an Image

Summary

COLOR xvt_image_get_pixel(XVT_IMAGE image, short x,
 short y)

XVT_IMAGE image

Image containing the pixel.

short x

Horizontal coordinate of the pixel.

short y

Vertical coordinate of the pixel.

Description

This function returns the color value of a pixel in an image. Using
this function is more convenient than retrieving the pixels directly
(using xvt_image_get_scanline), since it handles the arithmetic
for the array addressing and converting colors to different color
formats.

Return Value

The COLOR value of the specified pixel if successful; COLOR_INVALID
if unsuccessful (on error).

Parameter Validity and Error Conditions

If the image is invalid, or if the coordinate is outside of the range of
dimensions, COLOR_INVALID is returned, and XVT issues an error.

See Also

XVT_IMAGE
xvt_image_create
xvt_image_get_scanline
xvt_image_set_pixel

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_create.

xvt_image_get_resolution
 Get the Horizontal and Vertical Resolution of an Image

Summary

void xvt_image_get_resolution(XVT_IMAGE image,
 long *hresp, long *vresp)

XVT_IMAGE image

Image whose resolution is to be received.

long *hresp

Pointer to the horizontal resolution value.

long *vresp

Pointer to the vertical resolution value.

Description

This function gets the horizontal and vertical resolution of an image
in dots per inch (DPI).

Return value

Zero.

Parameter Validity and Error Conditions

XVT issues an error if image is not valid, or if the hresp or vresp
pointers are NULL.

Implementation Note

Currently this function is not operational. It is included for future
enhancement.

See Also

XVT_IMAGE
xvt_image_set_resolution

The "Portable Images" chapter in the XVT Portability Toolkit Guide

xvt_image_get_scanline
 Get a Pointer to a Scanline in an Image

Summary

DATA_PTR xvt_image_get_scanline(XVT_IMAGE image,
 short linenum)

XVT_IMAGE image

Image containing the scanline.

short linenum

Row number of the scanline.

Description

This function returns a pointer to a row of pixel data in the image.
Given this pointer, your application can directly manipulate the
pixels in an image.

Note: Do not assume that consecutive scanlines are contiguous in memory.
Also, do not make any assumptions about the presence or absence of
padding at the ends of scanlines.

Caution: Do not attempt to free the memory pointer retrieved to by this
function.

Return Value

The scanline data pointed to by the address returned by this function
is interpreted differently, depending on the color format of the
image:

XVT_IMAGE_MONO

Data consists of one-bit pixels, packed eight pixels per byte.
The MSB of each byte is the leftmost of the eight pixels. Bytes
of eight pixels are arranged from left to right in memory, with
the leftmost byte first.

XVT_IMAGE_CL8

Data consists of 8-bit pixels, which are indices for the color
look-up table. Pixels are arranged from left to right in memory,
with the leftmost pixel first.

XVT_IMAGE_RGB

Data consists of 24-bit COLOR values, one per pixel. Cast the
address returned by this function into (COLOR *). Pixels are
arranged from left to right in memory, with the leftmost pixel
first.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• image is NULL or invalid

• linenum is less than zero or greater than (image height - 1)

See Also

DATA_PTR
XVT_IMAGE
XVT_IMAGE_FORMAT
XVT_IMAGE_* Values for XVT_IMAGE_FORMAT
xvt_image_get_pixel
xvt_image_set_pixel

The "Portable Images" chapter in the XVT Portability Toolkit Guide

xvt_image_read_*
 Image Read Functions

xvt_image_read
xvt_image_read_bmp
xvt_image_read_bmp_from_iostr
xvt_image_read_gif
xvt_image_read_gif_from_iostr
xvt_image_read_jpg
xvt_image_read_jpg_from_iostr
xvt_image_read_macpict
xvt_image_read_macpict_from_iostr
xvt_image_read_xbm
xvt_image_read_xbm_from_iostr
xvt_image_read_xpm
xvt_image_read_xpm_from_iostr

xvt_image_read
 Read an Image from a File

Summary

XVT_IMAGE xvt_image_read(char *filenamep)

char *filenamep

Image’s filename.

Description

This function returns an image read from a file. xvt_image_read
attempts to determine the type of image stored in the file by opening
it and reading the first few bytes of the file. If a match with a known
image type is found, the appropriate xvt_image_read_* function is
called to read the image file.

Return Value

The image in a XVT_IMAGE variable if successful; NULL on error.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• The file type cannot be discerned from the contents of the file

• The file cannot be opened

• filename is NULL

• There is insufficient memory to contain the image

See Also

XVT_IMAGE
xvt_image_create
xvt_image_destroy
xvt_image_read_*

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

XVT_IMAGE image;
char *filename;
...
image = xvt_image_read(filename);
if (image == NULL_IMAGE) {

/* image read error */
...

} else {
/* valid image */
...

}

xvt_image_read_bmp
 Create an Image Read from a Named BMP File

Summary

XVT_IMAGE xvt_image_read_bmp(char *filenamep)

char *filenamep

The .BMP filename.

Description

This function opens the file specified by filenamep and checks that
it is a valid Win32 BMP file. If valid, it creates an XVT_IMAGE of the
appropriate format and size and reads the contents of the BMP file
into the XVT_IMAGE. It then closes the file and returns the handle to
the XVT_IMAGE.

Return Value

The image, in a XVT_IMAGE variable if successful. The value of the
XVT_IMAGE handle is NULL_IMAGE if there is an error during the
procedure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• filenamep is NULL

• The file cannot be opened

• The file is not a valid Win32 BMP file

• There is insufficient memory to contain the image

Implementation Note

BMP file data is represented by the Win32 format. The XVT image-
read BMP functions support this format. BMP image data is
represented by one of four image formats based on the number of
bits to store each pixel. The BMP image formats are 1-bit, 4-bits, 8-
bits, and 24-bits per pixel. The mapping of BMP image format to
XVT_IMAGE format is as follows:

BMP format XVT_IMAGE_FORMAT
1-bit XVT_IMAGE_MONO
4-bits XVT_IMAGE_CL8
8-bits XVT_IMAGE_CL8
24-bits XVT_IMAGE_RGB

See Also

XVT_IMAGE
XVT_IMAGE_FORMAT
XVT_IMAGE_* Values for XVT_IMAGE_FORMAT
xvt_image_create
xvt_image_destroy
xvt_image_read_bmp_from_iostr
xvt_image_write_bmp_to_iostr

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

If the variable filenamep is a pathname to a valid BMP file, this
code fragment creates an XVT_IMAGE. It calls the
xvt_image_read_bmp function and checks the XVT_IMAGE handle for
an error.

XVT_IMAGE image;
char *filenamep;
image = xvt_image_read_bmp(filenamep);
if (image == NULL_IMAGE) {

/* image read error */
...
return;

}
/* valid image */

xvt_image_read_bmp_from_iostr
 Create an Image Read from an Input Stream of BMP Data

Summary

void xvt_image_read_bmp_from_iostr(XVT_IOSTREAM iostr)

XVT_IOSTREAM iostr

Input stream.

Description

This function checks that XVT_IOSTREAM is initialized for reading
and positioned to the beginning of valid Win32 BMP data.

If valid, it creates an XVT_IMAGE of the appropriate format and size,
and reads the BMP data from the XVT_IOSTREAM into the XVT_IMAGE.
It then returns the handle to the XVT_IMAGE.

Return Value

An XVT_IMAGE handle if successful. The value of the XVT_IMAGE
handle is NULL_IMAGE if there is an error during the procedure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are
true:

• iostr is NULL

• iostr does not reference valid Win32 BMP data

• There is insufficient memory to contain the image

Implementation Note

See xvt_image_read_bmp.

See Also

XVT_IMAGE
XVT_IOSTREAM
xvt_image_create
xvt_image_destroy
xvt_image_read_bmp
xvt_image_write_bmp_to_iostr
xvt_iostr_create_fread
xvt_iostr_create_read
xvt_iostr_destroy

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

If the variable filenamep is a pathname to a valid BMP file, this
code fragment creates an XVT_IMAGE. It opens the specified file for
reading, and then creates an XVT_IOSTREAM with default functions set
up to read an open file. It then calls the
xvt_image_read_bmp_from_iostr function, destroys the
XVT_IOSTREAM, and closes the file. The XVT_IMAGE handle is then
checked for an error; this error could be a file open error, an I/O
stream create error, or an image read error.

XVT_IMAGE image;
char *filenamep;
FILE *filep;
XVT_IOSTREAM iostr;
image= NULL_IMAGE;
filep = fopen(filenamep, "rb");
if (filep != NULL) {

iostr = xvt_iostr_create_fread(filep);
if (iostr != NULL) {
image = xvt_image_read_bmp_from_iostr(iostr);
xvt_iostr_destroy(iostr);
}
fclose(filep);

}
if (image == NULL_IMAGE) {

/* file open, iostr create or image read error */
return;

}
/* valid image */

xvt_image_read_gif
 Create an Image Read from a Named GIF File

Summary

XVT_IMAGE xvt_image_read_gif(char *filenamep)

char *filenamep

The .GIF filename.

Description

This function opens the file specified by filenamep and checks that
it is a valid GIF file. If valid, it creates an XVT_IMAGE of the
appropriate format and size and reads the contents of the GIF file

into the XVT_IMAGE. It then closes the file and returns the handle to
the XVT_IMAGE.

Return Value

The image, in a XVT_IMAGE variable if successful. The value of the
XVT_IMAGE handle is NULL_IMAGE if there is an error during the
procedure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• filenamep is NULL

• The file cannot be opened

• The file is not a valid GIF file

• There is insufficient memory to contain the image

Implementation Note

GIF image data is represented by one of three image formats based
on the number of bits to store each pixel. The GIF image formats are
1-bit, 4-bits, and 8-bits per pixel. The mapping of GIF image format
to XVT_IMAGE format is as follows:

BMP format XVT_IMAGE_FORMAT
1-bit XVT_IMAGE_MONO
4-bits XVT_IMAGE_CL8
8-bits XVT_IMAGE_CL8

See Also

XVT_IMAGE
XVT_IMAGE_FORMAT
XVT_IMAGE_* Values for XVT_IMAGE_FORMAT
xvt_image_create
xvt_image_destroy
xvt_image_read_gif_from_iostr
xvt_image_write_gif_to_iostr

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

If the variable filenamep is a pathname to a valid GIF file, this code
fragment creates an XVT_IMAGE. It calls the xvt_image_read_gif
function and checks the XVT_IMAGE handle for an error.

XVT_IMAGE image;
char *filenamep;
image = xvt_image_read_gif(filenamep);
if (image == NULL_IMAGE) {

/* image read error */
...
return;

}
/* valid image */

xvt_image_read_gif_from_iostr
 Create an Image Read from an Input Stream of GIF Data

Summary

void xvt_image_read_gif_from_iostr(XVT_IOSTREAM iostr)

XVT_IOSTREAM iostr

Input stream.

Description

This function checks that XVT_IOSTREAM is initialized for reading
and positioned to the beginning of valid GIF data.

If valid, it creates an XVT_IMAGE of the appropriate format and size,
and reads the GIF data from the XVT_IOSTREAM into the XVT_IMAGE.
It then returns the handle to the XVT_IMAGE.

Return Value

An XVT_IMAGE handle if successful. The value of the XVT_IMAGE
handle is NULL_IMAGE if there is an error during the procedure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are
true:

• iostr is NULL

• iostr does not reference valid GIF data

• There is insufficient memory to contain the image

Implementation Note

See xvt_image_read_gif.

See Also

XVT_IMAGE
XVT_IOSTREAM
xvt_image_create
xvt_image_destroy
xvt_image_read_gif
xvt_image_write_gif_to_iostr
xvt_iostr_create_fread
xvt_iostr_create_read
xvt_iostr_destroy

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

If the variable filenamep is a pathname to a valid GIF file, this code
fragment creates an XVT_IMAGE. It opens the specified file for
reading, and then creates an XVT_IOSTREAM with default functions set
up to read an open file. It then calls the
xvt_image_read_gif_from_iostr function, destroys the
XVT_IOSTREAM, and closes the file. The XVT_IMAGE handle is then
checked for an error; this error could be a file open error, an I/O
stream create error, or an image read error.

XVT_IMAGE image;
char *filenamep;
FILE *filep;
XVT_IOSTREAM iostr;
image= NULL_IMAGE;
filep = fopen(filenamep, "rb");
if (filep != NULL) {

iostr = xvt_iostr_create_fread(filep);
if (iostr != NULL) {
image = xvt_image_read_bmp_from_iostr(iostr);
xvt_iostr_destroy(iostr);
}
fclose(filep);

}
if (image == NULL_IMAGE) {

/* file open, iostr create or image read error */
return;

}
/* valid image */

xvt_image_read_jpg
 Create an Image Read from a Named JPEG File

Summary

XVT_IMAGE xvt_image_read_jpg(char *filenamep)

char *filenamep

The .JPG filename.

Description

This function opens the file specified by filenamep and checks that
it is a valid JPEG file. If valid, it creates an XVT_IMAGE of the
appropriate format and size and reads the contents of the JPEG file
into the XVT_IMAGE. It then closes the file and returns the handle to
the XVT_IMAGE.

Return Value

The image, in a XVT_IMAGE variable if successful. The value of the
XVT_IMAGE handle is NULL_IMAGE if there is an error during the
procedure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• filenamep is NULL

• The file cannot be opened

• The file is not a valid JPEG file

• There is insufficient memory to contain the image

Implementation Note

JPEG image data is represented by one of four image formats based
on the number of bits to store each pixel. The JPEG image formats
are 1-bit, 4-bits, 8-bits, and 24-bits per pixel. The mapping of JPEG
image format to XVT_IMAGE format is as follows:

BMP format XVT_IMAGE_FORMAT
1-bit XVT_IMAGE_MONO
4-bits XVT_IMAGE_CL8
8-bits XVT_IMAGE_CL8
24-bits XVT_IMAGE_RGB

See Also

XVT_IMAGE
XVT_IMAGE_FORMAT
XVT_IMAGE_* Values for XVT_IMAGE_FORMAT
xvt_image_create
xvt_image_destroy
xvt_image_read_jpg_from_iostr
xvt_image_write_jpg_to_iostr

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

If the variable filenamep is a pathname to a valid JPEG file, this
code fragment creates an XVT_IMAGE. It calls the
xvt_image_read_jpg function and checks the XVT_IMAGE handle for
an error.

XVT_IMAGE image;
char *filenamep;
image = xvt_image_read_jpg(filenamep);
if (image == NULL_IMAGE) {

/* image read error */
...
return;

}
/* valid image */

xvt_image_read_jpg_from_iostr
 Create an Image Read from an Input Stream of JPEG Data

Summary

void xvt_image_read_jpg_from_iostr(XVT_IOSTREAM iostr)

XVT_IOSTREAM iostr

Input stream.

Description

This function checks that XVT_IOSTREAM is initialized for reading
and positioned to the beginning of valid JPEG data.

If valid, it creates an XVT_IMAGE of the appropriate format and size,
and reads the JPEG data from the XVT_IOSTREAM into the XVT_IMAGE.
It then returns the handle to the XVT_IMAGE.

Return Value

An XVT_IMAGE handle if successful. The value of the XVT_IMAGE
handle is NULL_IMAGE if there is an error during the procedure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are
true:

• iostr is NULL

• iostr does not reference valid JPEG data

• There is insufficient memory to contain the image

Implementation Note

See xvt_image_read_jpg.

See Also

XVT_IMAGE
XVT_IOSTREAM
xvt_image_create
xvt_image_destroy
xvt_image_read_jpg
xvt_image_write_jpg_to_iostr
xvt_iostr_create_fread
xvt_iostr_create_read
xvt_iostr_destroy

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

If the variable filenamep is a pathname to a valid JPEG file, this
code fragment creates an XVT_IMAGE. It opens the specified file for
reading, and then creates an XVT_IOSTREAM with default functions set
up to read an open file. It then calls the
xvt_image_read_jpg_from_iostr function, destroys the
XVT_IOSTREAM, and closes the file. The XVT_IMAGE handle is then
checked for an error; this error could be a file open error, an I/O
stream create error, or an image read error.

XVT_IMAGE image;
char *filenamep;
FILE *filep;
XVT_IOSTREAM iostr;
image= NULL_IMAGE;
filep = fopen(filenamep, "rb");
if (filep != NULL) {

iostr = xvt_iostr_create_fread(filep);
if (iostr != NULL) {
image = xvt_image_read_jpg_from_iostr(iostr);
xvt_iostr_destroy(iostr);
}
fclose(filep);

}
if (image == NULL_IMAGE) {

/* file open, iostr create or image read error */
return;

}
/* valid image */

xvt_image_read_macpict
 Create an Image Read from a Named Macintosh PICT File

Summary

XVT_IMAGE xvt_image_read_macpict(char *filenamep)

char *filenamep

PICT’s filename.

Description

This function opens the file specified by filenamep and checks that
it is a valid Macintosh PICT file. If valid, it creates an XVT_IMAGE of
the appropriate format and size and reads the contents of the
Macintosh PICT file into the XVT_IMAGE. It then closes the file and
returns the handle to the XVT_IMAGE.

Return Value

An XVT_IMAGE handle. The value of the XVT_IMAGE handle is
NULL_IMAGE if there is an error during the procedure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• filenamep is NULL

• The file cannot be opened

• The file is not a valid Macintosh PICT file

• There is insufficient memory to contain the image

Implementation Note

This function is available only in XVT/Mac. On other platforms, this
function has no effect and returns NULL.

See Also

XVT_IMAGE
xvt_image_create
xvt_image_destroy
xvt_image_read_bmp
xvt_image_read_macpict_from_iostr

The "Portable Images" Chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_read_bmp.

xvt_image_read_macpict_from_iostr
 Create an Image Read from an Input Stream of Macintosh PICT Data

Summary

XVT_IMAGE xvt_image_read_macpict_from_iostr
 (XVT_IOSTREAM iostr)

XVT_IOSTREAM iostr

Input stream.

Description

This function checks that XVT_IOSTREAM is initialized for reading
and positioned to the beginning of a valid Macintosh PICT data
structure. If valid, it creates an XVT_IMAGE of the appropriate format
and size and reads the Macintosh PICT data structure from the
XVT_IOSTREAM into the XVT_IMAGE. It then returns the handle to the
XVT_IMAGE.

Return Value

An XVT_IMAGE handle if successful. The value of the XVT_IMAGE
handle is NULL_IMAGE if there is an error during the procedure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• iostr is NULL

• iostr does not reference valid Macintosh PICT data

• There is insufficient memory to contain the image

Implementation Note

This function is available only in XVT/Mac.

The input data stream must be in the following format (i.e., the
Macintosh PICT format):

• A 512-byte header

• 2 bytes containing the picture size

• 8 bytes containing the picture frame (rectangle)

• n bytes containing the picture description data

See Also

XVT_IMAGE
XVT_IOSTREAM
xvt_image_create
xvt_image_destroy
xvt_image_read_bmp_from_iostr
xvt_image_read_macpict
xvt_iostr_create_fread
xvt_iostr_create_read
xvt_iostr_destroy

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_read_bmp_from_iostr.

xvt_image_read_xbm
 Create an Image Read from a Named XBM File

Summary

XVT_IMAGE xvt_image_read_xbm(char *filenamep)

char *filenamep

XBM’s filename.

Description

This function opens the file specified by filenamep and checks that
it is a valid XBM file. If valid, it creates an XVT_IMAGE of the
appropriate format and size and reads the contents of the XBM file
into the XVT_IMAGE. It then closes the file and returns the handle to
the XVT_IMAGE.

Return Value

An XVT_IMAGE handle if successful. The value of the XVT_IMAGE
handle is NULL_IMAGE if there is an error during the procedure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• filenamep is NULL

• The file cannot be opened

• The file is not a valid XBM file

• There is insufficient memory to contain the image

See Also

XVT_IMAGE
xvt_image_create
xvt_image_destroy
xvt_image_read_bmp
xvt_image_read_xbm_from_iostr
xvt_image_read_xpm

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_read_bmp.

xvt_image_read_xbm_from_iostr
 Create an Image Read from an Input Stream of XBM Data

Summary

XVT_IMAGE xvt_image_read_xbm_from_iostr
 (XVT_IOSTREAM iostr)

XVT_IOSTREAM iostr

Input stream.

Description

This function checks that XVT_IOSTREAM is initialized for reading
and positioned to the beginning of valid XBM data. If valid, it
creates an XVT_IMAGE of the appropriate format and size and reads
the XBM data from the XVT_IOSTREAM into the XVT_IMAGE. It then
returns the handle to the XVT_IMAGE.

Return Value

An XVT_IMAGE handle if successful. The value of the XVT_IMAGE
handle is NULL_IMAGE if there is an error during the procedure.

Parameter Validity and Error Conditions

XVT issues an error if any the following conditions are true:

• iostr is NULL

• iostr does not reference valid XBM data

• There is insufficient memory to contain the image

Implementation Note

See xvt_image_read_xbm.

See Also

XVT_IMAGE
XVT_IOSTREAM
xvt_image_create
xvt_image_destroy
xvt_image_read_bmp_from_iostr
xvt_image_read_xbm
xvt_image_read_xpm_from_iostr
xvt_iostr_create_fread
xvt_iostr_create_read
xvt_iostr_destroy

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_read_bmp_from_iostr.

xvt_image_read_xpm
 Create an Image from a Named XPM File

Summary

XVT_IMAGE xvt_image_read_xpm(char *filenamep)

char *filenamep

XPM’s filename.

Description

This function opens the file specified by filenamep and checks that
it is a valid XPM file. If valid, it creates an XVT_IMAGE of the
appropriate format and size, and reads the contents of the XPM file
into the XVT_IMAGE. It then closes the file and returns the handle to
the XVT_IMAGE.

Return Value

An XVT_IMAGE handle if successful. The value of the XVT_IMAGE
handle is NULL_IMAGE if there is an error during the procedure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• filenamep is NULL

• The file cannot be opened

• The file is not a valid XPM file

• There is insufficient memory to contain the image

See Also

XVT_IMAGE
xvt_image_create
xvt_image_destroy
xvt_image_read_bmp
xvt_image_read_xbm
xvt_image_read_xpm_from_iostr

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_read_bmp.

xvt_image_read_xpm_from_iostr
 Create an Image Read from an Input Stream of XPM Data

Summary

XVT_IMAGE xvt_image_read_xpm_from_iostr
 (XVT_IOSTREAM iostr)

XVT_IOSTREAM iostr

Input stream.

Description

This function checks that XVT_IOSTREAM is initialized for reading
and positioned to the beginning of valid XPM data. If valid, it
creates an XVT_IMAGE of the appropriate format and size, and reads
the XPM data from the XVT_IOSTREAM into the XVT_IMAGE. It then
returns the handle to the XVT_IMAGE.

Return Value

An XVT_IMAGE handle if successful. The value of the XVT_IMAGE
handle is NULL_IMAGE if there is an error during the procedure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• iostr is NULL

• iostr does not reference valid XPM data

• There is insufficient memory to contain the image

Implementation Note

See xvt_image_read_xpm.

See Also

XVT_IMAGE
XVT_IOSTREAM
xvt_image_create
xvt_image_destroy
xvt_image_read_bmp_from_iostr
xvt_image_read_xbm_from_iostr
xvt_image_read_xpm
xvt_iostr_create_fread
xvt_iostr_create_read
xvt_iostr_destroy

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_read_bmp_from_iostr.

xvt_image_set_clut
 Set a Color Look-up Table Entry

Summary

void xvt_image_set_clut(XVT_IMAGE image, short index,
 COLOR color)

XVT_IMAGE image

Image that owns the look-up table to alter.

short index

Index of the look-up table entry to set.

COLOR color

Color value to set the look-up table entry.

Description

This function sets the COLOR value of an entry in a color look-up
table. index must be between 0 and 255 (inclusive) for
XVT_IMAGE_CL8 or between 0 and 1 (inclusive) for XVT_IMAGE_MONO.
The function does not alter the number of colors used by the image,
nor does it alter the image itself. To change the number of colors
used by the image, use xvt_image_set_ncolors.

This function is useful only with images of format XVT_IMAGE_CL8
or XVT_IMAGE_MONO, since other formats do not have look-up tables.

Return Value

None.

Parameter Validity and Error Conditions

XVT issues an error if image is not valid. This function has no effect
if the format of image is not XVT_IMAGE_CL8, or if index is not in the
range [0, 255] for XVT_IMAGE_CL8 or [0, 1] for XVT_IMAGE_MONO.

See Also

COLOR
XVT_IMAGE
XVT_IMAGE_* Values for XVT_IMAGE_FORMAT
xvt_image_create
xvt_image_get_clut
xvt_image_get_pixel
xvt_image_set_ncolors

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_create.

xvt_image_set_ncolors
 Set the Number of Colors Used by an Image

Summary

void xvt_image_set_ncolors(XVT_IMAGE image,
 short ncolors)

XVT_IMAGE image

Image whose color look-up table is to be altered.

short ncolors

Value to set the number of colors.

Description

This function sets the number of colors used by an image with color
format XVT_IMAGE_CL8. The number set by this function affects how
colors are mapped when the image is transferred to a window or
pixmap, or from a pixmap. The color-mapping process constructs
color tables to map colors to/from the image’s colors, but only for
the number of colors set by this function.

Return Value

None.

Parameter Validity and Error Conditions

XVT issues an error if image is not valid. This function has no effect
if the format of image is not XVT_IMAGE_CL8.

If ncolors is greater than 256, it will be treated as if it is 256. If
ncolors is less than 2, it will be treated as if it is 2.

See Also

XVT_IMAGE
XVT_IMAGE_* Values for XVT_IMAGE_FORMAT
xvt_dwin_draw_image
xvt_image_create
xvt_image_get_ncolors
xvt_image_set_clut

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_create.

xvt_image_set_pixel
 Set the Value of a Pixel In an Image

Summary

void xvt_image_set_pixel(XVT_IMAGE image, short x,
 short y, COLOR color)

XVT_IMAGE image

Image containing the pixel to set.

short x

Horizontal coordinate of the pixel.

short y

Vertical coordinate of the pixel.

COLOR color

Color value to set the pixel.

Description

This function sets the color value of a pixel in an image. Using this
function is more convenient than manipulating the pixels directly
(using xvt_image_get_scanline), since it handles the arithmetic
for the array addressing and converting colors to different color
formats.

Return Value

None.

Parameter Validity and Error Conditions

XVT issues an error if image is not valid, or if the coordinate is
outside the range of the dimensions.

Implementation Note

This function is slow when the image uses the XVT_IMAGE_CL8 color
format, since it performs a best-fit calculation comparing color to
the entries in the image’s color look-up table. For faster performance
on images of this format, use xvt_image_get_scanline.

See Also

COLOR
XVT_IMAGE
XVT_IMAGE_* Values for XVT_IMAGE_FORMAT
xvt_image_create
xvt_image_get_pixel
xvt_image_get_scanline
xvt_image_set_clut

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_create.

xvt_image_set_resolution
 Set the Horizontal and Vertical Resolution of an Image

Summary

void xvt_image_set_resolution(XVT_IMAGE image,
 long hres, long vres)

XVT_IMAGE image

Image whose resolution is to be set.

long hres

Horizontal resolution value.

long vres

Vertical resolution value.

Description

This function sets the horizontal and vertical resolution of an image
in dots per inch (dpi).

Return value

None.

Parameter Validity and Error Conditions

XVT issues an error if image is not valid.

Implementation Note

Currently this function is not operational. It is included for future
enhancement.

See Also

XVT_IMAGE
xvt_image_get_resolution

The "Portable Images" chapter in the XVT Portability Toolkit Guide

xvt_image_transfer
 Copy a Portion of One Image to Another Image

Summary

void xvt_image_transfer(XVT_IMAGE dstimage,
 XVT_IMAGE srcimage, RCT *dstrctp, RCT *srcrctp)

XVT_IMAGE dstimage

Destination image.

XVT_IMAGE srcimage

Source image.

RCT *dstrctp

Pointer to a rectangle that delimits the destination region. If this
rectangle is empty, no image data is transferred.

RCT *srcrctp

Pointer to a rectangle that delimits the source region.

Description

This function copies the contents of a rectangular region in the
source image into a rectangular region in the destination image.

If *srcrctp and *dstrctp are not congruent, this function translates
and scales the source region as necessary to fit it into the destination
rectangle. Any parts of the source or destination rectangles that fall
outside of the bounds of their respective containers are ignored.

To copy the entire source image, use the rectangle (0, 0, width,
height) for the source rectangle, where width and height are the
dimensions of the source image. To fill the entire destination image,
use a similar rectangle for the destination rectangle. In this case,
width and height are the dimensions of the destination image.

Return Value

None.

Parameter Validity and Error Conditions

If either srcimage or dstimage is not valid, if either is NULL, or if the
source rectangle points to an empty rectangle, XVT issues an error.
Any parts of the source or destination rectangles that fall outside of
the bounds of their respective images are ignored.

See Also

RCT
XVT_IMAGE
xvt_dwin_draw_image
xvt_image_get_dimensions
xvt_image_get_from_pmap

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_create.

xvt_image_write_bmp_to_iostr
 Write an Image in MS-Windows BMP Format to an I/O Stream

Summary

BOOLEAN xvt_image_write_winbmp_to_iostr
 (XVT_IMAGE image, XVT_IOSTREAM iostr)

XVT_IMAGE image

A handle to the source image.

XVT_IOSTREAM iostr

The output stream.

Description

This function writes an XVT_IMAGE to an XVT_IOSTREAM in Win32
BMP format.

Prior to calling this function, the XVT_IOSTREAM must be correctly
positioned and initialized for writing.

Return Value

A BOOLEAN TRUE if the procedure is successful; FALSE if there is an
error during the procedure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• iostr is NULL

• image is NULL or invalid

See Also

XVT_IMAGE
XVT_IOSTREAM
xvt_image_create
xvt_image_destroy
xvt_image_read_bmp_from_iostr
xvt_image_read_xbm
xvt_iostr_create_fwrite
xvt_iostr_create_write
xvt_iostr_destroy

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

This code fragment writes an XVT_IMAGE to the file specified by the
pathname filenamep. It opens the specified file for writing, and then
creates an XVT_IOSTREAM with default functions setup up to write to
an open file. It then calls the xvt_image_write_bmp_to_iostr
function, destroys the XVT_IOSTREAM, and closes the file. The return
value ret is then checked for an error; this error could be a file open
error, an I/O stream create error, or an image write error.

XVT_IMAGE image;
char *filenamep;
BOOLEAN ret;
FILE * filep;
XVT_IOSTREAM iostr;ret = FALSE;filep = fopen(filenamep,
"wb");
if (filep != NULL) {

iostr = xvt_iostr_create_fwrite(filep);
if (iostr != NULL) {

ret = xvt_image_write_winbmp_to_iostr(iostr,
image);

xvt_iostr_destroy(iostr);
}
fclose(filep);

}
if (!ret) {

/* file open, iostr create or image write error */
return;

}/* write succeeded */

xvt_image_write_macpict_to_iostr
 Write an Image in Macintosh PICT Format to an Output Stream

Summary

BOOLEAN xvt_image_write_macpict_to_iostr
 (XVT_IMAGE image, XVT_IOSTREAM iostr)

XVT_IMAGE image

Handle to the source image.

XVT_IOSTREAM iostr

Output stream.

Description

This function writes an XVT_IMAGE to an XVT_IOSTREAM in Macintosh
PICT format. Prior to calling this function, the XVT_IOSTREAM must
have been initialized for writing and correctly positioned.

Return Value

A BOOLEAN. TRUE if the procedure is successful; FALSE if there was
any error during the procedure.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• iostr is NULL

• image is NULL or invalid

Implementation Note

This function is available only in XVT/Mac. The data is written in
the following format (i.e., the Macintosh PICT format):

• A 512-byte header (containing all zeros)

• 2 bytes containing the picture size

• 8 bytes containing the picture frame (rectangle)

• n bytes containing the picture description data

See Also

XVT_IMAGE
XVT_IOSTREAM
xvt_image_create
xvt_image_destroy
xvt_image_read_macpict
xvt_image_read_macpict_from_iostr
xvt_image_write_bmp_to_iostr
xvt_iostr_create_fwrite
xvt_iostr_create_write
xvt_iostr_destroy

The "Portable Images" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_image_write_bmp_to_iostr.

xvt_iostr_*
 Input/Output Byte Stream Functions

xvt_iostr_create_fread
xvt_iostr_create_fwrite
xvt_iostr_create_read
xvt_iostr_create_write
xvt_iostr_destroy
xvt_iostr_get_context

xvt_iostr_create_fread
 Create an I/O Stream for Reading Data from a File

Summary

XVT_IOSTREAM xvt_iostr_create_fread(FILE *fp)

FILE *fp

File pointer stream context for an open file from which to read.

Description

This function creates an I/O stream object for reading data from a
file. fp must be an open file pointer. Data will be read starting at the
current file position.

Return Value

The XVT_IOSTREAM object; NULL on insufficient memory or error
(which invokes XVT error processing).

See Also

XVT_IOSTREAM
xvt_image_read_bmp_from_iostr
xvt_image_read_macpict_from_iostr
xvt_image_read_xbm_from_iostr
xvt_image_read_xpm_from_iostr
xvt_iostr_create_fwrite
xvt_iostr_create_read

Example

See the example for xvt_image_read_bmp_from_iostr.

xvt_iostr_create_fwrite
 Create an I/O Stream for Writing Data to a File

Summary

XVT_IOSTREAM xvt_iostr_create_fwrite(FILE *fp)

FILE *fp

File pointer stream context for an open file to which to write.

Description

This function creates an I/O stream object for writing data to a file.
fp must be an open file pointer. Data will be written starting at the
current file position.

Return Value

The XVT_IOSTREAM object; NULL on insufficient memory or error
(which invokes XVT error processing).

See Also

XVT_IOSTREAM
xvt_image_read_bmp_from_iostr
xvt_image_read_macpict_from_iostr
xvt_image_read_xbm_from_iostr
xvt_image_read_xpm_from_iostr
xvt_image_write_bmp_to_iostr
xvt_iostr_create_read
xvt_iostr_create_write

Example

See the example for xvt_image_write_bmp_to_iostr.

xvt_iostr_create_read
 Create an I/O Stream for Reading Data

Summary

XVT_IOSTREAM xvt_iostr_create_read
 (XVT_IOSTR_CONTEXT context,
XVT_IOSTR_RWFUNC get_bytes,
XVT_IOSTR_SZFUNC num_bytes)

XVT_IOSTR_CONTEXT context

Context for the I/O stream object. Typically a file pointer or a
pointer to application data memory representing the input
stream.

XVT_IOSTR_RWFUNC get_bytes

User-supplied function for reading bytes.

XVT_IOSTR_SZFUNC num_bytes

User-supplied function for the size of the stream in bytes.

Description

This function creates an I/O stream object for reading data from an
arbitrary source, such as a memory buffer. You must supply the
functions get_bytes and num_bytes. The types are defined as
follows:

typedef short(* XVT_IOSTR_RWFUNC)
(XVT_IOSTREAM iostr, unsigned short nbytes,

XVT_BYTE buf);
typedef long(* XVT_IOSTR_SZFUNC)

(XVT_IOSTREAM iostr);

Return Value

The XVT_IOSTREAM object; NULL on insufficient memory or error
(which invokes XVT error processing).

See Also

XVT_BYTE
XVT_IOSTR_CONTEXT
XVT_IOSTR_RWFUNC
XVT_IOSTR_SZFUNC
xvt_image_read_bmp_from_iostr
xvt_image_read_macpict_from_iostr
xvt_image_read_xbm_from_iostr
xvt_image_read_xpm_from_iostr
xvt_iostr_create_write

xvt_iostr_create_write
 Create an I/O Stream for Writing Data

Summary

XVT_IOSTREAM xvt_iostr_create_write
(XVT_IOSTR_CONTEXT context,
XVT_IOSTR_RWFUNC put_bytes)

XVT_IOSTR_CONTEXT context

Context for the I/O stream object. Typically, a file pointer, or a
pointer to application data memory representing the output
stream.

XVT_IOSTR_RWFUNC put_bytes

User-supplied function for writing bytes.

Description

This function creates an I/O stream object for writing data to an
arbitrary destination, such as a memory buffer. You must supply the
function put_bytes. The type is defined as follows:

typedef short(* XVT_IOSTR_RWFUNC)
(XVT_IOSTREAM iostr, unsigned short nbytes,

XVT_BYTE buf);

Return Value

The XVT_IOSTREAM object; NULL on insufficient memory or error
(which invokes XVT error processing).

See Also

XVT_BYTE
XVT_IOSTR_CONTEXT
XVT_IOSTR_RWFUNC
XVT_IOSTR_SZFUNC
xvt_image_read_bmp_from_iostr
xvt_image_read_macpict_from_iostr
xvt_image_read_xbm_from_iostr
xvt_image_read_xpm_from_iostr
xvt_iostr_create_read

xvt_iostr_destroy
 Destroy an I/O Stream Object

Summary

void xvt_iostr_destroy(XVT_IOSTREAM iostr)

XVT_IOSTREAM iostr

The I/O stream object to destroy.

Description

This function destroys an I/O stream object. To free the memory an
object uses, call this function when you no longer need the object.

Return Value

None.

Parameter Validity and Error Conditions

XVT issues an error if iostr is not a valid XVT_IOSTREAM.

See Also

XVT_IOSTREAM
xvt_image_write_bmp_to_iostr
xvt_iostr_create_fread
xvt_iostr_create_fwrite
xvt_iostr_create_read
xvt_iostr_create_write

Example

See the example for xvt_image_write_bmp_to_iostr.

xvt_iostr_get_context
 Returns the Context of a Stream Object

Summary

XVT_IOSTR_CONTEXT xvt_iostr_get_context(
XVT_IOSTREAM iostream);

Description

This function returns the pointer to the data stream context of an
XVT_IOSTREAM object. For file stream objects, the data context is a
file pointer (FILE *).

See Also

XVT_IOSTR_CONTEXT
XVT_IOSTREAM
xvt_iostr_create_fread
xvt_iostr_create_fwrite
xvt_iostr_create_read
xvt_iostr_create_write

xvt_list_*
 List Functions

xvt_list_add
xvt_list_clear
xvt_list_count_all
xvt_list_count_sel
xvt_list_get_all
xvt_list_get_elt
xvt_list_get_first_sel
xvt_list_get_sel
xvt_list_get_sel_index
xvt_list_is_sel
xvt_list_rem
xvt_list_resume
xvt_list_set_sel
xvt_list_suspend

xvt_list_add
 Add String or Slist to a List Control

Summary

BOOLEAN xvt_list_add(WINDOW win, int index,
char *sx)

WINDOW win

Window of control (WC_LBOX, WC_LISTEDIT, or
WC_LISTBUTTON).

int index

Position to insert the string or SLIST.

char *sx

String or SLIST to add.

Description

This function adds a NULL-terminated string or SLIST specified by sx
to the WC_LBOX, WC_LISTEDIT, or WC_LISTBUTTON control specified
by win. For WC_LISTEDIT or WC_LISTBUTTON controls, only the "list"
portion of the control is affected. The exception to this is that when
the first item is added to an empty list for a WC_LISTBUTTON, the title
of the button portion is set to the new item. The addition is placed
before the item whose index is equal to index (origin 0). An index
that’s too large or -1 causes the addition to be at the end; for
readability, a value of -1 is suggested.

SLISTs are linked lists of strings; they are explained in the "Utilities"
chapter in theXVT Portability Toolkit Guide. When an SLIST is
passed to xvt_list_add, the data is not used or saved by the list
control.

If you’re going to call xvt_list_add several times to add a group of
strings, you should bracket the calls with xvt_list_suspend and
xvt_list_resume to suppress unneeded updates.

If an application-defined format function is attached to the
WC_LISTBOX control, calling xvt_list_add may result in inserting a
different string or list of strings, as specified by the format function,
into the list box contents or may cause xvt_list_add to return
without taking any action.

Tip: List controls don’t have a fixed limit on how many items they can
hold, but they get sluggish when the number gets much over a
hundred. Consider using a regular XVT window, which you can
scroll yourself, for huge amounts of data.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are not met:

• win must be a WC_LBOX, WC_LISTBUTTON, or WC_LISTEDIT
control

• sx is NULL

• You must not call this function during an EUPDATE event

Implementation Note

XVT/Mac has a system limitation of 32KB total data that can be
stored in a WC_LBOX list.

See Also

SLIST
W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_list_add
xvt_list_clear
xvt_list_resume
xvt_list_suspend

Example

This code adds available font families to a list box:

int f;
WINDOW listbox;
long num_families;
char *families[MAX_FAMILIES];
...
/* show available families in a listbox */
num_families = xvt_fmap_get_families(NULL, families,

 MAX_FAMILIES);
xvt_list_suspend(listbox);
xvt_list_clear(listbox);
for (f = 0; f < num_families; f++)
{

xvt_list_add(listbox, f, families[f]);
xvt_mem_free(families[f]);

}
xvt_list_resume(listbox);

xvt_list_clear
 Clear List Control

Summary

BOOLEAN xvt_list_clear(WINDOW win)

WINDOW win

Window of control (WC_LBOX, WC_LISTEDIT, or
WC_LISTBUTTON).

Description

This function clears all items from the WC_LBOX, WC_LISTEDIT, or
WC_LISTBUTTON control specified by win. For WC_LISTEDIT controls,
the edit portion of the control will also be cleared. For
WC_LISTBUTTON controls, the button portion of the control will also
be cleared.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are not met:

• win must be a WC_LBOX, WC_LISTBUTTON, or WC_LISTEDIT
control

• You must not call this function during an EUPDATE event

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_list_add

Example

See the example for xvt_list_add.

xvt_list_count_all
 Count Items in List Control

Summary

int xvt_list_count_all(WINDOW win)

WINDOW win

Window of control (WC_LBOX, WC_LISTEDIT, or
WC_LISTBUTTON).

Description

This function counts the total number of items currently in the
WC_LBOX, WC_LISTEDIT, or WC_LISTBUTTON control specified by win.
For WC_LISTEDIT or WC_LISTBUTTON controls, only the items in the
"list" portion of the control are counted.

Return Value

Number of items if successful; -1 if unsuccessful (on error).

Parameter Validity and Error Conditions

win must be a WC_LBOX, WC_LISTBUTTON, or WC_LISTEDIT control.

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_list_get_elt

Example

See the example for xvt_list_get_elt.

xvt_list_count_sel
 Count Selected Items in List Control

Summary

int xvt_list_count_sel(WINDOW win)

WINDOW win

Window of control (WC_LBOX or WC_LISTBUTTON).

Description

This function counts the number of selected items in the WC_LBOX or
WC_LISTBUTTON control specified by win. For WC_LISTBUTTON
controls, only the items in the "list" portion of the control are
counted.

WC_LISTEDIT doesn’t allow any programmatic manipulation of the
list selection, and cannot be used with this function.

Note: Always test the return result of this function to verify that there is a
selection. This ensures that portable code is maintained.

Return Value

Number of items if successful; -1 if unsuccessful (on error).

Parameter Validity and Error Conditions

win must be a WC_LBOX or WC_LISTBUTTON control.

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_list_get_sel

Example

See the example for xvt_list_get_sel.

xvt_list_get_all
 Get All Items in List Control

Summary

SLIST xvt_list_get_all(WINDOW win)

WINDOW win

Window of control (WC_LBOX, WC_LISTEDIT, or
WC_LISTBUTTON).

Description

This function gets all items, in the form of an SLIST, from the
WC_LBOX, WC_LISTEDIT, or WC_LISTBUTTON control specified by win.
For WC_LISTEDIT or WC_LISTBUTTON controls, only items in the "list"
portion of the control are retreived.

The order of the elements in the SLIST is the same as the order of the
items in the list control.

Each string in an SLIST is associated with a long data word; for this
function each data word is the index of the corresponding item in the
list box, not original data from an SLIST. Because this function gets
all the items, the indices go from zero through the number of items
minus one.

To retrieve the elements of the returned SLIST, you can call the
xvt_slist_* functions. After you’re done with the returned SLIST,
it’s your responsibility to free it with a call to xvt_slist_destroy.

Return Value

SLIST containing all items if successful; NULL if unsuccessful (on
error).

Parameter Validity and Error Conditions

win must be a WC_LBOX, WC_LISTBUTTON, or WC_LISTEDIT control.

See Also

SLIST
W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_list_get_all
xvt_slist_*
xvt_slist_destroy
xvt_slist_get
xvt_slist_get_elt
xvt_slist_get_first
xvt_slist_get_next

Example

This code writes the contents of a list box to a file. Note the call to
xvt_slist_destroy at the end. For a similar example, see
xvt_list_get_elt.

FILE *fp;
WINDOW lbox;
SLIST slist;
long dummy;
SLIST_ELT elt;
char *value;
...
slist = xvt_list_get_all(lbox);
for (elt = xvt_slist_get_first(slist); elt;

elt = xvt_slist_get_next(slist, elt))
{

value = xvt_slist_get(slist, elt, &dummy);
if (value)
fprintf(fp, "%s
", value);

}
xvt_slist_destroy(slist);
fclose(fp);

xvt_list_get_elt
 Get Indexed Item in List Control

Summary

BOOLEAN xvt_list_get_elt(WINDOW win, int index,
 char *s, int sz_s)

WINDOW win

Window of control (WC_LBOX, WC_LISTEDIT, or
WC_LISTBUTTON).

int index

Item to be gotten.

char *s

Buffer into which the text of the item is stored.

int sz_s

Maximum capacity of the buffer in bytes, including the NULL-
terminator.

Description

This function gets the item whose index (origin 0) is equal to index
from the WC_LBOX, WC_LISTEDIT, or WC_LISTBUTTON control
specified by win. For WC_LISTEDIT or WC_LISTBUTTON controls, the
item is retrieved from the "list" portion of the control.

The text of the item is stored in the buffer pointed to by s, whose
capacity in bytes (including the NULL-terminator) is sz_s. Only as
many bytes as will fit are copied to s.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are not met:

• win must be a WC_LBOX, WC_LISTBUTTON, or WC_LISTEDIT
control

• index must be greater than or equal to than zero

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_list_count_all

Example

This code writes the contents of a list box to a file. Selected items are
enclosed in brackets. For a similar example, see

xvt_list_get_all.
FILE *fp;
WINDOW lbox;
char value[MAX_SIZE];
int i, count;
...
count = xvt_list_count_all(lbox);
for (i = 0; i < count; i++)

if (xvt_list_get_elt(lbox, i, value, MAX_SIZE)){
if (xvt_list_is_sel(lbox, i))
fprintf(fp, "[%s]
", value);
else
fprintf(fp, " %s
", value);
}

fclose(fp);

xvt_list_get_first_sel
 Get First Selected Item in List Control

Summary

BOOLEAN xvt_list_get_first_sel(WINDOW win, char *s,
 int sz_s)

WINDOW win

Window of control (WC_LBOX or WC_LISTBUTTON).

char *s

Buffer into which the text is stored.

int sz_s

Maximum capacity of the buffer in bytes.

Description

This function gets the first selected item from the WC_LBOX or
WC_LISTBUTTON control specified by win. For WC_LISTBUTTON
controls, the first selected item is retrieved from the "list" portion of
the control.

The item’s text is stored into the buffer pointed to by s, whose
capacity in bytes (including NULL) is sz_s. Only as many bytes as
will fit are copied to s.

If the list is a WC_LBOX that has been created with the "multiple
select" flag, call the function xvt_list_get_sel instead.

WC_LISTEDIT doesn’t allow any programmatic manipulation of the
list selection, and cannot be used with this function.

Note: Always test the return result of this function to verify that there is a
selection. This ensures that portablity is maintained.

Return Value

TRUE if successful; FALSE if unsuccessful, on error, or if nothing is
selected.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are not met:

• win must be a WC_LBOX or WC_LISTBUTTON control

• s must not be NULL

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_list_get_sel

xvt_list_get_sel
 Get Selected Items in List Control

Summary

SLIST xvt_list_get_sel(WINDOW win)

WINDOW win

Window of control (WC_LBOX or WC_LISTBUTTON).

Description

This function gets all selected items from the WC_LBOX or
WC_LISTBUTTON control specified by win. For WC_LISTBUTTON
controls, the selected items are retreived from the "list" portion of
the control.

The order of the elements of the SLIST is the same as the order of the
items in the list control.

Each string in an SLIST is associated with a long data word. For this
function, each data word is the index of the corresponding item in
the control, not original data from an SLIST.

To retrieve the elements of the returned SLIST, you can call the
xvt_slist_* functions. After you’re done with the returned SLIST,
it is your responsibility to free it with a call to xvt_slist_destroy.

WC_LISTEDIT doesn’t allow any programmatic manipulation of the
list selection, and cannot be used with this function.

Note: Always test the return result of this function to verify that there is a
selection. This ensures that portablity is maintained.

Return Value

An SLIST containing items if successful; an empty SLIST if nothing
is selected; NULL on error.

Parameter Validity and Error Conditions

win must be a WC_LBOX or WC_LISTBUTTON control.

See Also

SLIST
W_*, WC_*, WD_*, Values for WIN_TYPE
xvt_slist_*
xvt_slist_destroy
xvt_slist_get
xvt_slist_get_first
xvt_slist_get_next

Example

This code writes the selected items of a list box to a file. Note the
call to xvt_slist_destroy at the end.

FILE *fp;
WINDOW lbox;
SLIST slist;
long dummy;
SLIST_ELT elt;
char *value;
...
slist = xvt_list_get_sel(lbox);
for (elt = xvt_slist_get_first(slist); elt;

elt = xvt_slist_get_next(slist, elt))
{

value = xvt_slist_get(slist, elt, &dummy);
if (value)
fprintf(fp, "%s
", value);

}
xvt_slist_destroy(slist);
fclose(fp);

xvt_list_get_sel_index
 Get Index of First Selected Item in List

Summary

int xvt_list_get_sel_index(WINDOW win)

WINDOW win

Window of control (WC_LBOX or WC_LISTBUTTON).

Description

This function gets the index of the first selected item (origin 0) in the
WC_LBOX or WC_LISTBUTTON control specified by win. For

WC_LISTBUTTON controls, the index is returned from the "list" portion
of the control.

To get the text of the item, call xvt_list_get_elt or
xvt_list_get_first_sel.

If the list is a WC_LBOX that has been created with the "multiple
select" flag, then you should consider calling the function
xvt_list_get_sel instead.

WC_LISTEDIT doesn’t allow any programmatic manipulation of the
list selection, and cannot be used with this function.

Note: Always test the return result of this function to verify that there is a
selection. This ensures that portablity is maintained.

Return Value

The index if successful; -1 if an error occurs, or if nothing is
selected.

Parameter Validity and Error Conditions

win must be a WC_LBOX or WC_LISTBUTTON control.

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_list_get_elt
xvt_list_get_first_sel
xvt_list_rem
xvt_list_get_sel

Example

See the example for xvt_list_rem.

xvt_list_is_sel
 Test if Item is Selected in List Control

Summary

BOOLEAN xvt_list_is_sel(WINDOW win, int index)

WINDOW win

Window of control (WC_LBOX or WC_LISTBUTTON).

int index

Item to be tested.

Description

This function tests whether the item is selected whose index (origin
0) is equal to index in the WC_LBOX or WC_LISTBUTTON control
specified by win. For WC_LISTBUTTON controls, the function applies
only to the "list" portion of the control.

WC_LISTEDIT doesn’t allow any programmatic manipulation of the
list selection, and cannot be used with this function.

Return Value

TRUE if an item is selected; FALSE if an item is not selected, or if an
error occurs.

Parameter Validity and Error Conditions

win must be a WC_LBOX or WC_LISTBUTTON control.

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_list_get_elt

Example

See the example for xvt_list_get_elt.

xvt_list_rem
 Delete Item in List Box

Summary

BOOLEAN xvt_list_rem(WINDOW win, int index)

WINDOW win

Window of control (WC_LBOX, WC_LISTEDIT or WC_LISTBUTTON).

int index

Item to delete.

Description

This function deletes the item whose index (origin 0) is equal to
index from the WC_LBOX, WC_LISTEDIT, or WC_LISTBUTTON control

specified by win. For WC_LISTEDIT control, only the "list" portion of
the control is affected. For a WC_LISTBUTTON, deleting a list item that
is the current selection will result in an empty button label.

Note: To delete all items it is better to call xvt_list_clear.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

Parameter Validity and Error Conditions

win must be a WC_LBOX, WC_LISTBUTTON, or WC_LISTEDIT control.

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_list_clear
xvt_list_get_sel_index
xvt_list_resume
xvt_list_suspend

Example

This code deletes selected items from a listbox:

WINDOW lbox;
int rip;
xvt_list_suspend(lbox);
rip = xvt_list_get_sel_index(lbox);
while (rip != -1)
{

xvt_list_rem(lbox, rip);
rip = xvt_list_get_sel_index(lbox);

}
xvt_list_resume(lbox);

xvt_list_resume
 Resume List Control Updating

Summary

void xvt_list_resume(WINDOW win)

WINDOW win

Window of control (WC_LBOX, WC_LISTEDIT, or
WC_LISTBUTTON).

Description

This function resumes updating of the WC_LBOX, WC_LISTEDIT, or
WC_LISTBUTTON control specified by win. However, on WC_LISTEDIT
or WC_LISTBUTTON controls, all programmatic changes are normally
made while the list is not visible. Therefore, it is not essential to call
xvt_list_resume for these two controls. However, if
xvt_list_suspend was previously called (unnecessarily) for either
of these two control types, your application should call
xvt_list_resume to cause the WC_LISTEDIT or WC_LISTBUTTON to be
updated. If your application does not do so, the results will be
unpredictable on some platforms.

You should call this function to resume operation of a list control
that has been suspended by a previous call to xvt_list_suspend.
This function causes the list to be redrawn.

Parameter Validity and Error Conditions

win must be a WC_LBOX, WC_LISTBUTTON, or WC_LISTEDIT control.

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_list_add
xvt_list_rem
xvt_list_suspend

Example

See the examples for xvt_list_add and xvt_list_rem.

xvt_list_set_sel
 Set Selection State of Item in List Control

Summary

BOOLEAN xvt_list_set_sel(WINDOW win, int index,
 BOOLEAN select)

WINDOW win

Window of control (WC_LBOX or WC_LISTBUTTON).

int index

Specified item to select or to unselect.

BOOLEAN select

Select or unselect the item.

Description

This function selects or unselects the item whose index (origin 0) is
equal to index in the WC_LBOX or WC_LISTBUTTON control specified
by win. For WC_LISTBUTTON controls, only the "list" portion of the
control is affected. The selected item will be scrolled into view.

If index is equal to -1, this function selects or unselects all items,
depending on select.

Don’t attempt to select more items than allowed--some controls
don’t allow any selections, some allow only one, and some allow
more than one. This is discussed in the "Controls" chapter in theXVT
Portability Toolkit Guide.

WC_LISTEDIT doesn’t allow any programmatic manipulation of the
list selection, and cannot be used with this function.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

Parameter Validity and Error Conditions

win must be a WC_LBOX or WC_LISTBUTTON control.

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW

Example

This code unselects all items, and then selects item n:

WINDOW lbox;
int n;
if (xvt_list_set_sel(lbox, -1, FALSE) == FALSE

|| xvt_list_set_sel(lbox, n, TRUE) == FALSE)
xvt_dm_post_warning("Unable to select item %d", n);

xvt_list_suspend
 Suspend Updating of List Control

Summary

void xvt_list_suspend(WINDOW win)

WINDOW win

Window of control (WC_LBOX, WC_LISTEDIT, or
WC_LISTBUTTON).

Description

This function suspends updating of the WC_LBOX, WC_LISTEDIT, or
WC_LISTBUTTON control specified by win, so that additions and
deletions can be made quickly. However, on WC_LISTEDIT or
WC_LISTBUTTON controls, all programmatic changes are normally
made while the list is not visible. Therefore, it is not essential to call
xvt_list_suspend for these two controls. However, if called, your
application must also call xvt_list_resume to resume updating. If
your application does not do so, the results will be unpredictable on
some platforms.

The contents of the control are still changed while updating is
suspended, but you will not see any changes until updating is
resumed by a call to xvt_list_resume. Suspension of updating is
optional, but usually it significantly increases speed and reduces
gratuitous display activity when you change a list control’s contents.

Parameter Validity and Error Conditions

win must be a WC_LBOX, WC_LISTBUTTON, or WC_LISTEDIT control.

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_list_add
xvt_list_rem
xvt_list_resume

Example

See the examples for xvt_list_add and xvt_list_rem.

xvt_mem_*
 Memory Allocation Functions

xvt_mem_alloc
xvt_mem_free
xvt_mem_realloc
xvt_mem_rep
xvt_mem_zalloc

xvt_mem_alloc
 Allocate Memory

Summary

DATA_PTR xvt_mem_alloc(size_t size)

size_t size

Size of the memory to be allocated, in bytes.

Description

XVT uses this function internally to allocate memory; it is
analogous to the standard C function malloc. We recommend that
you always use xvt_mem_alloc instead of using malloc for these
reasons:

• XVT uses xvt_mem_alloc to allocate all memory, and might
hand some of those pointers to your application. To avoid
confusion, it is best to have all pointers allocated the same
way.

• If you consistently use xvt_mem_alloc for your memory
allocation, then you are free to change the implementation of
your memory manager (using ATTR_MEMORY_MANAGER),
whereas you would not be able to if you used malloc.

When you allocate any memory with xvt_mem_alloc, you must free
it with xvt_mem_free, or resize it with xvt_mem_realloc. You must
not free it with free, or reallocate it with realloc.

Return Value

A pointer to a block of at least "size" bytes if successful; NULL if out
of memory.

See Also

ATTR_MEMORY_MANAGER
DATA_PTR
xvt_mem_free
xvt_mem_realloc
xvt_mem_rep
xvt_mem_zalloc

xvt_mem_free
 Free Memory

Summary

void xvt_mem_free(DATA_PTR p)

DATA_PTR p

Pointer to memory.

Description

This function is used internally by XVT to free memory allocated
with the xvt_mem_*alloc functions; it is analogous to the standard
C function free. All memory allocated by XVT internally will be
allocated by xvt_mem_alloc. Therefore, you must use this function
to free any memory that is allocated for you by XVT. The
xvt_res_get_*_data functions, which allocate strings, are
examples of functions that allocate memory for you. You may
override the default implementation of this function by using the
ATTR_MEMORY_MANGER attribute.

Parameter and Validity Conditions

If p is NULL, XVT issues an error.

See Also

ATTR_MEMORY_MANAGER
DATA_PTR
xvt_mem_alloc
xvt_mem_realloc
xvt_mem_rep
xvt_mem_zalloc

xvt_mem_realloc
 Resize Memory

Summary

DATA_PTR xvt_mem_realloc(DATA_PTR p, size_t size)

DATA_PTR p

Old pointer to memory.

size_t size

New size of memory in bytes.

Description

This function is used internally by XVT to resize memory allocated
with xvt_mem_alloc; it is analogous to the standard C function
realloc. You must use this function both to resize any memory
allocated for you by XVT functions and to resize memory that was
originally allocated with xvt_mem_alloc.

If the pointer to the old memory (p) is NULL, then xvt_mem_realloc
behaves as xvt_mem_alloc. You may override the default
implementation of this function by using the ATTR_MEMORY_MANGER
attribute.

Return Value

A pointer to a block of at least "size" bytes if successful; NULL if out
of memory.

See Also

ATTR_MEMORY_MANAGER
DATA_PTR
xvt_mem_alloc
xvt_mem_free
xvt_mem_rep
xvt_mem_zalloc

Example

See the example for xvt_menu_set_tree.

xvt_mem_rep
 Repeat Block of Data

Summary

DATA_PTR xvt_mem_rep(DATA_PTR dst, DATA_PTR src,
 UINT srclen, long reps)

DATA_PTR dst

Pointer to destination buffer.

DATA_PTR src

Source block of data.

UINT srclen

Number of bytes in the source block.

long reps

Number of times the block of data is to be repeated.

Description

This function copies reps consecutive instances of data to memory
pointed to by dst. The data is pointed to by src, and it is of length
srclen.

Parameter and Validity Conditions

If either dst or src is NULL, XVT issues an error.

Return Value

Value of dst argument.

See Also

ATTR_MEMORY_MANAGER
DATA_PTR
xvt_mem_alloc
xvt_mem_free
xvt_mem_realloc
xvt_mem_zalloc

Example

See the example for xvt_menu_set_tree.

xvt_mem_zalloc
 Allocate Zeroed Memory

Summary

DATA_PTR xvt_mem_zalloc(size_t size)

size_t size

Size of memory in bytes.

Description

This function allocates size bytes of memory via xvt_mem_alloc,
and sets the contents to all zeros before returning a pointer to the
memory. You must free the memory allocated with this function
with xvt_mem_free, and resize it with xvt_mem_realloc. You may
override the default implementation of this function by using the
ATTR_MEMORY_MANGER attribute.

Return Value

A pointer to a block of at least "size" zeroed-out bytes if successful;
NULL if out of memory.

See Also

ATTR_MEMORY_MANAGER
DATA_PTR
xvt_mem_alloc
xvt_mem_free
xvt_mem_realloc
xvt_mem_rep
xvt_menu_set_tree

Example

See the example for xvt_menu_set_tree.

xvt_menu_*
 Menu Functions

xvt_menu_get_font_sel
xvt_menu_get_tree
xvt_menu_popup
xvt_menu_set_font_sel
xvt_menu_set_item_checked
xvt_menu_set_item_enabled
xvt_menu_set_item_title
xvt_menu_set_tree
xvt_menu_update

xvt_menu_get_font_sel
 Get the State of the Font/Style Selection Menu or Dialog

Summary

XVT_FNTID xvt_menu_get_font_sel(WINDOW win)

WINDOW win

Window whose Font/Style menu information is being queried.

Description

This function returns an XVT_FNTID that represents either the state of
check marks on the Font and Style submenus of the menu associated
with win, or the current state of the Font Selection dialog (on
platforms that do not provide a menu).

Return Value

XVT_FNTID.

Parameter Validity and Error Conditions

You must not call this function during an E_UPDATE.

win must be a window (possibly TASK_WIN) that has a menubar that
contains XVT’s Font/Style menu (e.g., one that uses xrc’s
DEFAULT_FONT_MENU in the menubar’s specification); otherwise,
XVT could issue an error.

Implementation Note

Only XVT/XM and XVT/Mac supply a full Font/Style menu. All
other platforms provide a menu that invokes the Font Selection
dialog. On XVT/Mac, the point sizes on the Style menu that
correspond to available physical fonts are shown in Outline font.

See Also

DEFAULT_*_MENU Values
E_FONT
E_UPDATE
TASK_WIN
WINDOW
XVT_FNTID
xvt_menu_set_font_sel

The "Fonts and Text" and the "Menus" chapters in theXVT
Portability Toolkit Guide

xvt_menu_get_tree
 Get Entire Menu

Summary

MENU_ITEM* xvt_menu_get_tree(WINDOW win)

WINDOW win

Window whose menubar information is being queried.

Description

This function allocates memory for an appropriate MENU_ITEM tree
and fills it with data that reflects win’s menubar.

For details on how MENU_ITEM arrays are connected together to form
trees representing an entire menu hierarchy, see MENU_ITEM.

To load a MENU_ITEM tree from a resource file, use
xvt_res_get_menu.

Return Value

A pointer to the MENU_ITEM tree. You can use
xvt_res_free_menu_tree to release the memory allocated.

Parameter Validity and Error Conditions

XVT issues an error if win is not a top-level window that contains a
menubar (i.e., was created without WSF_NO_MENUBAR specified). win
can be a TASK_WIN.

See Also

MENU_ITEM
TASK_WIN
WINDOW
WSF_* Options Flags
xvt_font_map_using_default
xvt_menu_set_item_title
xvt_menu_set_tree
xvt_res_free_menu_tree
xvt_res_get_menu

The "Menus" chapter in theXVT Portability Toolkit Guide

Example

See the example for xvt_menu_set_tree.

xvt_menu_popup
 Display Popup Menu Over a Window

Summary

BOOLEAN xvt_menu_popup(MENU_ITEM *menu_p,
WINDOW win,
PNT pos,
XVT_POPUP_ALIGNMENT alignment,
MENU_TAG item);

MENU_ITEM *menu_p

Tree structure of items for the popup menu.

WINDOW win

Window for popup display. Identifies the event handler to
which the popup menu E_COMMAND event is delivered.

PNT pos

Position of display popup (in win’s coordinate system). Actual
display position is also affected by the specified alignment.

XVT_POPUP_ALIGNMENT alignment

Changes the display positioning of the popup menu.

MENU_ITEM item

Tag identifying the "default" top-level menu item. This
argument is used only when alignment is set to
XVT_POPUP_OVER_ITEM.

Description

This function displays a popup menu (based on the provided
MENU_ITEM tree structure) at a specified location over a window. The
exact placement of the popup menu may vary if it is displayed too
close to the edge of the screen (depending on the native toolkit). For
example, the XVT/XM portability toolkit automatically adjusts the
menu display position so that it will be completely visible.

You can obtain a MENU_ITEM tree appropriate for this function by
calling xvt_res_get_menu and using any of the top-level SUBMENU
items as a popup menu tree. In this case, xvt_res_get_menu can be
viewed as retrieving an array of popup menu trees. You can also
construct individual popup menu trees and pass them into this
function. For more information on how MENU_ITEM trees are
constructed, see the MENU_ITEM.

Return Value

TRUE if a valid menu was created; FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if any of the following parameter conditions are
not met:

• win must be W_DOC, W_PLAIN, W_DBL, W_NO_BORDER, or
W_MODAL

• menu_p must not be NULL

• if the XVT_POPUP_OVER_ITEM flag is set, the specified item
must be a top-level menu item of the menu_p tree

Implementation Note

For portability across all native toolkits supported by XVT, you may
only call this function in response to an E_MOUSE_DOWN event. This is
because on XVT/Mac, popup menus are not displayed when
invoked in response to any other type of event.

On all platforms normal event processing is blocked. This may result
in recursive calls to win’s event handler. This means that an
E_COMMAND may be received sometime after xvt_menu_popup has
returned. You should take this into account when coding your
application. In either case, if the user dismisses the popup menu
without making a selection, an E_COMMAND is not sent.

On XVT/Win32, win must be a drawable task window when the
attribute ATTR_WIN_PM_DRAWABLE_TASKWIN has been set to TRUE.

See Also

E_COMMAND
E_MOUSE_DOWN
MENU_ITEM
MENU_TAG
PNT
WINDOW
XVT_POPUP_ALIGNMENT
xvt_res_free_menu_tree
xvt_res_get_menu

The "Menus" chapter in theXVT Portability Toolkit Guide

Example

/* global application data... */MENU_ITEM *popup_menus;/
* in the event handler of your applications task window...
*/case E_CREATE:

/* get an array of popup menus from resources,
this code */

/* assumes that POPUP_MENUS is a valid MENUBAR
resource id */

popup_menus = xvt_res_get_menu (POPUP_MENUS);
break;

/* in one of your applications top-level window
event handlers... */case E_MOUSE_DOWN:

/* see if mouse is in any popup region and popup
one of the menus, */

/* this code assumes that DEFAULT_MENU_TAG is a
valid menu item tag */

pnt = event->v.mouse.where;
if (pnt.h > 100 && pnt.h < 150 && pnt.v > 100

&& pnt.v < 150)
xvt_popup_menu (popup_menus[0]->child, win, pnt,

XVT_POPUP_LEFT_ALIGNED, 0);
else if (pnt.h > 150 && pnt.h < 200 && pnt.v > 150

&& pnt.v < 200)
 xvt_popup_menu (popup_menus[1]->child, win, pnt,

XVT_POPUP_CENTERED, 0);
else if (pnt.h > 200 && pnt.h < 250 && pnt.v > 200

&& pnt.v < 250)
xvt_popup_menu (popup_menus[2]->child, win, pnt,

XVT_POPUP_RIGHT_ALIGNED, 0);
else

xvt_popup_menu (popup_menus[3]->child, win, pnt,
XVT_POPUP_OVER_ITEM, DEFAULT_ITEM_TAG);

break;

xvt_menu_set_font_sel
 Set the State of the Font/Style Selection Menu or Dialog

Summary

void xvt_menu_set_font_sel(WINDOW win,
 XVT_FNTID font_id)

WINDOW win

Window whose Font/Style menu is being changed.

XVT_FNTID font_id

Handle of a logical font, or NULL_FNTID.

Description

This function sets the Font Selection dialog or the Font/Style menu
to match the XVT_FNTID specified by font_id.

On the Font/Style submenus of the menu associated with win, this
function sets the check marks. Users see the appropriate check
marks when they drop the Font or Style menus. If font_id is
NULL_FNTID, all check marks are removed. On systems where the
native look-and-feel implementation for font selection is a dialog,
users will also see the appropriate default physical font if they bring
up the Font Selection dialog.

Tip: If your application uses a single physical font throughout the entire
window (for example a text editor), you should set the Font menu to
the XVT_FNTID displayed in the window. However, if your
application allows the display and selection of different text objects
drawn with different physical fonts, then it should set the menu
check marks to match the XVT_FNTID used in drawing the currently
selected item. If there is no currently selected item, the Font menu
should either be completely unchecked or set to the XVT_FNTID that
would be used if a new text item were created.

Return Value

None.

Parameter Validity and Error Conditions

If the following parameter conditions are not met, XVT issues an
error:

• win must be a window (possibly TASK_WIN) with a menubar
that contains XVT’s Font/Style menu (e.g., one that uses
xrc’s DEFAULT_FONT_MENU in the menubar’s specification)

• XVT_FNTID must be a valid logical font

Implementation Note

Only XVT/XM and XVT/Mac supply a full Font/Style menu. All
other platforms provide a menu that invokes the Font Selection
dialog. On the Macintosh, the point sizes on the Style menu that
correspond to available physical fonts are shown in Outline font.

See Also

DEFAULT_*_MENU Values
E_FONT
NULL_FNTID
TASK_WIN
WINDOW
xvt_menu_get_font_sel

The "Fonts and Text" and the "Menus" chapters in theXVT
Portability Toolkit Guide

xvt_menu_set_item_checked
 Check Menu Item

Summary

void xvt_menu_set_item_checked(WINDOW win,
 MENU_TAG tag, BOOLEAN check)

WINDOW win

Window whose menu item is to be checked.

MENU_TAG tag

Menu item in the menu associated with win.

BOOLEAN check

If TRUE, a check mark is placed next to the tag; if FALSE, a check
mark is removed.

Description

If check is TRUE, this function places a check mark next to the tag
menu item in the menu associated with win. If check is FALSE, this
function removes the check mark.

To place or remove check marks on the Font or Style menus, use
xvt_menu_set_font_sel.

Parameter Validity and Error Conditions

XVT issues an error if any of the following parameter conditions are
not met:

• win must be a top-level window that was created without
WSF_NO_MENUBAR specified; or, it can be TASK_WIN

• tag must match a menu item in the menubar; however, if tag
refers to one of XVT’s predefined menu items, no error is
issued

• The tag menu item must be checkable; the checkability of a
menu item is set when the menu is created, by setting the
checkable bit in the item’s MENU_ITEM structure, or by
specifying the checkable keyword in the menu’s XRC
statement

See Also

MENU_ITEM
MENU_TAG
WINDOW
WSF_* Options Flags
xvt_menu_set_font_sel

The "Menus" chapter in theXVT Portability Toolkit Guide

xvt_menu_set_item_enabled
 Enable Menu Item

Summary

void xvt_menu_set_item_enabled(WINDOW win,
 MENU_TAG tag, BOOLEAN enable)

WINDOW win

Window whose menu item is to be enabled.

MENU_TAG tag

Menu item in the menu associated with win.

BOOLEAN enable

If TRUE, the specified menu item is enabled; if FALSE, the item is
disabled.

Description

If enable is TRUE, this function enables the tag menu item in the
menu associated with win. If enable is FALSE, this function disables
(grays) the tag menu item. If tag refers to an entire submenu, then
the entire submenu and its name on the menubar are disabled.
However, the previous states (disabled or enabled) of the individual

items are remembered, so that re-enabling the submenu restores the
state of each menu item to the way it was.

When enabling or disabling top-level items, the change cannot be
shown on the menubar until you call xvt_menu_update. This call is
only needed when enabling or disabling top-level items.

Individual items on the Font or Style menus can’t be disabled or
enabled, but the menus can be disabled or enabled in their entirety
by calling xvt_menu_set_item_enabled with a tag of type
FONT_MENU_TAG.

Parameter Validity and Error Conditions

XVT issues an error if any of the following parameter conditions are
not met:

• win must be a top-level window that was created without
WSF_NO_MENUBAR specified, or it may be TASK_WIN

• tag must match a menu item in the menubar; however, if tag
refers to one of XVT’s predefined menu items, no error is
issued

Implementation Note

When an entire submenu is disabled, whether the user can still pull
it down and look at it depends on the platform.

See Also

FONT_MENU_TAG
MAX_MENU_TAG
MENU_TAG
TASK_WIN
WINDOW
WSF_* Options Flags
xvt_menu_set_item_checked
xvt_menu_set_item_title
xvt_menu_update

The "Menus" chapter in theXVT Portability Toolkit Guide

xvt_menu_set_item_title
 Set Text of Menu Item

Summary

void xvt_menu_set_item_title(WINDOW win,
 MENU_TAG tag, char *text)

WINDOW win

Window whose menu item is to be set.

MENU_TAG tag

Menu item in the menu associated with win.

char *text

Pointer to the NULL-terminated text string.

Description

This function changes the text of the menu item designated by tag,
on the menu associated with win. The item’s text is changed to the
NULL-terminated string pointed to by text. You can use
xvt_menu_set_item_title to change the text of items on either the
top-level menubar, or items located in submenus.

tag cannot be set to FONT_MENU_TAG.

If you need to change a menubar extensively, such as adding and
deleting items or menus, then use xvt_menu_get_tree and
xvt_menu_set_tree.

Parameter Validity and Error Conditions

XVT issues an error if any of the following parameter conditions are
not met:

• win must be a top-level window that was created without
WSF_NO_MENUBAR specified, or it may be TASK_WIN.

• tag must match a menu item in the menubar. However, if tag
refers to one of XVT’s predefined menu items, no error is
issued.

See Also

FONT_MENU_TAG
MENU_TAG
TASK_WIN
WINDOW
WSF_* Options Flags
xvt_menu_get_tree
xvt_menu_set_tree

The "Menus" chapter in theXVT Portability Toolkit Guide

xvt_menu_set_tree
 Set Entire Menu

Summary

void xvt_menu_set_tree(WINDOW win, MENU_ITEM *menu_p

WINDOW win

Window whose entire menu is to be set.

MENU_ITEM *menu_p

Tree structure for a new menubar.

Description

This function synthesizes a menubar for the given window based on
the provided MENU_ITEM tree structure.

You can obtain a MENU_ITEM tree appropriate for this function by
calling xvt_res_get_menu or xvt_menu_get_tree. You can also
construct one yourself. For details of how MENU_ITEM trees are linked
together, see MENU_ITEM.

Parameter Validity and Error Conditions

XVT issues an error if any of the following parameter conditions are
not met:

• win must be a top-level window that was created without
WSF_NO_MENUBAR specified; or, it can be TASK_WIN

• menu_p must not be NULL

See Also

MENU_ITEM
TASK_WIN
WINDOW
WSF_* Options Flags
xvt_menu_get_tree
xvt_res_free_menu_tree
xvt_res_get_menu

The "Menus" chapter in theXVT Portability Toolkit Guide

Example

This code dynamically adds a menu to the current menubar. The new
"Display" menu contains "Show" and "Hide All" items; "Show" has
a pull-right menu containing "Primary" and "Secondary."

MENU_ITEM *menubar;
int num_menus;

/* get current menubar */
menubar = xvt_menu_get_tree(window);

/* count current menus */
num_menus = 0;
while (menubar[num_menus].tag)

num_menus++;
/* allocate space for new menus */

menubar = (MENU_ITEM *) xvt_mem_realloc(
(DATA_PTR) menubar,
sizeof(MENU_ITEM) * (num_menus + 1 + 1));
/* +1 for new menus +1 for termination */
/* zero memory for new menus */

xvt_mem_rep((DATA_PTR) &menubar[num_menus], "0",
1, sizeof(MENU_ITEM) * (1 + 1));
/* add new menu to menubar */

menubar[num_menus].tag = DISPLAY_MENU_TAG;
menubar[num_menus].text = xvt_str_duplicate ("Display");
menubar[num_menus].enabled = 1;

/* allocate memory for menu items */
menubar[num_menus].child = (MENU_ITEM *)

xvt_mem_zalloc(sizeof(MENU_ITEM)*(2+1));
/* +2 for new menu items +1 for termination */
/* add new menu items "Show" and "Hide All" */

menubar[num_menus].child[0].tag = SHOW_MENU_TAG;
menubar[num_menus].child[0].text =

xvt_str_duplicate ("Show");
menubar[num_menus].child[0].enabled = 1;
menubar[num_menus].child[1].tag = HIDE_MENU_TAG;
menubar[num_menus].child[1].text =

xvt_str_duplicate ("Hide All");
menubar[num_menus].child[1].enabled = 1;

/* add pull right menu for "Show" */
menubar[num_menus].child[0].child = (MENU_ITEM *)

xvt_mem_zalloc(sizeof(MENU_ITEM)*(2+1));
/* +2 for new menu items +1 for termination */

menubar[num_menus].child[0].child[0].tag = SHOW_PRIMARY;
menubar[num_menus].child[0].child[0].text =

xvt_str_duplicate ("Primary");
menubar[num_menus].child[0].child[0].enabled = 1;
menubar[num_menus].child[0].child[1].tag = SHOW_SECOND;
menubar[num_menus].child[0].child[1].text =

xvt_str_duplicate ("Secondary");
menubar[num_menus].child[0].child[1].enabled = 1;

/* change menu to new menubar */
xvt_menu_set_tree(window, menubar);

/* free resources (but do not free string constants)*/
xvt_res_free_menu_tree(menubar);

xvt_menu_update
 Display Menubar Changes

Summary

void xvt_menu_update(WINDOW win)

WINDOW win

Window whose menubar is being changed.

Description

This function changes the win menubar to reflect any changes due to
a call to xvt_menu_set_item_enabled. To make the changes visible
on some platforms, it is necessary to call xvt_menu_update.

Do not confuse xvt_menu_update with the processing of E_UPDATE
events. Menubars, like other controls, take care of all their own
updating. Therefore, calling xvt_menu_update is unnecessary and
illegal during the processing of E_UPDATE events.

If you make wholesale changes to a menubar by calling
xvt_menu_set_tree, then calling this function is unnecessary
because the changes due to xvt_menu_set_tree are visible
immediately.

Parameter Validity and Error Conditions

XVT issues an error if win is not a top-level window that contains a
menubar (i.e., was created without WSF_NO_MENUBAR specified). win
can be TASK_WIN.

Implementation Note

On some platforms, all changes due to
xvt_menu_set_item_enabled are immediately visible, and
xvt_menu_update is ignored.

See Also

E_UPDATE
TASK_WIN
WINDOW
WSF_* Options Flags
xvt_menu_set_item_enabled
xvt_menu_set_tree

The "Menus" chapter in theXVT Portability Toolkit Guide

xvt_nav_*
 Navigation Functions

xvt_nav_add_win
xvt_nav_create
xvt_nav_destroy
xvt_nav_list_wins
xvt_nav_rem_win

xvt_nav_add_win
 Adds a Control or Child Window to a Navigation Object

Summary

BOOLEAN xvt_nav_add_win(XVT_NAV nav, WINDOW win,
WINDOW refwin, XVT_NAV_INSERTION where);

XVT_NAV nav

Navigation object in which to insert a control or child window.

WINDOW win

Control or child window to be added to the navigation order. It
must be of type WC_*, W_PLAIN, or W_NO_BORDER.

WINDOW refwin where

A control or child window in the existing navigation object that
serves a reference point for inserting the new control or child
window.

XVT_NAV_INSERTION

The insertion position for win.

Description

xvt_nav_add_win inserts controls or child windows into a
navigation order at the position specified by where.

If your application passes a value of XVT_NAV_POS_BEFORE or
XVT_NAV_POS_AFTER to where, then XVT inserts win into the
navigation order before or after the control or child window denoted
by refwin.

If your application passes a value of XVT_NAV_POS_FIRST or
XVT_NAV_POS_LAST to where, then XVT ignores refwin and inserts
the control or child window at the beginning or end of the navigation
order.

Return Value

TRUE if the window was added successfully, otherwise FALSE.

Parameter Validity and Error Conditions

XVT issues an error if your application does not meet the following
conditions for parameters passed to xvt_nav_add_win:

• nav is a valid XVT_NAV object

• win is a valid WINDOW

• win must be an immediate descendent of the window that nav
is associated with

• The win passed must contain valid control or child windows
for navigation (types WC_*, W_PLAIN, or W_NO_BORDER)

• refwin is in the navigation object list

See Also

XVT_NAV
XVT_NAV_INSERTION
xvt_nav_rem_win
xvt_win_get_nav

Example

This code sample shows the addition of a push button to a navigation
object. win is an XVT WINDOW that contains a navigation object.

#define BUTTON_ID 101
...
RCT rect;
WINDOW new_ctl;
XVT_NAV nav;
...
xvt_rect_set(&rect, BUTTON_X, BUTTON_Y, BUTTON_X + 100,

BUTTON_Y + (int)xvt_vobj_get_attr(win,
ATTR_CTL_BUTTON_HEIGHT));

new_ctl = xvt_ctl_create(WC_PUSHBUTTON, &rect, "Push Me",
parent, 0L, 0L, BUTTON_ID);

nav = xvt_win_get_nav(win);
xvt_nav_add_win(nav, new_ctl, NULL_WIN,

XVT_NAV_POS_LAST);
...

xvt_nav_create
 Create a Navigation Object

Summary

XVT_NAV xvt_nav_create(WINDOW win, SLIST win_list);

WINDOW win

Container window in which navigation order is set. win must be
of type W_DOC, W_PLAIN, W_DBL, W_MODAL, or W_NO_BORDER.

SLIST

An ordered list of control or child windows used by the
navigation object in the container window.

Description

xvt_nav_create creates a navigation object in the specified
window, win. If win_list is NULL, then the navigation object uses
the immediate children of win.

The order of items in the win_list list determines the order that a
user may navigate through controls or child windows. If win_list
is NULL, then the order of navigation follows the creation order of the
controls and child windows.

SLIST string items must be set to NULL for navigation objects (this
data is reserved for future use).

XVT_NAV objects allow you to set default and escape pushbuttons. To
specify a default button, set the control ID for a WC_PUSHBUTTON in
the navigation order to DLG_OK. To specify an escape button, set the
control ID to DLG_CANCEL.

Some GUI objects may be associated for special navigation within a
group. Currently only WC_RADIOBUTTON controls may be grouped for
radiobutton selection. A navigation group is one or more
(groupable) objects listed within a navigation object list.

The beginning of a navigation group meets one of the following
criteria:

• The first object of a group is a groupable object with its
CTL_GROUP_FLAG creation flag set and it immediately follows
a groupable object from another group.

-OR-

• The first object of a group is a groupable object immediately
following any non-groupable object.

The end of a navigation group meets one of the following criteria:

• The last object of a group is a groupable object which
immediately precedes a groupable object with its
CTL_FLAG_GROUP creation flag set.

-OR-

• The last object of a group is a groupable object which
immediately precedes any non-groupable object.

• To remove a navigation object from win, call
xvt_nav_destroy.

Return Value

A valid XVT_NAV object if successful; otherwise NULL.

Parameter Validity and Error Conditions

XVT issues an error if your application does not meet the following
conditions for parameters passed to xvt_nav_create:

• win is a valid window

• win is of type W_DOC, W_PLAIN, W_DBL, W_MODAL, or
W_NO_BORDER

• The SLIST passed must contain valid control or child
windows for navigation (types WC_*, W_PLAIN, or
W_NO_BORDER)

• There is no current navigation defined for the window

• SLIST strings are NULL

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
SLIST
XVT_NAV
xvt_nav_add_win
xvt_nav_destroy
xvt_win_get_nav

Example

This code creates and destroys a navigation object:

long XVT_CALLCONV1 win_eh(WINDOW win, EVENT *ep) {
SLIST win_list;
XVT_NAV nav;
...
switch(ep->type) {

case E_CREATE:
...
win_list = xvt_win_list_wins(win, 0L);
xvt_nav_create(win, win_list);
break;
...

case E_DESTROY:
...
nav = xvt_win_get_nav(win);
if(nav)

xvt_nav_destroy(nav);
break;

}
....

}

xvt_nav_destroy
 Destroys a Navigation Object

Summary

void xvt_nav_destroy(XVT_NAV nav);

XVT_NAV nav

Navigation object to be destroyed.

Description

xvt_nav_destroy destroys the specified navigation object.

Return Value

None.

Parameter Validity and Error Conditions

If nav is not a valid XVT_NAV object, XVT issues an error.

See Also

XVT_NAV
xvt_nav_create

Example

See xvt_nav_create for an example of this function.

xvt_nav_list_wins
 Retrieves the List of Controls or Child Windows from a Navigation Object

Summary

SLIST xvt_nav_list_wins(XVT_NAV nav);

XVT_NAV nav

Navigation object from which to obtain navigation list.

Description

xvt_nav_list_wins returns an SLIST of controls and child windows
that are in the navigation order of the navigation object. The returned
list of object is in the order of navigation.

Return Value

A valid SLIST containing the navigation controls and child
windows; NULL on error.

Parameter Validity and Error Conditions

If nav is not a valid XVT_NAV object, XVT issues an error.

See Also

SLIST
XVT_NAV
xvt_nav_add_win
xvt_nav_create

xvt_nav_rem_win
 Removes a Control or Child Window from the Navigation Object

Summary

BOOLEAN xvt_nav_rem_win(XVT_NAV nav, WINDOW win);

XVT_NAV nav

The navigation object from which to remove a control or child
window.

WINDOW win

The control or child window to remove from the navigation
order.

Description

xvt_nav_rem_win removes a control or child window from the
navigation object list.

Return Value

TRUE if the window was removed; otherwise FALSE.

Parameter Validity and Error Conditions

XVT issues an error if your application does not meet the following
conditions for parameters passed to xvt_nav_rem_win:

• nav is a valid XVT_NAV object

• win is a valid WINDOW

• win must be in the navigation object list

• The win passed must contain valid control or child windows
for navigation (types WC_*, W_PLAIN, or W_NO_BORDER)

See Also

WINDOW
XVT_NAV
xvt_nav_add_win

Example

The following code removes the push button added in the example
code for xvt_nav_add_win:

 ...
WINDOW win, ctl_win;
XVT_NAV nav;
...
ctl_win = xvt_win_get_ctl(win, BUTTON_ID);
nav = xvt_win_get_nav(win);
xvt_nav_rem_win(nav, ctl_win);
...

xvt_notebk_*
 Notebook Functions

xvt_notebk_add_page
xvt_notebk_add_tab
xvt_notebk_create_face
xvt_notebk_create_face_def
xvt_notebk_create_face_res
xvt_notebk_enum_pages
xvt_notebk_get_face
xvt_notebk_get_front_page
xvt_notebk_get_num_pages
xvt_notebk_get_num_tabs
xvt_notebk_get_page_data
xvt_notebk_get_page_from_face
xvt_notebk_get_page_title
xvt_notebk_get_tab_image
xvt_notebk_get_tab_title
xvt_notebk_rem_page
xvt_notebk_rem_tab
xvt_notebk_set_page_data
xvt_notebk_set_page_title
xvt_notebk_set_front_page
xvt_notebk_set_tab_image
xvt_notebk_set_tab_title

xvt_notebk_add_page
 Add a Page to a Specific Tab in a Notebook Control

Summary

void xvt_notebk_add_page (WINDOW notebk, short tab_no,
short page_no, char * title, long page_data)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of tab to which to add a page.

short page_no

Position at which to add new page. If 0, it will be the first page.
The page is placed before the page whose index is equal to

page_no (origin 0). A page_no that is too large causes the page
to be added at the end.

char * title

Title of page.

long page_data

Contains any application data you wish to attach to a page.
Typically, this will be a pointer to some structure allocated from
the heap, cast into a long so that, later, your application can
retrieve the structure and look at it.

Description

This function adds a page to a notebook tab.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

• page_no is less than 0

Implementation Note

The multiple page mechanism allows one tab to have many pages.
Each page has a Face (XVT WINDOW). You must come up with a way
for the user to change pages for tabs with more than one page. For
example, you may provide "Next" and "Prev" buttons on each face
for tabs with multiple pages.

See Also

xvt_notebk_add_tab
xvt_notebk_create_face
xvt_notebk_create_face_def
xvt_notebk_create_face_res
xvt_notebk_get_page_data
xvt_notebk_set_page_data

xvt_notebk_add_tab
Add a Tab to a Notebook Control

Summary

void xvt_notebk_add_tab (WINDOW notebk, short tab_no,
char * title, XVT_IMAGE image)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of tab to add;Position at which to add new tab. If 0,
this will be the first tab. The tab is placed before the tab whose
index is equal to tab_no (origin 0). A tab_no that is too large
causes the tab to be added at the end.

char * title

Title of tab. If it is a NULL_STRING, the tab will have no title.

XVT_IMAGE image

Image to display in tab. If it is a NULL_IMAGE, the tab will have
no image.

Description

This function adds a tab to a notebook control. Each tab is analogous
to a divider in a notebook.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

Implementation Note

A tab may have multiple pages. The image is duplicated. The
application owns image and must destroy it when finished with it.

See Also

XVT_IMAGE
xvt_image_destroy
xvt_notebk_add_page

Example

anImage = xvt_image_read_bmp("window.bmp");
xvt_notebk_add_tab (aNotebk, 0, "Window", anImage);
xvt_notebk_add_page(aNotebk, 0, 0, "Page0",0L);
aFace = xvt_res_get_win_def(WINDOW_FACE);
xvt_notebk_create_face_def(aNotebk, 0, 0, aFace, EM_ALL,

WINDOW_FACE_eh, PTR_LONG(&aData->winFace));
xvt_res_free_win_def(aFace);
xvt_image_destroy(anImage);

xvt_notebk_create_face
Create a Face for a Page

Summary

WINDOW xvt_notebk_create_face (WINDOW notebk,
short tab_no, short page_no, EVENT_MASK mask,
EVENT_HANDLER face_eh, long app_data)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page to which face is being added.

short page_no

Page number for which to create face.

EVENT_MASK mask

Specifies which events should be sent to the window handler.
This is an OR'd combination of any of the EM_* constants. You
usually set EVENT_MASK mask to EM_ALL indicating that all
events should be sent to the window (no restriction). In some
conditions, you can restrict the events sent to the window. For
more details, see the "Event Masking" section of the "Events"
chapter in the XVT Portability Toolkit Guide.

EVENT_HANDLER face_eh

The event handler function; it receives all of the events for the
window.

long app_data

Contains any application data you wish to attach to the window
when it is created. Normally, it is a pointer to a data structure
cast into a long.

Description

This function creates a face for the page identified by page_no. A
face is simply an XVT child WINDOW. There is a one to one
relationship between a page and a face. The face is displayed when
the page it is associated with is selected.

Return Value

A WINDOW if successful; NULL_WIN if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

• page_no is less than 0

See Also

xvt_notebk_create_face_def
xvt_notebk_create_face_res

xvt_notebk_create_face_def
Create a Face with Controls from an Array of Data Structures

Summary

WINDOW xvt_notebk_create_face_def (WINDOW notebk,
short tab_no, short page_no, WIN_DEF * win_def_p,
EVENT_MASK mask, EVENT_HANDLER face_eh,
long app_data)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page to which face is being added.

short page_no

Page number for which to create face.

WIN_DEF * win_def_p

Points to an array of data structures. The first element in the
array defines the window itself. Subsequent elements of the
array define the controls or text edit objects contained within the
window. The last element of the array is a terminator whose
wtype field is set to W_NONE. EVENT_MASK mask specifies which
events are sent to the window event handler. This is an OR'd
combination of any of the EM_* constants. You usually set this
to EM_ALL indicating that all events would be sent to the
window. For more details, see the "Event Masking" section of
the "Events" chapter in the XVT Portability Toolkit Guide.

EVENT_HANDLER face_eh

The event handler function; it receives all of the events for the
window.

long app_data

Contains any application data you wish to attach to the window
when it is created. Normally, it is a pointer to a data structure
cast into a long.

Description

This function creates a face for the page identified by page_no. A
face is simply an XVT child WINDOW. There is a one to one
relationship between a page and a face. The face is displayed when
the page it is associated with is selected. For more information on
WIN_DEF structures see xvt_win_create_def.

Return Value

A WINDOW if successful; NULL_WIN if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control.

• tab_no is less than 0.

• page_no is less than 0.

See Also

xvt_notebk_create_face
xvt_notebk_create_face_res
xvt_win_create_def

xvt_notebk_create_face_res
Create a Face from a Resource File

Summary

WINDOW xvt_notebk_create_face_res (WINDOW notebk,
short tab_no, short page_no, int rid, EVENT_MASK mask,
EVENT_HANDLER face_eh, long app_data)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page to which face is being added.

short page_no

Page number for which to create face.

int rid

Resource ID corresponding to a window statement in your
XRC resource file. The face is created as if this resource were
loaded via xvt_res_get_win_def, and then instantiated via
xvt_notebk_create_face_def.

EVENT_MASK mask

Specifies which events are sent to the window event handler.
This is an OR'd combination of any of the EM_* constants. You
usually set this to EM_ALL indicating that all events would be
sent to the window. For more details, see the "Event Masking"
section of the "Events" chapter in the XVT Portability Toolkit
Guide.

EVENT_HANDLER face_eh

The event handler function; it receives all of the events for the
window.

long app_data

Contains any application data you wish to attach to the window
when it is created. Normally, it is a pointer to a data structure
cast into a long.

Description

This function creates a face for the page identified by page_no. A
face is simply an XVT child WINDOW. There is a one to one

relationship between a page and a face. The face is displayed when
the page it is associated with is selected.

Return Value

A WINDOW if successful; NULL_WIN if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control.

• tab_no is less than 0.

• page_no is less than 0.

• face_eh must be set to a valid function pointer.

• rid specifies a window resource in the XRC file.

See Also

xvt_notebk_create_face
xvt_notebk_create_face_def

xvt_notebk_enum_pages
Enumerate through All Pages and Apply the Function to Each Page

Summary

BOOLEAN xvt_notebk_enum_pages (WINDOW notebk,
XVT_NOTEBK_ENUM_PAGES func, long data)

WINDOW notebk

Window ID of notebook control.

XVT_NOTEBK_ENUM_PAGES func

Address of function to be called for each page.

long data

Application-defined data to pass to callback function.

Description

This function enumerates (i.e., invokes an application-supplied
callback function) the pages contained in the specified tab. It passes
the notebk, tab_no, page_no and page_data of each page, in
sequential order, to an application-defined callback function. It

continues until the last page is enumerated or until the callback
function returns FALSE.

Return Value

TRUE if successful; FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control.

• tab_no is less than 0.

• page_no is less than 0.

See Also

XVT_NOTEBK_ENUM_PAGES

xvt_notebk_get_face
Get the Face in the Notebk at Tab and Page

Summary

WINDOW xvt_notebk_get_face (WINDOW notebk, short tab_no,
short page_no)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of face.

short page_no

Page number of face.

Description

This function gets the face (XVT WINDOW) in the notebk at tab and
page.

Return Value

The WINDOW of the face if successful, or NULL_WIN if no such face
exists.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

• page_no is less than 0

See Also

xvt_notebk_get_front_page

xvt_notebk_get_front_page
Get the Current Front Page

Summary

WINDOW xvt_notebk_get_front_page (WINDOW notebk,
short * tab_no, short * page_no)

WINDOW notebk

Window ID of notebook control.

short * tab_no

Tab number of tab with the front page.

short * page_no

Page number of front page.

Description

This function gets the current front page. This is the page that is
currently on top and showing. It also returns the face (WINDOW) of the
front page.

Return Value

The WINDOW of the face if successful, or NULL_WIN unsuccessful.
tab_no and/or page_no may be set to -1 on error.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is a NULL pointer

• page_no is a NULL pointer

See Also

xvt_notebk_get_face

xvt_notebk_get_num_pages
Get the Number of Pages in the Specified Tab

Summary

short xvt_notebk_get_num_pages (WINDOW notebk,
short tab_no)

WINDOW notebk

Window ID of notebook control.

short * tab_no

Tab number for which to get the number of pages.

Description

This function gets the number of pages in a notebk at the tab
specified.

Return Value

The number of pages in the tab if successful, or 0 if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control.

• tab_no is less than 0.

See Also

xvt_notebk_get_num_tabs

xvt_notebk_get_num_tabs
Get the Number of Tabs in a Notebk

Summary

short xvt_notebk_get_num_tabs (WINDOW notebk)

WINDOW notebk

Window ID of notebook control.

Description

This function gets the number of tabs in a notebk.

Return Value

The number of pages in the tab if successful, or 0 if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

See Also

xvt_notebk_get_num_pages

xvt_notebk_get_page_data
Get the Data Associated with a Page and Tab in a Notebk

Summary

long xvt_notebk_get_page_data (WINDOW notebk,
short tab_no, short page_no)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number.

short page_no

Page number.

Description

This function gets the data associated with a page and tab in a
notebk. Frequently the page data is a pointer to a structure of your
own design. In this case, your application should cast the return
value from xvt_notebk_get_page_data into a pointer of the correct
type.

Return Value

long integer for application data associated with the page.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

See Also

xvt_notebk_set_page_data
xvt_notebk_add_page

xvt_notebk_get_page_from_face
Get the Page, Tab, and Notebk Associated with a Specific Face

Summary

void xvt_notebk_get_page_from_face (WINDOW face,
WINDOW * notebk, short * tab_no, short * page_no)

WINDOW face

Face whose page, tab, and notebk are to be retrieved.

WINDOW * notebk

Notebk that face is in.

short * tab_no

Tab that face is in.

short * page_no

Page that face is in.

Description

This function gets the page, tab, and notebk associated with a
specific face.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• face is NULL

• notebk is a NULL pointer

• tab_no is a NULL pointer

• page_no is a NULL pointer

See Also

xvt_notebk_get_face

xvt_notebk_get_page_title
Get the Page Title in a Notebk for Tab and Page

Summary

char * xvt_notebk_get_page_title (WINDOW notebk,
short tab_no, short page_no, char * buf, size_t size)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page.

short page_no

Page number for which to get title.

char * buf

Buffer to hold title.

size_t size

Maximum buffer capacity.

Description

This function gets the page title in a notebk for tab and page. The
maximum capacity (including the NULL-terminator) is size. The title
is truncated as needed to fit into buf.

Return Value

Pointer to buf if successful; NULL if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

• page_no is less than 0

• buf is a NULL pointer

• size is less than or equal to 0

See Also

xvt_notebk_get_tab_title
xvt_notebk_set_page_title
xvt_vobj_get_title

xvt_notebk_get_tab_image
Get the Image for a Tab in a Notebk

Summary

XVT_IMAGE xvt_notebk_get_tab_image (WINDOW notebk,
short tab_no)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number.

Description

This function gets the image for a tab in a notebk.

Return Value

Image displayed in tab if successful; NULL if unsuccessful or if tab
has no image.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

Implementation Note

This image belongs to the notebk control. Do not destroy it with
xvt_image_destroy.

See Also

xvt_notebk_set_tab_image

xvt_notebk_get_tab_title
Get the Title for a Tab in a Notebk

Summary

char * xvt_notebk_get_tab_title (WINDOW notebk,
short tab_no, char * buf, size_t size)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number.

char * buf

Buffer to hold title.

size_t size

Maximum buffer capacity.

Description

This function gets the title for a tab in a notebk. The maximum
capacity (including the NULL-terminator) is size. The title is
truncated as needed to fit into buf.

Return Value

Pointer to buf if successful; NULL if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

• buf is a NULL pointer

• size is less than or equal to 0

See Also

xvt_notebk_get_page_title
xvt_notebk_set_tab_title
xvt_vobj_get_title

xvt_notebk_rem_page
Remove a Page Attached to a Tab from the Notebk

Summary

void xvt_notebk_rem_page (WINDOW notebk, short tab_no,
short page_no)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page.

short page_no

Page number to remove.

Description

This function removes a page attached to a tab from the notebk. The
associated face will be destroyed.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

• page_no is less than 0

See Also

xvt_notebk_rem_tab

xvt_notebk_rem_tab
Remove a Tab in a Notebk

Summary

void xvt_notebk_rem_tab (WINDOW notebk, short tab_no)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number.

Description

This function removes a page from a tab in a notebk. It then removes
the tab specified. Each of the faces for the pages attached to the tab
will be destroyed.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

See Also

xvt_notebk_rem_page

xvt_notebk_set_page_data
Sets the Data for a Page

Summary

void xvt_notebk_set_page_data (WINDOW notebk,
short tab_no, short page_no, long data)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page.

short page_no

Page number for which to set data.

long data

Data to associate with the page.

Description

This function sets the data for a page under the specified tab for a
notebk.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control.

• tab_no is less than 0.

• page_no is less than 0.

See Also

xvt_notebk_get_page_data

xvt_notebk_set_page_title
Set the Title for a Page

Summary

void xvt_notebk_set_page_title (WINDOW notebk,
short tab_no, short page_no, char * title)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page.

short page_no

Page number for which to set title.

char * title

Title to be set.

Description

This function sets the title for a page under the specified tab for a
notebk.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control.

• tab_no is less than 0.

• page_no is less than 0.

See Also

xvt_notebk_set_tab_title

xvt_notebk_set_front_page
Set the Front Page

Summary

void xvt_notebk_set_front_page (WINDOW notebk,
short tab_no, short page_no)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page.

short page_no

Page number to set to the front.

Description

This function sets the front page associated with a tab in a notebk.
The face associated with the page will have the keyboard input
focus.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control.

• tab_no is less than 0.

• page_no is less than 0.

xvt_notebk_set_tab_image
Set the Tab Image

Summary

void xvt_notebk_set_tab_image (WINDOW notebk,
short tab_no, XVT_IMAGE image)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number for which to set image.

XVT_IMAGE image

Image to display in tab.

Description

This function duplicates image and replaces the existing tab image
for the tab specified in a notebk. The previously set image is
destroyed. The application owns image and must destroy it when
finished with it.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

• image is not NULL

See Also

XVT_IMAGE
xvt_image_destroy
xvt_notebk_add_tab

xvt_notebk_set_tab_title
Set the Tab Title

Summary

void xvt_notebk_set_tab_title (WINDOW notebk,
short tab_no, char * title)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number for which to set image.

char * title

Title of tab. If it is a NULL_STRING, the tab will have no title.

Description

This function sets the tab title for the tab specified in a notebk.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

See Also

xvt_notebk_add_tab
xvt_notebk_set_page_title

xvt_palet_*
 Palette Functions

xvt_palet_add_colors
xvt_palet_add_colors_from_image
xvt_palet_create
xvt_palet_default
xvt_palet_destroy
xvt_palet_get_colors
xvt_palet_get_ncolors
xvt_palet_get_size
xvt_palet_get_tolerance
xvt_palet_get_type
xvt_palet_set_tolerance

xvt_palet_add_colors
 Add Colors to a Palette

Summary

short xvt_palet_add_colors(XVT_PALETTE palet,
 COLOR *colorsp, short numcolors)

XVT_PALETTE palet

Palette to which colors are being added.

COLOR *colorsp

Pointer to an array of COLOR variables.

short numcolors

Number of colors in the array pointed to by colorsp.

Description

This function adds colors to a palette of type XVT_PALETTE_USER.
Any attempt to use this function with other palette types is an error.
Only the new color RGB values that are unique (within tolerance)
are added to the palette. This function returns the actual number of
colors added to the palette. Note that this value is less than or equal
to the numcolors specified.

Return Value

The actual number of colors added to the palette.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• palet is NULL or invalid

• palet is an invalid type (i.e., a type other than
XVT_PALETTE_USER)

• colorsp is NULL

See Also

COLOR
XVT_PALETTE
XVT_PALLETE_* Values
xvt_palet_set_tolerance

The "Portable Images" chapter in theXVT Portability Toolkit Guide

Example

 See the example for xvt_palet_create.

xvt_palet_add_colors_from_image
 Add Colors from an Image to a Palette

Summary

short xvt_palet_add_colors_from_image
 (XVT_PALETTE palet, XVT_IMAGE image)

XVT_PALETTE palet

Palette to which colors are being added.

XVT_IMAGE image

Image from which to add the colors.

Description

This function adds colors to a palette of type XVT_PALETTE_USER that
match the colors in a portable image object. Use this function to
create a palette that produces the best screen appearance for the
image.

Return Value

The number of colors (that were unique within tolerance) added to
the palette.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• palet is NULL

• palet is an invalid type (i.e. a type other than
XVT_PALETTE_USER)

• image is NULL or invalid

See Also

XVT_IMAGE
XVT_PALETTE
XVT_PALLETE_* Values
xvt_palet_add_colors
xvt_palet_set_tolerance

The "Portable Images" chapter in theXVT Portability Toolkit Guide

xvt_palet_create
 Create a New Palette

Summary

XVT_PALETTE xvt_palet_create(XVT_PALETTE_TYPE type,
 XVT_PALETTE_ATTR reserved)

XVT_PALETTE_TYPE type

Color type of new palette.

XVT_PALETTE_ATTR reserved

Currently not used; pass NULL for this parameter.

Description

This function creates a new palette of the specified type.

Return Value

A handle for the created palette if successful; NULL if unsuccessful
(on error).

See Also

XVT_PALETTE_ATTR
XVT_PALLET_TYPE
XVT_PALLETE_* Values
xvt_pallet_*
xvt_vobj_get_palet
xvt_vobj_set_palet

The "Portable Images" chapter in theXVT Portability Toolkit Guide

Example

 This code changes entry n of the window’s palette to a new color by
creating a new palette for the window:

WINDOW window;
COLOR colors[MAX_COLORS];
COLOR new_color;
short n;
short num_colors;
XVT_PALETTE palette;
XVT_PALETTE new_palette;
...
/* get colors from window palette */
palette = xvt_vobj_get_palet(window);
num_colors = xvt_palet_get_colors(palette,

 colors, MAX_COLORS);
/* create new palette with changed colors */
new_palette = xvt_palet_create(XVT_PALETTE_USER,

(XVT_PALETTE_ATTR*)NULL);
if (new_palette)
{

colors[n] = new_color;
xvt_palet_set_tolerance(new_palette,

xvt_palet_get_tolerance(palette));
xvt_palet_add_colors(new_palette, colors,

num_colors);
/* set window palette to new_palette */
xvt_vobj_set_palet(window, new_palette);
xvt_palet_destroy(palette);

}

xvt_palet_default
 Get the Default Palette

Summary

XVT_PALETTE xvt_palet_default(void)

Description

This function returns a handle to the default palette. The default
palette is created for the screen window at application startup
time.The palette is of type XVT_PALETTE_STOCK.

Return Value

The default palette.

See Also

XVT_PALETTE
XVT_PALLETE_* Values

The "Portable Images" chapter in theXVT Portability Toolkit Guide

xvt_palet_destroy
 Destroy a Palette

Summary

void xvt_palet_destroy(XVT_PALETTE palet)

XVT_PALETTE palet

Palette to destroy.

Description

This function destroys a palette. The palette is not actually destroyed
until its reference count (the number of windows or pixmaps it is
associated with) is zero. A palette is retained in memory until it is
explicitly destroyed, and until it is no longer associated with any
windows or pixmaps.

Note: The default palette cannot be destroyed.

Return Value

None.

Parameter Validity and Error Conditions

XVT issues an error if palet is NULL or invalid.

See Also

XVT_PALETTE
xvt_palet_create
xvt_palet_default

The "Portable Images" chapter in theXVT Portability Toolkit Guide

Example

See the example for xvt_palet_create.

xvt_palet_get_colors
 Get the Colors in a Palette

Summary

short xvt_palet_get_colors(XVT_PALETTE palet,
 COLOR *colorsp, short maxcolors)

XVT_PALETTE palet

Palette from which to retrieve the colors.

COLOR *colorsp

Pointer to an array of COLOR variables.

short maxcolors

Maximum number of colors in the array pointed to by colorsp.

Description

This function gets the colors currently defined in a palette object.
The COLOR values are returned in the colorsp array.

Return Value

The number of colors actually set in the colorsp array, which may
be less than maxcolors.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• palet is NULL or invalid

• colorsp is NULL

See Also

COLOR
XVT_PALETTE
xvt_palet_add_colors
xvt_palet_add_colors_from_image
xvt_palet_create

The "Portable Images" chapter in theXVT Portability Toolkit Guide

Example

 See the example for xvt_palet_create.

xvt_palet_get_ncolors
 Get the Number of Colors in a Palette

Summary

short xvt_palet_get_ncolors(XVT_PALETTE palet)

XVT_PALETTE palet

Palette from which to retrieve the type.

Description

This function returns the number of colors defined in a palette. For
XVT_PALETTE_USER type palettes, this number is less than or equal to
the size of the palette. For all other palette types, this number is equal
to the size of the palette.

Return Value

The number of colors in the palette.

Parameter Validity and Error Conditions

XVT issues an error if palet is NULL or invalid.

See Also

XVT_PALETTE
XVT_PALLETE_* Values
xvt_palet_get_size

The "Portable Images" chapter in theXVT Portability Toolkit Guide

xvt_palet_get_size
 Get the Size of a Palette

Summary

short xvt_palet_get_size(XVT_PALETTE palet)

XVT_PALETTE palet

Palette from which to retrieve the size.

Description

This function returns the "size" of a palette, the maximum number
of colors that can be defined in a palette. This number depends on
the hardware in use--typical values are 16 and 256.

Return Value

The maximum number of colors that can be defined in the palette.

Parameter Validity and Error Conditions

XVT issues an error if palet is NULL or invalid.

See Also

XVT_PALETTE
xvt_palet_get_ncolors

The "Portable Images" chapter in theXVT Portability Toolkit Guide

xvt_palet_get_tolerance
 Get the Color-Match Tolerance of a Palette

Summary

long xvt_palet_get_tolerance(XVT_PALETTE palet)

XVT_PALETTE palet

Palette from which to retrieve the color-match tolerance.

Description

This function returns the color-match tolerance for a palette object.
For more details, see xvt_palet_set_tolerance.

Return Value

The color-match tolerance of the palette.

Parameter Validity and Error Conditions

XVT issues an error if palet is NULL or invalid.

See Also

XVT_PALETTE
xvt_palet_create
xvt_palet_set_tolerance

The "Portable Images" chapter in theXVT Portability Toolkit Guide

Example

 See the example for xvt_palet_create.

xvt_palet_get_type
 Get the Type of a Palette

Summary

XVT_PALETTE_TYPE xvt_palet_get_type(XVT_PALETTE palet)

XVT_PALETTE palet

Palette from which to retrieve the type.

Description

This function returns the type of a palette.

Return Value

The palette type.

Parameter Validity and Error Conditions

XVT issues an error if palet is NULL or invalid.

See Also

XVT_PALETTE
XVT_PALLET_TYPE
XVT_PALLETE_* Values

The "Portable Images" chapter in theXVT Portability Toolkit Guide

xvt_palet_set_tolerance
 Set the Color-Match Tolerance of a Palette

Summary

void xvt_palet_set_tolerance(XVT_PALETTE palet,
 long tolerance)

XVT_PALETTE palet

Palette whose tolerance is to be set.

long tolerance

The color-matching tolerance.

Description

Sets the color-match tolerance for a palette object. Color-match
tolerance is defined as the maximum of the differences between the
corresponding RGB components of a given color value and an actual
value in the palette.

For example, using the default tolerance of five, any two colors
whose RGB components differ by at most five are considered equal
within tolerance.

Color tolerance is used to control the "closeness" of colors that are
added to XVT_PALETTE_USER type palettes. Only colors that are
unique (within tolerance) are added to user palettes. Setting
tolerance to zero disables any color tolerance checks when new
colors are added to a palette.

Return Value

None.

Parameter Validity and Error Conditions

XVT issues an error if palet is NULL or invalid.

See Also

XVT_PALETTE
XVT_PALLETE_* Values
xvt_palet_create

The "Portable Images" chapter in theXVT Portability Toolkit Guide

Example

 See the example for xvt_palet_create.

xvt_pattern_*
Complex String Pattern Facility

xvt_pattern_create
xvt_pattern_destroy
xvt_pattern_match
xvt_pattern_format_string

xvt_pattern_create
Creates an XVT_PATTERN From a Pattern String

Summary

XVT_PATTERN xvt_pattern_create (const char *patstr)

const char *patstr

String describing a Regular Expression pattern.

Description

This function takes a pattern string which defines a Regular
Expression pattern, compiles it into a pattern parse tree and returns
an XVT_PATTERN.

Patterns can be composed of any literal character (single or
multibyte), plus the following special symbols.

Character Meaning
? Match any single character
Match any digit character
X Match only an alphabetic character
A Match and auto-uppercase alphabetic characters
a Match and auto-lowercase alphabetic characters

The pattern language grammar shows how the symbols in the above
table can be combined. The vertical bar ‘|’ signifies “or” and ‘...’
signifies multiple entries. The language grammar follows:

CHAR Any non-NULL character (international or ASCII)
STRING Any series of characters except ‘,’ or ‘}’
LITERAL CHAR | \CHAR
MATCH ? | # | X | A | a
COMPLEX <EXPRESSION>
OPTIONAL [EXPRESSION]
PICKONE (CHAR...CHAR)
COMPLETE {STRING,...STRING}
ZEROPLUS EXPRESSION*
ONEPLUS EXPRESSION+
EXPRESSION LITERAL | MATCH | COMPLEX | OPTIONAL

|PICKONE |
COMPLETE | ZEROPLUS |ONEPLUS [EXPRESSION]

Caveats and Limitations

• () expressions may only contain single character elements
such as literals and single-character match elements such as A
and #.

• {} expressions contain enumerations of strings, separated by
commas.

* Match 0 or more instances of the previous
expression

+ Match 1 or more instances of the previous
expression

[...] Match an optional expression
(...) Match one of any single character contained in the

set
{...} Match one of the contained, comma-separated

strings with auto-casing and optional auto-
completion

<...> Complex expression - treat the contained
expression as a single element

\ Literal escape of one character (allows the above
characters to be treated as literals)

<all
others>

Literal formatting characters to be inserted
automatically in the output

Character Meaning

• All complex expressions like (), [], <>, and {} must be ended
with the appropriate matching character.

• All complex expressions must contain at least one element.

• Expressions may be of arbitrary length and complexity, but
the strings they filter and match against are limited to a
maximum of 256 characters.

• Care must be taken in building expressions. For example, the
expression “?*A” will never match anything to the “A”
element because the “?*” expression will ‘consume’ all of the
characters in the input string by itself.

Return Value

An XVT_PATTERN object is returned if successful; NULL if an error
occurred.

Parameter and Validity Conditions

XVT returns NULL if any of the following errors occur:

• If the patstr parameter is NULL.

• If patstr contains an invalid pattern description.

• There is insufficient memory to create the XVT_PATTERN
object.

See Also

XVT_FORMAT_HANDLER
XVT_PATTERN
xvt_pattern_create
xvt_pattern_match
xvt_pattern_format_string
xvt_vobj_get_formatter
xvt_vobj_set_formatter

Examples

Some representative patterns used to accomplish certain described
tasks are listed below:

Match any string of arbitrary length:

?*

These strings will match: ““, “a”, “any string”

Match any non-null string:

?+

These strings will match: “a”, “any string”
This string will not match: ““

Match a minimum of 3 characters and a maximum of 8
characters:

???[?][?][?][?][?]

These strings will match: “abc”, “abcd”, ..., “abcdefgh”
These strings will not match: ““, “a”, “ab”, “abcdefghi”

Match an optionally signed integer (notice that the + sign has to
be escaped so it’s not treated as an operator):

[(\+-)]#+

These strings will match: “12”, “-1”, “+1”, “-1234”
These strings will not match: ““, “a”, “+a”, “0xFF”

Match negative numbers only:

-#+

These strings will match: “-1”, “-1234”
These strings will not match: ““, “a”, “+a”, “0xFF”, “+1”,
“1234”

Match any number of instances of automatically upper-cased
letters, each followed by a digit:

<A#>*

These strings will match: ““, “a1”, “b2”, “C3”, “D4”
Note that “a1” will resolve to “A1”
These strings will not match: “a”, “abcde”

Match a 10-digit telephone number with automatically added
literals:

“\(###\) ###-####”

These strings will match: “(303) 443-4223”, “3034434223”,
“(303)4434223”
Note that “3034434223” will resolve to “(303) 443-4223”

Match a US postal code with optional “Plus four” digits:

#####[-####]

These strings will match: “80301”, “80301-8750”,
“803018750”
Note that “803018750” will resolve to “80301-8750”

Match British postal codes with automatically upper-cased
letters:

“A[A]#[#] #AA”

Match an optionally signed float with optional 1-3 digit
exponent:

[(\+-)]#+[.#+][(\+-)(eE)#[#][#]]

These strings will match: “12”, “-12.03”, “12.03-e10”,
“+12.03+E10”

Match a full proper name with an optional middle name and
automatically upper-cased where appropriate:

“AX+ A(<X*>.) AX+”

These strings will match: “john t. doe”, “john thomas doe”,
“Jane t. Doe”
Note that “john t doe” will resolve to “John T. Doe”

Match the day-of-the-week abbreviations with automatic
completion and casing:

“{Sun,Mon,Tue,Wed,Thu,Fri,Sat}”

These strings will match: “Su”, “M”, “Wed”
Note that “Su” will resolve (auto-complete) to “Sun” and “M”
will resolve to “Mon”

Match a day of the week, with automatic completion and casing
(do NOT add unnecessary spaces after commas):

“{Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,
Saturday}”

These strings will match: “Su”, “M”, “Wed”, “Thursday”
Note that “Su” will resolve (auto-complete) to “Sunday”, “M”
will resolve to “Monday”, and “Wed” will resolve to
“Wednesday”

Match the time of day:

“{1,2,3,4,5,6,7,8,9,10,11,12}:(012345)# {AM,PM}”

These strings will match: “2:29 AM”, “12:08 PM”

Match dates:

“{Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec}
[(123)]#, ####”

These strings will match: “Feb 29, 1996”, “Jan 1, 2000”
Note that the date pattern does not assure that the date is correct,

only that the date matches the specified format.
For example, “Feb 31, 1996” would match this pattern.

Match dates in American short format:

“{1,2,3,4,5,6,7,8,9,10,11,12}/(0123)#/##”

These strings will match: “1/23/96”, “11/30/00”

xvt_pattern_destroy
Destroys an XVT_PATTERN and Frees Associated Memory

Summary

void xvt_pattern_destroy(XVT_PATTERN pat)

XVT_PATTERN pat

The XVT_PATTERN object to destroy.

Description

This function destroys an XVT_PATTERN object and frees all
associated memory.

Parameter and Validity Conditions

XVT issues an error if pat is NULL or is not a valid XVT_PATTERN.

See Also

XVT_FORMAT_HANDLER
XVT_PATTERN
xvt_pattern_create
xvt_pattern_match
xvt_pattern_format_string
xvt_vobj_get_formatter
xvt_vobj_set_formatter

xvt_pattern_match
Matches a String Against an XVT_PATTERN

Summary

BOOLEAN xvt_pattern_match(XVT_PATTERN pat,
const char *str, const char** endstr)

XVT_PATTERN pat

Pattern parse tree object.

const char *str

String to match against pattern.

const char** endst

Set to return a pointer into the string str to the character
immediately following the last matched character.

Description

This function matches the string str to the pattern described by the
XVT_PATTERN, pat, and sets endstr to point to the character
immediately following the last used character in the match.

Return Value

The function returns:

TRUE and *endstr == ‘\0’
if the string matched the pattern exactly. The end
of both the string and the pattern was reached.

FALSE and *endstr == ‘\0’
if the string matched the pattern but not the complete
pattern. The end of the string was reached but not the end
of the pattern.

FALSE and *endstr != ‘\0’
if the string did not match the pattern. Neither the end of the
string nor the end of the pattern was reached.

Parameter and Validity Conditions

XVT returns FALSE and issues an error if any of the following
conditions occur:

o If any of the parameters is NULL.

o If pat is not a valid XVT_PATTERN.

o There is insufficient memory to process the pattern match.

See Also

XVT_FORMAT_HANDLER
XVT_PATTERN
xvt_pattern_create
xvt_pattern_match
xvt_pattern_format_string
xvt_vobj_get_formatter
xvt_vobj_set_formatter

xvt_pattern_format_string
Matches and Transforms a String According to an XVT_PATTERN

Summary

char *xvt_pattern_format_string(XVT_PATTERN pat,
const char *str, char *buf, size_t buflen,
BOOLEAN complete_string, int *start, int *end)

XVT_PATTERN pat

Pattern parse tree object.

const char *str

String to match against pattern.

char *buf

Return buffer for completed string.

size_t buflen

Length of string buffer buf in bytes.

BOOLEAN complete_string

Determines if auto-completion clauses in the pattern are filled
out.

int *start

Set to the start of the selection range for the completion clause.

int *end

Set to the end of the selection range for the completion clause.

Description

This function traverses the string str and matches and transforms
the string into the pattern into the string buffer buf of length buflen.
If complete_string is TRUE, the string is matched to uniqueness and
the string filled out completely wherever there is an auto-
completion clause “{}”. In this case, *start and *end will be set to
the range of characters that the formatter automatically inserted for
the user (which should be used to set the selection range in an edit
control). When complete_string is FALSE, *start and *end reflect
the cursor’s position (placed at the end of the formatted string), and
auto-completion clauses will only restrict the characters entered
instead of automatically completing the string.

Return Value

The function returns a pointer into the string str at the point at
which it stopped formatting or NULL if an error occurred.

Parameter and Validity Conditions

XVT returns NULL and issues an error if any of the following
conditions occur:

o If any of the parameters is NULL.

o If pat is not a valid XVT_PATTERN.

o There is insufficient memory to process the pattern match.

See Also

XVT_FORMAT_HANDLER
XVT_PATTERN
xvt_pattern_create
xvt_pattern_match
xvt_pattern_format_string
xvt_vobj_get_formatter
xvt_vobj_set_formatter

xvt_pict_*
 Picture Objects

xvt_pict_create
xvt_pict_destroy
xvt_pict_lock
xvt_pict_unlock

xvt_pict_create
 Make Encapsulated Picture from Data

Summary

PICTURE xvt_pict_create(char *buf, long nbytes,
 RCT *rctp)

char *buf

Picture data.

long nbytes

Number of bytes in the picture data.

RCT *rctp

Returned pointer to the bounding rectangle.

Description

This function recreates a PICTURE from a group of sequential bytes
of length nbytes that were originally formed via a call to
xvt_pict_lock. The original frame rectangle is returned through the
pointer rctp.

You can also use xvt_cb_get_data to get data from the clipboard
for creating a PICTURE.

When you are finished using it, you should free the returned PICTURE
with a call to xvt_pict_destroy.

Return Value

A PICTURE if successful; NULL_PICTURE if unsuccessful (on error).

See Also

xvt_cb_get_data
xvt_pict_destroy
xvt_pict_lock

The "Drawing and Pictures" chapter in theXVT Portability Toolkit
Guide

Example

This code gets a PICTURE from the clipboard and draws it in the
upper-left corner of the window:

WINDOW window;
...
/* open clipboard */
if (xvt_cb_open(FALSE)) {

 char *data;
long size;
/* get PICTURE from clipboard and close */
data = xvt_cb_get_data(CB_PICT, NULL, &size);
xvt_cb_close();
if (data) {

PICTURE pict;
RCT rect;
/* create PICTURE from clipboard data */
pict = xvt_pict_create(data, size, &rect);
if (pict) {

/* draw picture to window */
xvt_dwin_draw_pict(window, pict, &rect);
xvt_pict_destroy(pict);

}
} else /* xvt_cb_get_data failed */

xvt_dm_post_warning(
"No PICTURE data in clipboard");

}

xvt_pict_destroy
 Free Encapsulated Picture

Summary

void xvt_pict_destroy(PICTURE pic)

PICTURE pic

Picture to be freed.

Description

This function frees the memory occupied by a PICTURE object. The
PICTURE may have been obtained from a call to
xvt_dwin_close_pict or xvt_pict_create.

PICTUREs are not necessarily freed automatically when your
application terminates. It is best to free them explicitly (in your
E_DESTROY case of the task event handler if necessary).

See Also

PICTURE
xvt_dwin_close_pict
xvt_pict_create

The "Drawing and Pictures" chapter in theXVT Portability Toolkit
Guide

Example

See the example for xvt_pict_create.

xvt_pict_lock
 Get Pointer to Encapsulated Picture

Summary

char *xvt_pict_lock(PICTURE pic, long *sizep)

PICTURE pic

Picture that is to be transformed into bytes.

long *sizep

The size of the picture in bytes.

Description

This function transforms a PICTURE into an unstructured sequence of
bytes, the length of which is stored into the long pointed to by
sizep. The bytes cannot be interpreted or manipulated by your
application, but they can be written to a file, read back in later, and
transformed back into a PICTURE with xvt_pict_create. The
returned character stream is owned by this function, and the
application should not attempt to free it.

When you are done with the pointer returned by xvt_pict_lock,
you must call xvt_pict_unlock. Don’t keep the PICTURE locked for
longer than you have to. If you need it for a long time, copy it to a
block of memory that your application has allocated (with the
xvt_*_alloc functions).

Implementation Note

The sequence of bytes returned from xvt_pict_lock is not in a
portable format. Therefore, even if you write it to a file, you cannot
transfer it to a platform different from its creator. You might not be
able to move the file to a different computer running the same
window system because this sequence of bytes is display-driver
dependent.

Return Value

A character pointer to the bytes if successful; NULL on error (usually
out of memory).

See Also

xvt_gmem_alloc
xvt_mem_alloc
xvt_pict_create
xvt_pict_unlock

The "Drawing and Pictures" chapter in theXVT Portability Toolkit
Guide

xvt_pict_unlock
 Unlock Picture

Summary

void xvt_pict_unlock(PICTURE pic)

PICTURE pic

Picture to be unlocked.

Description

This function unlocks a PICTURE that was previously locked with a
call to xvt_pict_lock. After you have accessed its data, you should
unlock a locked PICTURE as soon as possible.

See Also

xvt_pict_lock

The "Drawing and Pictures" chapter in theXVT Portability Toolkit
Guide

xvt_pmap_*
 Pixmap Objects

xvt_pmap_create
xvt_pmap_destroy

xvt_pmap_create
 Create a New Pixmap

Summary

XVT_PIXMAP xvt_pmap_create(WINDOW parent,
 XVT_PIXMAP_FORMAT format, short width,
short height, XVT_PIXMAP_ATTR reserved)

WINDOW parent

Parent window.

XVT_PIXMAP_FORMAT format

Format for the new pixmap. Currently, this must be
XVT_PIXMAP_DEFAULT.

short width, short height

Width and height of the new pixmap, in pixels.

XVT_PIXMAP_ATTR reserved

Not currently used; pass NULL for this parameter.

Description

This function allocates memory and creates a pixmap. The pixmap’s
contents are not initialized; if you need to initialize the contents, call
xvt_dwin_clear.

The pixmap’s format matches the screen, and has a default color
palette. The following XVT functions accept a pixmap in addition to
a window:

xvt_dwin_clear
xvt_dwin_draw_aline
xvt_dwin_draw_arc
xvt_dwin_draw_icon
xvt_dwin_draw_image
xvt_dwin_draw_line
xvt_dwin_draw_oval
xvt_dwin_draw_pic
xvt_dwin_draw_pie
xvt_dwin_draw_pmap
xvt_dwin_draw_polygon
xvt_dwin_draw_polyline
xvt_dwin_draw_rect
xvt_dwin_draw_roundrect
xvt_dwin_draw_set_pos
xvt_dwin_draw_text
xvt_dwin_get_draw_ctools
xvt_dwin_get_font_metrics
xvt_dwin_get_text_width
xvt_dwin_scroll_rect
xvt_dwin_set_back_color
xvt_dwin_set_cbrush
xvt_dwin_set_clip
xvt_dwin_set_cpen
xvt_dwin_set_draw_ctools
xvt_dwin_set_draw_mode
xvt_dwin_set_font
xvt_dwin_set_fore_color
xvt_dwin_set_std_cbrush
xvt_dwin_set_std_cpen
xvt_vobj_get_client_rect
xvt_vobj_get_data
xvt_vobj_get_outer_rect
xvt_vobj_get_parent
xvt_vobj_get_type
xvt_vobj_set_data

Return Value

A valid XVT_PIXMAP if successful; NULL_WIN if unsuccessful (on
error).

Parameter Validity and Error Conditions

This function returns NULL_WIN if any of the following conditions are
true:

• width or height is less than zero

• The pixmap would exceed system limitations

See Also

XVT_PIXMAP_ATTR
XVT_PIXMAP
XVT_PIXMAP_FORMAT
xvt_dwin_*
xvt_image_create
xvt_pmap_destroy
xvt_vobj_get_client_rect
xvt_vobj_get_data
xvt_vobj_get_outer_rect
xvt_vobj_get_parent
xvt_vobj_get_type
xvt_vobj_set_data

The "Portable Images" chapter in theXVT Portability Toolkit Guide

Example

This code performs drawing operations on an off-screen
XVT_PIXMAP, then copies them to the WINDOW:

WINDOW window;
XVT_PIXMAP pmap;
CBRUSH brush;
RCT ▭
...
/* create pixmap for off-screen drawing */
pmap = xvt_pmap_create(window, XVT_PIXMAP_DEFAULT,

 50, 50, (XVT_PIXMAP_ATTR) NULL);
/* perform drawing operations on pixmap */
xvt_vobj_get_client_rect(pmap, &rect);
brush.pat = PAT_SOLID;
brush.color = COLOR_RED;
xvt_dwin_set_cbrush(pmap, &brush);
xvt_dwin_draw_rect(pmap, &rect);
brush.color = COLOR_GREEN;
xvt_dwin_set_cbrush(pmap, &brush);
xvt_dwin_draw_oval(pmap, &rect);
...
/* copy pixmap contents to window */
xvt_dwin_draw_pmap(window, pmap, &rect, &rect);
/* destroy pixmap */
xvt_pmap_destroy(pmap);

xvt_pmap_destroy
 Destroy a Pixmap

Summary

void xvt_pmap_destroy(XVT_PIXMAP pmap)

XVT_PIXMAP pmap

Pixmap to destroy.

Description

This function destroys a pixmap and frees all memory used by it.
Once this function returns, you should not attempt to use the window
any longer (not even to call xvt_vobj_get_data).

Note: Do not use xvt_mem_free to free memory used by a pixmap; instead,
use xvt_pmap_destroy.

See Also

XVT_PIXMAP
xvt_pmap_create

The "Portable Images" chapter in theXVT Portability Toolkit Guide

Example

See the example for xvt_pmap_create.

 xvt_notebk_*
 Notebook Functions

xvt_notebk_add_page
xvt_notebk_add_tab
xvt_notebk_create_face
xvt_notebk_create_face_def
xvt_notebk_create_face_res
xvt_notebk_enum_pages
xvt_notebk_get_face
xvt_notebk_get_front_page
xvt_notebk_get_num_pages
xvt_notebk_get_num_tabs
xvt_notebk_get_page_data
xvt_notebk_get_page_from_face
xvt_notebk_get_page_title
xvt_notebk_get_tab_image
xvt_notebk_get_tab_title
xvt_notebk_rem_page
xvt_notebk_rem_tab
xvt_notebk_set_page_data
xvt_notebk_set_page_title
xvt_notebk_set_front_page
xvt_notebk_set_tab_image
xvt_notebk_set_tab_title

xvt_notebk_add_page
 Add a Page to a Specific Tab in a Notebook Control

Summary

void xvt_notebk_add_page (WINDOW notebk, short tab_no,
short page_no, char * title, long page_data)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of tab to which to add a page.

short page_no

Position at which to add new page. If 0, it will be the first page.
The page is placed before the page whose index is equal to

page_no (origin 0). A page_no that is too large causes the page
to be added at the end.

char * title

Title of page.

long page_data

Contains any application data you wish to attach to a page.
Typically, this will be a pointer to some structure allocated from
the heap, cast into a long so that, later, your application can
retrieve the structure and look at it.

Description

This function adds a page to a notebook tab.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

• page_no is less than 0

Implementation Note

The multiple page mechanism allows one tab to have many pages.
Each page has a Face (XVT WINDOW). You must come up with a way
for the user to change pages for tabs with more than one page. For
example, you may provide "Next" and "Prev" buttons on each face
for tabs with multiple pages.

See Also

xvt_notebk_add_tab
xvt_notebk_create_face
xvt_notebk_create_face_def
xvt_notebk_create_face_res
xvt_notebk_get_page_data
xvt_notebk_set_page_data

xvt_notebk_add_tab
Add a Tab to a Notebook Control

Summary

void xvt_notebk_add_tab (WINDOW notebk, short tab_no,
char * title, XVT_IMAGE image)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of tab to add;Position at which to add new tab. If 0,
this will be the first tab. The tab is placed before the tab whose
index is equal to tab_no (origin 0). A tab_no that is too large
causes the tab to be added at the end.

char * title

Title of tab. If it is a NULL_STRING, the tab will have no title.

XVT_IMAGE image

Image to display in tab. If it is a NULL_IMAGE, the tab will have
no image.

Description

This function adds a tab to a notebook control. Each tab is analogous
to a divider in a notebook.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

Implementation Note

A tab may have multiple pages. The image is duplicated. The
application owns image and must destroy it when finished with it.

See Also

XVT_IMAGE
xvt_image_destroy
xvt_notebk_add_page

Example

anImage = xvt_image_read_bmp("window.bmp");
xvt_notebk_add_tab (aNotebk, 0, "Window", anImage);
xvt_notebk_add_page(aNotebk, 0, 0, "Page0",0L);
aFace = xvt_res_get_win_def(WINDOW_FACE);
xvt_notebk_create_face_def(aNotebk, 0, 0, aFace, EM_ALL,

WINDOW_FACE_eh, PTR_LONG(&aData->winFace));
xvt_res_free_win_def(aFace);
xvt_image_destroy(anImage);

xvt_notebk_create_face
Create a Face for a Page

Summary

WINDOW xvt_notebk_create_face (WINDOW notebk,
short tab_no, short page_no, EVENT_MASK mask,
EVENT_HANDLER face_eh, long app_data)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page to which face is being added.

short page_no

Page number for which to create face.

EVENT_MASK mask

Specifies which events should be sent to the window handler.
This is an OR'd combination of any of the EM_* constants. You
usually set EVENT_MASK mask to EM_ALL indicating that all
events should be sent to the window (no restriction). In some
conditions, you can restrict the events sent to the window. For
more details, see the "Event Masking" section of the "Events"
chapter in the XVT Portability Toolkit Guide.

EVENT_HANDLER face_eh

The event handler function; it receives all of the events for the
window.

long app_data

Contains any application data you wish to attach to the window
when it is created. Normally, it is a pointer to a data structure
cast into a long.

Description

This function creates a face for the page identified by page_no. A
face is simply an XVT child WINDOW. There is a one to one
relationship between a page and a face. The face is displayed when
the page it is associated with is selected.

Return Value

A WINDOW if successful; NULL_WIN if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

• page_no is less than 0

See Also

xvt_notebk_create_face_def
xvt_notebk_create_face_res

xvt_notebk_create_face_def
Create a Face with Controls from an Array of Data Structures

Summary

WINDOW xvt_notebk_create_face_def (WINDOW notebk,
short tab_no, short page_no, WIN_DEF * win_def_p,
EVENT_MASK mask, EVENT_HANDLER face_eh,
long app_data)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page to which face is being added.

short page_no

Page number for which to create face.

WIN_DEF * win_def_p

Points to an array of data structures. The first element in the
array defines the window itself. Subsequent elements of the
array define the controls or text edit objects contained within the
window. The last element of the array is a terminator whose
wtype field is set to W_NONE. EVENT_MASK mask specifies which
events are sent to the window event handler. This is an OR'd
combination of any of the EM_* constants. You usually set this
to EM_ALL indicating that all events would be sent to the
window. For more details, see the "Event Masking" section of
the "Events" chapter in the XVT Portability Toolkit Guide.

EVENT_HANDLER face_eh

The event handler function; it receives all of the events for the
window.

long app_data

Contains any application data you wish to attach to the window
when it is created. Normally, it is a pointer to a data structure
cast into a long.

Description

This function creates a face for the page identified by page_no. A
face is simply an XVT child WINDOW. There is a one to one
relationship between a page and a face. The face is displayed when
the page it is associated with is selected. For more information on
WIN_DEF structures see xvt_win_create_def.

Return Value

A WINDOW if successful; NULL_WIN if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control.

• tab_no is less than 0.

• page_no is less than 0.

See Also

xvt_notebk_create_face
xvt_notebk_create_face_res
xvt_win_create_def

xvt_notebk_create_face_res
Create a Face from a Resource File

Summary

WINDOW xvt_notebk_create_face_res (WINDOW notebk,
short tab_no, short page_no, int rid, EVENT_MASK mask,
EVENT_HANDLER face_eh, long app_data)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page to which face is being added.

short page_no

Page number for which to create face.

int rid

Resource ID corresponding to a window statement in your
XRC resource file. The face is created as if this resource were
loaded via xvt_res_get_win_def, and then instantiated via
xvt_notebk_create_face_def.

EVENT_MASK mask

Specifies which events are sent to the window event handler.
This is an OR'd combination of any of the EM_* constants. You
usually set this to EM_ALL indicating that all events would be
sent to the window. For more details, see the "Event Masking"
section of the "Events" chapter in the XVT Portability Toolkit
Guide.

EVENT_HANDLER face_eh

The event handler function; it receives all of the events for the
window.

long app_data

Contains any application data you wish to attach to the window
when it is created. Normally, it is a pointer to a data structure
cast into a long.

Description

This function creates a face for the page identified by page_no. A
face is simply an XVT child WINDOW. There is a one to one

relationship between a page and a face. The face is displayed when
the page it is associated with is selected.

Return Value

A WINDOW if successful; NULL_WIN if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control.

• tab_no is less than 0.

• page_no is less than 0.

• face_eh must be set to a valid function pointer.

• rid specifies a window resource in the XRC file.

See Also

xvt_notebk_create_face
xvt_notebk_create_face_def

xvt_notebk_enum_pages
Enumerate through All Pages and Apply the Function to Each Page

Summary

BOOLEAN xvt_notebk_enum_pages (WINDOW notebk,
XVT_NOTEBK_ENUM_PAGES func, long data)

WINDOW notebk

Window ID of notebook control.

XVT_NOTEBK_ENUM_PAGES func

Address of function to be called for each page.

long data

Application-defined data to pass to callback function.

Description

This function enumerates (i.e., invokes an application-supplied
callback function) the pages contained in the specified tab. It passes
the notebk, tab_no, page_no and page_data of each page, in
sequential order, to an application-defined callback function. It

continues until the last page is enumerated or until the callback
function returns FALSE.

Return Value

TRUE if successful; FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control.

• tab_no is less than 0.

• page_no is less than 0.

See Also

XVT_NOTEBK_ENUM_PAGES

xvt_notebk_get_face
Get the Face in the Notebk at Tab and Page

Summary

WINDOW xvt_notebk_get_face (WINDOW notebk, short tab_no,
short page_no)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of face.

short page_no

Page number of face.

Description

This function gets the face (XVT WINDOW) in the notebk at tab and
page.

Return Value

The WINDOW of the face if successful, or NULL_WIN if no such face
exists.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

• page_no is less than 0

See Also

xvt_notebk_get_front_page

xvt_notebk_get_front_page
Get the Current Front Page

Summary

WINDOW xvt_notebk_get_front_page (WINDOW notebk,
short * tab_no, short * page_no)

WINDOW notebk

Window ID of notebook control.

short * tab_no

Tab number of tab with the front page.

short * page_no

Page number of front page.

Description

This function gets the current front page. This is the page that is
currently on top and showing. It also returns the face (WINDOW) of the
front page.

Return Value

The WINDOW of the face if successful, or NULL_WIN unsuccessful.
tab_no and/or page_no may be set to -1 on error.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is a NULL pointer

• page_no is a NULL pointer

See Also

xvt_notebk_get_face

xvt_notebk_get_num_pages
Get the Number of Pages in the Specified Tab

Summary

short xvt_notebk_get_num_pages (WINDOW notebk, short
tab_no)

WINDOW notebk

Window ID of notebook control.

short * tab_no

Tab number for which to get the number of pages.

Description

This function gets the number of pages in a notebk at the tab
specified.

Return Value

The number of pages in the tab if successful, or 0 if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control.

• tab_no is less than 0.

See Also

xvt_notebk_get_num_tabs

xvt_notebk_get_num_tabs
Get the Number of Tabs in a Notebk

Summary

short xvt_notebk_get_num_tabs (WINDOW notebk)

WINDOW notebk

Window ID of notebook control.

Description

This function gets the number of tabs in a notebk.

Return Value

The number of pages in the tab if successful, or 0 if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

See Also

xvt_notebk_get_num_pages

xvt_notebk_get_page_data
Get the Data Associated with a Page and Tab in a Notebk

Summary

long xvt_notebk_get_page_data (WINDOW notebk,
short tab_no, short page_no)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number.

short page_no

Page number.

Description

This function gets the data associated with a page and tab in a
notebk. Frequently the page data is a pointer to a structure of your
own design. In this case, your application should cast the return
value from xvt_notebk_get_page_data into a pointer of the correct
type.

Return Value

long integer for application data associated with the page.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

See Also

xvt_notebk_set_page_data
xvt_notebk_add_page

xvt_notebk_get_page_from_face
Get the Page, Tab, and Notebk Associated with a Specific Face

Summary

void xvt_notebk_get_page_from_face (WINDOW face, WINDOW *
notebk, short * tab_no, short * page_no)

WINDOW face

Face whose page, tab, and notebk are to be retrieved.

WINDOW * notebk

Notebk that face is in.

short * tab_no

Tab that face is in.

short * page_no

Page that face is in.

Description

This function gets the page, tab, and notebk associated with a
specific face.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• face is NULL

• notebk is a NULL pointer

• tab_no is a NULL pointer

• page_no is a NULL pointer

See Also

xvt_notebk_get_face

xvt_notebk_get_page_title
Get the Page Title in a Notebk for Tab and Page

Summary

char * xvt_notebk_get_page_title (WINDOW notebk, short
tab_no, short page_no, char * buf, size_t size)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page.

short page_no

Page number for which to get title.

char * buf

Buffer to hold title.

size_t size

Maximum buffer capacity.

Description

This function gets the page title in a notebk for tab and page. The
maximum capacity (including the NULL-terminator) is size. The title
is truncated as needed to fit into buf.

Return Value

Pointer to buf if successful; NULL if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

• page_no is less than 0

• buf is a NULL pointer

• size is less than or equal to 0

See Also

xvt_notebk_get_tab_title
xvt_notebk_set_page_title
xvt_vobj_get_title

xvt_notebk_get_tab_image
Get the Image for a Tab in a Notebk

Summary

XVT_IMAGE xvt_notebk_get_tab_image (WINDOW notebk,
short tab_no)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number.

Description

This function gets the image for a tab in a notebk.

Return Value

Image displayed in tab if successful; NULL if unsuccessful or if tab
has no image.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

Implementation Note

This image belongs to the notebk control. Do not destroy it with
xvt_image_destroy.

See Also

xvt_notebk_set_tab_image

xvt_notebk_get_tab_title
Get the Title for a Tab in a Notebk

Summary

char * xvt_notebk_get_tab_title (WINDOW notebk,
short tab_no, char * buf, size_t size)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number.

char * buf

Buffer to hold title.

size_t size

Maximum buffer capacity.

Description

This function gets the title for a tab in a notebk. The maximum
capacity (including the NULL-terminator) is size. The title is
truncated as needed to fit into buf.

Return Value

Pointer to buf if successful; NULL if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

• buf is a NULL pointer

• size is less than or equal to 0

See Also

xvt_notebk_get_page_title
xvt_notebk_set_tab_title
xvt_vobj_get_title

xvt_notebk_rem_page
Remove a Page Attached to a Tab from the Notebk

Summary

void xvt_notebk_rem_page (WINDOW notebk, short tab_no,
short page_no)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page.

short page_no

Page number to remove.

Description

This function removes a page attached to a tab from the notebk. The
associated face will be destroyed.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

• page_no is less than 0

See Also

xvt_notebk_rem_tab

xvt_notebk_rem_tab
Remove a Tab in a Notebk

Summary

void xvt_notebk_rem_tab (WINDOW notebk, short tab_no)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number.

Description

This function removes a page from a tab in a notebk. It then removes
the tab specified. Each of the faces for the pages attached to the tab
will be destroyed.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

See Also

xvt_notebk_rem_page

xvt_notebk_set_page_data
Sets the Data for a Page

Summary

void xvt_notebk_set_page_data (WINDOW notebk, short
tab_no, short page_no, long data)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page.

short page_no

Page number for which to set data.

long data

Data to associate with the page.

Description

This function sets the data for a page under the specified tab for a
notebk.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control.

• tab_no is less than 0.

• page_no is less than 0.

See Also

xvt_notebk_get_page_data

xvt_notebk_set_page_title
Set the Title for a Page

Summary

void xvt_notebk_set_page_title (WINDOW notebk, short
tab_no, short page_no, char * title)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page.

short page_no

Page number for which to set title.

char * title

Title to be set.

Description

This function sets the title for a page under the specified tab for a
notebk.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control.

• tab_no is less than 0.

• page_no is less than 0.

See Also

xvt_notebk_set_tab_title

xvt_notebk_set_front_page
Set the Front Page

Summary

void xvt_notebk_set_front_page (WINDOW notebk, short
tab_no, short page_no)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number of page.

short page_no

Page number to set to the front.

Description

This function sets the front page associated with a tab in a notebk.
The face associated with the page will have the keyboard input
focus.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control.

• tab_no is less than 0.

• page_no is less than 0.

xvt_notebk_set_tab_image
Set the Tab Image

Summary

void xvt_notebk_set_tab_image (WINDOW notebk, short
tab_no, XVT_IMAGE image)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number for which to set image.

XVT_IMAGE image

Image to display in tab.

Description

This function duplicates image and replaces the existing tab image
for the tab specified in a notebk. The previously set image is
destroyed. The application owns image and must destroy it when
finished with it.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

• image is not NULL

See Also

XVT_IMAGE
xvt_image_destroy
xvt_notebk_add_tab

xvt_notebk_set_tab_title
Set the Tab Title

Summary

void xvt_notebk_set_tab_title (WINDOW notebk, short
tab_no, char * title)

WINDOW notebk

Window ID of notebook control.

short tab_no

Tab number for which to set image.

char * title

Title of tab. If it is a NULL_STRING, the tab will have no title.

Description

This function sets the tab title for the tab specified in a notebk.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• notebk is NULL or not a valid notebook control

• tab_no is less than 0

See Also

xvt_notebk_add_tab
xvt_notebk_set_page_title

xvt_print_*
 Printing Functions

xvt_print_close
xvt_print_close_page
xvt_print_create
xvt_print_create_win
xvt_print_destroy
xvt_print_get_next_band
xvt_print_is_valid
xvt_print_open
xvt_print_open_page
xvt_print_set_page_orient
xvt_print_set_page_size
xvt_print_start_thread

xvt_print_close
 Terminate Printing Manager

Summary

void xvt_print_close(void)

Description

This function, called after xvt_print_open, closes the printing
manager, allowing other applications to print. Both xvt_print_open
and xvt_print_close are normally called automatically by XVT’s
printing functions. However, if your application has successfully
called xvt_print_open, it should also call xvt_print_close.

See Also

xvt_print_open

"Printing" chapter in theXVT Portability Toolkit Guide

Example

See the example for xvt_print_open.

xvt_print_close_page
 Finish Printer Page

Summary

BOOLEAN xvt_print_close_page(PRINT_RCD *precp)

PRINT_RCD *precp

Pointer to the print record.

Description

This function must be called in a printing loop to finish printing the
current page. In a typical XVT printing loop, this function is called
when drawing to all bands of the page is complete. Normally, you
should call this function when xvt_print_get_next_band returns
NULL, then call xvt_print_open_page to start printing the next page.

precp points to a PRINT_RCD, which holds information about the
current print job, such as the page margins. Before the printing loop
begins, you must initialize the PRINT_RCD with xvt_print_create.
If you have an existing print record, you can check its validity with
xvt_print_is_valid.

If xvt_print_close_page returns FALSE, the print job has been
aborted, either by the user or because an error occurred. If this
happens, you should not abandon the printing loop, but should end
it gracefully by immediately calling
xvt_vobj_destroy(print_win). Be careful to call
xvt_vobj_destroy only within the print function whose address
was passed to xvt_print_start_thread.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

See Also

PRINT_RCD
xvt_print_get_next_band
xvt_print_open_page
xvt_print_start_thread
xvt_vobj_destroy

Example

See the example for xvt_print_start_thread.

xvt_print_create
 Get Printing Record

Summary

PRINT_RCD *xvt_print_create(int *sizep)

int *sizep

Size of the print record.

Description

This function allocates a "print record" of type PRINT_RCD. A print
record is an object that XVT uses to hold information about a page
setup and a print job. The internals of a print record are not available
to applications.

sizep is a pointer to an integer variable used to store the size of the
print record in bytes. When xvt_print_create returns, your
application should use this size in operations such as writing the
print record to disk or reading it back. Do not use the standard C
sizeof operator to determine the size of a print record because the
PRINT_RCD definition that appears in the XVT header file is a
fictitious data type.

After using the PRINT_RCD returned by this function, you must free
it with a call to xvt_print_destroy.

Once you have a print record, you can allow the user to change its
internal settings by calling xvt_dm_post_page_setup. In addition,
you can save the print record in a disk file and read it back later. If
you choose to do this, you must call xvt_print_is_valid to check
if the stored print record is valid for the current system
configuration.

Return Value

A pointer to a PRINT_RCD if successful; NULL if PRINT_RCD cannot be
allocated.

Parameter Validity and Error Conditions

If the PRINT_RCD cannot be allocated, XVT issues an error alert for
the user’s benefit.

Implementation Note

The internal format and size of print records varies between XVT
platforms, so a PRINT_RCD object cannot be passed between them (in
a document file, for example).

See Also

PRINT_RCD
xvt_dm_post_page_setup
xvt_print_destroy
xvt_print_is_valid

xvt_print_create_win
 Create Printing Window

Summary

WINDOW xvt_print_create_win(PRINT_RCD *precp,
 char *title)

PRINT_RCD *precp

Print record.

char *title

Optional print job title.

Description

This function begins a print job by returning the WINDOW onto which
printed output should be drawn. Conceptually, a print window
represents the printable area of a page of paper. No events are ever
generated for it. It has a complete set of drawing tools, but no cursor
or caret. The only drawing mode that’s supported is M_COPY.

precp must point to a PRINT_RCD that’s valid for the current printer.
For more information, see the topics PRINT_RCD,
xvt_print_create, and xvt_print_is_valid.

If there is an appropriate name for the print job, set title to point to
the NULL-terminated name. title can be used in dialog boxes and
print-spooler displays to identify the job. If there is no appropriate
name, set title to the empty string (""). title must not be NULL.

After the print window is successfully opened, use the functions
xvt_print_open_page, xvt_print_get_next_band, and
xvt_print_close_page to control the banding and paging of the

print job. When the print job is completed (perhaps after several
pages are output), the print window should be closed with a call to
xvt_vobj_destroy.

These are the limited set of functions that accept print windows:

the drawing and tool-manipulation functions
xvt_dwin_is_update_needed
xvt_vobj_destroy
xvt_vobj_get_client_rect
xvt_vobj_get_data
xvt_vobj_get_outer_rect
xvt_vobj_get_type
xvt_vobj_set_data

Note: You should only call xvt_print_create_win within the print
function whose address was passed to xvt_print_start_thread.

Return Value

A WINDOW object that identifies the print window if successful;
NULL_WIN if the window can’t be created.

Parameter Validity and Error Conditions

XVT returns NULL_WIN in one of two cases:

• An error could have occurred in the printing driver. In that
case, XVT will have already put up an error dialog. Your
application should not put up its own error dialog because
doing so is illegal in the print thread.

• The user might have cancelled the printing operation before
the print window was created. In that case, your application
should not put up an error dialog because the user already
knows that he or she cancelled the operation.

See Also

NULL_WIN
PRINT_RCD
xvt_print_close_page
xvt_print_close
xvt_print_create
xvt_print_get_next_band
xvt_print_is_valid
xvt_print_open_page
xvt_print_start_thread
xvt_vobj_destroy

The "Printing" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_print_start_thread.

xvt_print_destroy
 Free Print Record

Summary

void xvt_print_destroy(PRINT_RCD *precp)

PRINT_RCD *precp

Pointer to print record.

Description

This function frees the storage occupied by a PRINT_RCD allocated
with a call to xvt_print_create.

Usually, each document that your application may print should be
associated with a pointer to a PRINT_RCD. When the document is no
longer needed (e.g., when its window is destroyed), you should free
the PRINT_RCD along with the other memory associated with the
document. Of course, the document itself, which could contain a
copy of the PRINT_RCD, can continue to reside on disk.

Under no circumstances should you use a pointer to a PRINT_RCD as
an argument to the standard function free. Also, you should not call
xvt_print_destroy with a pointer that you got from malloc.

See Also

E_DESTROY
PRINT_RCD
XVT_CALLCONV*
xvt_print_create

Example

In this code fragment a document’s PRINT_RCD is freed when an
E_DESTROY event is received. Note that for safety’s sake, the pointer
is checked to ensure that it is non-NULL before it’s freed. It is then set
to NULL to avoid a dangling pointer.

long XVT_CALLCONV1 win_eh (WINDOW win, EVENT* ep)
{
static PRINT_RCD *print_rcd = NULL;
...

switch (ep->type) {
...
case E_DESTROY:
if (print_rcdp != NULL) {
xvt_print_destroy(print_rcdp);
print_rcdp = NULL;
}
...
break;
...
}

}

xvt_print_get_next_band
 Get Coordinates of next Printing Band

Summary

RCT *xvt_print_get_next_band(void)

Description

This function is called repeatedly for a single print page, and it
returns successive rectangular regions (or "bands") of the page to be
drawn by your application. The native print driver then takes care of
concatenating all of the bands into a page and sending them to the
printer.

xvt_print_get_next_band returns NULL to indicate that all of the
bands for a particular page have been processed. When drawing into
the print band for a page, your application acts as if it were drawing
the entire page. The window system takes care of clipping all
drawing to the current band.

However, if your application wishes to optimize its drawing, it may
examine the rectangle returned by xvt_print_get_next_band, or
alternatively, it may call xvt_dwin_is_update_needed to determine
which parts of the page need to be drawn for the current band. This
is analogous to the optimization that can be performed while
processing an E_UPDATE event.

You must call xvt_print_open_page before the first call to
xvt_print_get_next_band for a page. You must call

xvt_print_close_page after xvt_print_get_next_band returns
NULL.

Note: You should only call xvt_print_get_next_band within the print
function whose address was passed to xvt_print_start_thread.

Return Value

Pointer to a RCT if the band is to be drawn; NULL if no bands remain.

Implementation Note

Some platform printing drivers do not implement banding. In these
cases, xvt_print_get_next_band returns exactly one band, which
represents the entire page. In any case, your application should be
coded identically.

On XVT/Win32, banding printers can either print the page by
returning several small bands, or return a single band representing
the entire page in which text is to be drawn and multiple bands in
which graphics are to be drawn. Your application need not be
concerned about this except in that it must realize that all graphics
appear to be drawn on top of the text. For this reason, your
application should not attempt to clear the background of the print
window because that would obscure all of the text.

See Also

E_UPDATE
RCT
xvt_dwin_is_update_needed
xvt_print_close_page
xvt_print_create_win
xvt_print_open_page
xvt_print_start_thread

The "Printing" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_print_start_thread.

xvt_print_is_valid
 Check Print Record

Summary

BOOLEAN xvt_print_is_valid(PRINT_RCD *precp)

PRINT_RCD *precp

Pointer to print record.

Description

This function checks if the PRINT_RCD pointed to by precp is valid
for the current system configuration. You use this function after you
have read a PRINT_RCD that was saved with a document file, since the
current system configuration may not be the same as when the
PRINT_RCD was saved. Calling xvt_print_is_valid does not alter
the PRINT_RCD or transform an invalid print record to a valid one.

Note: You should call xvt_print_is_valid on a PRINT_RCD loaded from
a file before using PRINT_RCD either for printing or for calling the
function xvt_dm_post_page_setup.

Return Value

TRUE if the PRINT_RCD is valid; FALSE otherwise.

Implementation Note

On XVT/Mac, the current printer is set with the Chooser DA, and
xvt_print_is_valid checks a PRINT_RCD against the current
printer.

On XVT/Win32 the current printer is stored as part of the
PRINT_RCD, and xvt_print_is_valid checks if the printer exists on
the system, and if its settings are valid.

See Also

PRINT_RCD
xvt_dm_post_page_setup
xvt_print_create
xvt_print_destroy

The "Printing" chapter in the XVT Portability Toolkit Guide

Example

if (!xvt_print_is_valid(precp)){
int size;
xvt_print_destroy(precp);
precp = xvt_print_create(&size);

}

xvt_print_open
 Initialize Printing Manager

Summary

BOOLEAN xvt_print_open(void)

Description

This function opens the printing manager and returns TRUE if it is
successfully opened. You call this function to determine if the print
manager is accessible, and if there is an installed printer.

If successful, you should then close the print manager with a call to
xvt_print_close. Do not keep the print manager open indefinitely,
as doing so might prevent other applications from printing.

All of the XVT printing functions call xvt_print_open and
xvt_print_close automatically, so normally, you don’t have to call
them yourself.

Return Value

TRUE if successful; FALSE on error (access denied).

Implementation Note

xvt_print_open is only implemented on certain platforms. On other
platforms, it always returns TRUE.

On XVT/Mac, xvt_print_open prevents any other application from
accessing the printer until xvt_print_close is called. This is
necessary because of the way that the Mac Print Manager is
structured.

See Also

xvt_dm_post_error
xvt_print_close

The "Printing" chapter in the XVT Portability Toolkit Guide

Example

BOOLEAN
is_printer_installed()
{

if (!xvt_print_open()) {
xvt_dm_post_error("No printer is installed.");
return FALSE; }

xvt_print_close();
return TRUE;

}

xvt_print_open_page
 Start New Page

Summary

BOOLEAN xvt_print_open_page(PRINT_RCD *precp)

PRINT_RCD *precp

Pointer to print record.

Description

Your application can call xvt_print_open_page only within a print
loop to begin a new page.

Note: You should call xvt_print_open_page only within the print
function whose address was passed to xvt_print_start_thread.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

See Also

PRINT_RCD
xvt_print_start_thread
xvt_vobj_destroy

The "Printing" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_print_start_thread.

xvt_print_set_page_orient
Set the Orientation of the Printed Page

Summary

BOOLEAN xvt_print_set_page_orient(PRINT_RCD* precp,
XVT_PG_ORIENT pgorient)

PRINT_RCD* precp

Valid print record created with xvt_print_create.

XVT_PG_ORIENT pgorient

An enum describing the page orientation.

Description

This function is used to programmaticly set the page orientation of
the printed page.

Return Value

TRUE if the function is succesful; FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if precp is NULL.

See Also

XVT_PG_ORIENT
xvt_print_create
xvt_print_set_page_size

xvt_print_set_page_size
Change the Printer Paper Size

Summary

BOOLEAN xvt_print_set_page_size(PRINT_RCD* precp,
 XVT_PG_SIZE pgsize)

PRINT_RCD* precp

Valid print record.

XVT_PG_SIZE pgsize

The XVT_PG_SIZE structure contains information about the size of
the page, including the height, width, and units.

Description

This function allows you to programmatically change the printer
paper size. The paper size is set using the XVT_PG_SIZE structure,
which specifies the height, width, and units of the page. The
function uses an algorithm that will select the closest supported
printer paper size that matches the size sent in the pgsize argument.
If no supported paper size is found, the smallest supported paper size
that will contain the size passed. The width is the first criteria to
determine the smallest supported size. If the size passed is larger
than any supported size, then the largest supported size will be used.

Return Value

TRUE is returned if this function is succesful in setting a paper size;
otherwise FALSE.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• precp is NULL

• pgsize is NULL or negetive

See Also

XVT_PG_SIZE
xvt_print_set_page_orient

xvt_print_start_thread
 Start Printing

Summary

BOOLEAN xvt_print_start_thread
(BOOLEAN (* XVT_CALLCONV1 print_fcn)(void),
long data)

BOOLEAN (* XVT_CALLCONV1 print_fcn)(void)

Print function.

long data

Data for print_fcn.

Description

Threads are not available on all platforms. XVT instead gives you
the function xvt_print_start_thread, which creates a separate
thread for printing if it is supported, but not on other platforms.

In XVT all printing is bounded by calls to xvt_print_open and
xvt_print_close. In between these calls, you create a print window
with xvt_print_create_win and draw into it with drawing
functions. These drawing functions should be packaged into a single
application function. Your printing function is given to XVT via the
print_fcn argument to xvt_print_start_thread. XVT then calls
your function to print. Do not call your print function directly; it
should be called only from xvt_print_start_thread.

The print_fcn should use a normal sequence of printing commands
to print the document.The data parameter can be used to pass
information to print_fcn. Your printing function should return
TRUE if successful and FALSE on error. This return value from the
print_fcn is passed on to xvt_print_start_thread and returned
so that your application can process errors.

Note: These the things that you can and cannot do within your print
function:

• Print function cannot make any calls that would result in
events being dispatched to your application (e.g.,
xvt_*_create_*, xvt_dwin_update, xvt_vobj_destroy,
xvt_vobj_move, xvt_vobj_set_enabled, and
xvt_vobj_set_visible).

• The print thread is restricted to operating only on the print
window created from xvt_print_create_win.

• You cannot call any dialog including XVT standard dialogs
(e.g., xvt_dm_post_note or xvt_dm_post_error) from
within your print function; instead, your print function must
return FALSE indicating an error.

• Because your application’s event handlers can still receive
E_UPDATE events, drawing functions must be re-entrant. They
must be capable of printing your document and drawing it
into a window simultaneously. This means that critical data
necessary for drawing should be persistent.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

Implementation Note

To insure portability across all platforms, you should include the
macro XVT_CALLCONV1 in the prototypes and headers of all callback
functions used in XVT applications, including those of print_fcns.
This macro defines the linkage conventions used in building XVT
libraries.

See Also

XVT_CALLCONV*
xvt_print_close
xvt_print_create
xvt_print_create_win
xvt_print_destroy
xvt_print_open

The "Printing" chapter in the XVT Portability Toolkit Guide

Example

/* return TRUE for success */
BOOLEAN XVT_CALLCONV1 doc_print_fcn(long data)
{

PRINT_RCD *print_rcd;
WINDOW print_win;
BOOLEAN print_ok;
print_ok = FALSE;
print_rcd = (PRINT_RCD *) data;
if (print_rcd && xvt_print_is_valid(print_rcd))
{

print_win = xvt_print_create_win(print_rcd,
"Print Job");

if (print_win != NULL_WIN)
{

if (xvt_print_open_page(print_rcd))
{

RCT *rect;
rect = xvt_print_get_next_band();
while (rect != (RCT *) NULL)
{

draw_page(win, rect);
rect = xvt_print_get_next_band();

}
if (xvt_print_close_page(print_rcd))

print_ok = TRUE;
}
xvt_vobj_destroy(print_win);

}
}
return print_ok;

}
 ...

/* processing routine for menus */
case M_FILE_PRINT:

if (xvt_print_start_thread(doc_print_fcn,
(long) print_rcd) == FALSE)

xvt_dm_post_error("Printing Failed");
...

xvt_rect_*
xvt_rect_get_height
xvt_rect_get_pos
xvt_rect_get_width
xvt_rect_has_point
xvt_rect_intersect
xvt_rect_is_empty
xvt_rect_offset
xvt_rect_set
xvt_rect_set_empty
xvt_rect_set_height
xvt_rect_set_pos
xvt_rect_set_width

xvt_rect_get_height
 Get the Height of a Rectangle

Summary

short xvt_rect_get_height(RCT *rctp)

RCT *rctp

Pointer to the rectangle whose height is being inquired.

Description

This function returns the height (in pixels) of a rectangle, calculated
as rctp->bottom - rctp->top.

Return Value

A short that is the height of the rectangle.

Parameter Validity and Error Conditions

XVT issues an error if the pointer to the rectangle is NULL.

See Also

RCT
xvt_rect_set_height

The "Points and Rectangles" section of the "Coordinate Systems"
chapters in the XVT Portability Toolkit Guide

xvt_rect_get_pos
 Get the Position of a Rectangle

Summary

PNT* xvt_rect_get_pos(RCT *rctp, PNT *pos)

RCT *rctp

Pointer to the rectangle whose position is being inquired.

PNT *pos

Pointer to the upper-left corner of rectangle.

Description

This function returns the upper-left corner of a rectangle, which is
rctp->top - rctp->left, returned as a PNT*.

Return Value

A PNT* that is the position of the rectangle.

Parameter Validity and Error Conditions

XVT issues an error if either the pointer rctp or the pointer to pos is
NULL.

See Also

PNT
RCT
xvt_rect_set_pos

The "Points and Rectangles" section of the "Coordinate Systems"
chapter in the XVT Portability Toolkit Guide

xvt_rect_get_width
 Get the Width of a Rectangle

Summary

short xvt_rect_get_width(RCT *rctp)

RCT *rctp

Pointer to the rectangle whose width is being inquired.

Description

This function returns the width (in pixels) of a rectangle, calculated
as rctp->right - rctp->left.

Return Value

A short that is the width of the rectangle.

Parameter Validity and Error Conditions

XVT issues an error if the pointer to the rectangle is NULL.

See Also

RCT
xvt_rect_set_width

The "Points and Rectangles" section of the "Coordinate Systems"
chapter in the XVT Portability Toolkit Guide

xvt_rect_has_point
 Test Whether a Point is Inside a Rectangle

Summary

BOOLEAN xvt_rect_has_point(RCT *rctp, PNT pnt)

RCT *rctp

Pointer to the rectangle.

PNT pnt

Point whose position is being determined.

Description

This function determines whether the point pnt is inside the
rectangle pointed to by rctp. "Inside" is defined as follows:

(pnt.h < rctp->left) &&
(pnt.h < rctp->right) &&
(pnt.v >= rctp->top) &&
(pnt.v < rctp->bottom)

This function works with any coordinate system, provided the point
and the rectangle are in the same system.

Return Value

TRUE if the point specified by pnt is either on the border or inside the
rectangle; FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if the pointer to the rectangle is NULL.

Implementation Note

XVT assumes that mathematical coordinates lie between the pixels,
not on them.

See Also

PNT
RCT
xvt_rect_intersect

The "Points and Rectangles" section of the "Coordinate Systems"
chapter in the XVT Portability Toolkit Guide

xvt_rect_intersect
 Check if Rectangles Intersect

Summary

BOOLEAN xvt_rect_intersect(RCT *drctp, RCT *rctp1,
 RCT *rctp2)

RCT *drctp

Pointer to the destination rectangle, or NULL.

RCT *rctp1

First source rectangle.

RCT *rctp2

Second source rectangle.

Description

This function calculates the intersection of rctp1 and rctp2. If the
destination rectangle pointed to by drctp is not NULL, the
intersection rectangle is stored there. The rctp1 and rctp2
arguments must be pointers to RCT structures. The drcpt argument
can either be NULL or a pointer to an RCT structure.

Return Value

TRUE if the intersection of the two source rectangles is non-empty;
FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if either the pointer to rctp1 or the pointer to
rctp2 is NULL.

See Also

xvt_rect_has_point
xvt_rect_is_empty

The "Points and Rectangles" section of the "Coordinate Systems"
chapter in the XVT Portability Toolkit Guide

xvt_rect_is_empty
 Check for Empty Rectangle

Summary

BOOLEAN xvt_rect_is_empty(RCT *rctp)

RCT *rctp

Pointer to the rectangle whose boundaries are being checked.

Description

This function checks the boundaries of the given rectangle. An
empty rectangle does not necessarily mean that all four coordinates
are zero. An empty rectangle is one with a width and height of zero.

Return Value

TRUE if the area of the rectangle is empty; FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if the pointer to the rectangle is NULL.

See Also

RCT
xvt_rect_intersect
xvt_rect_set
xvt_rect_set_empty

The "Points and Rectangles" section of the "Coordinate Systems"
chapter in the XVT Portability Toolkit Guide

xvt_rect_offset
 Offset Rectangle’s Coordinates

Summary

void xvt_rect_offset(RCT *rctp, short dh, short dv)

RCT *rctp

Pointer to the rectangle.

short dh

Horizontal value to be added to both the left and right fields.

short dv

Vertical value to be added to both the top and bottom fields.

Description

This function offsets the RCT structure pointed to by rctp by adding
the value of the dh argument to both the left and right fields, and
by adding the value of the dv argument to both the top and bottom
fields. Thus, dh is the horizontal offset, and dv is the vertical offset.
The size of the rectangle doesn’t change.

The dh and dv arguments can be positive, negative, or zero.

Parameter Validity and Error Conditions

XVT issues an error if the pointer to the rectangle is NULL.

See Also

RCT
xvt_rect_set

The "Points and Rectangles" section of the "Coordinate Systems"
chapter in the XVT Portability Toolkit Guide

xvt_rect_set
 Set a Rectangle’s Coordinates

Summary

void xvt_rect_set(RCT *rctp, short left, short top,
 short right, short bottom)

RCT *rctp

Pointer to the rectangle whose coordinates are being set.

short left

Left coordinate.

short top

Top coordinate.

short right

Right coordinate.

short bottom

Bottom coordinate.

Description

This function sets the members of the RCT pointed to by rctp to the
values of the corresponding arguments. Any coordinate system can
be used.

Parameter Validity and Error Conditions

XVT issues an error if the pointer to the rectangle is NULL.

See Also

RCT
xvt_rect_is_empty
xvt_rect_set_empty

Example

RCT r;xvt_rect_set(&r, 100, 75, 300, 200);
xvt_vobj_move(win, &r);

xvt_rect_set_empty
 Set Rectangle to Empty

Summary

void xvt_rect_set_empty(RCT *rctp)

RCT *rctp

Pointer to the rectangle which is being "emptied."

Description

This function sets the rectangle’s height and width to zero, but it
does not change the rectangle’s position (i.e., its left and top
coordinates remain unchanged).

Parameter Validity and Error Conditions

XVT issues an error if the pointer to the rectangle is NULL.

See Also

RCT
xvt_rect_is_empty

The "Points and Rectangles" section of the "Coordinate Systems"
chapter in the XVT Portability Toolkit Guide

xvt_rect_set_height
 Set the Height of a Rectangle

Summary

BOOLEAN xvt_rect_set_height(RCT *rctp, short height)

RCT *rctp

Pointer to the rectangle whose height is being set.

short height

New height.

Description

This function sets the height (in pixels) of a rectangle by adjusting
the bottom coordinate.

Return Value

TRUE if succcessful; FALSE if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if the pointer to the rectangle is NULL.

See Also

RCT
xvt_rect_get_height
xvt_rect_set_width
xvt_vobj_move

The "Points and Rectangles" section of the "Coordinate Systems"
chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_vobj_move.

xvt_rect_set_pos
 Set the Position of a Rectangle

Summary

BOOLEAN xvt_rect_set_pos(RCT *rctp, PNT pos)

RCT *rctp

Pointer to the rectangle whose position is being set.

PNT pos

New upper-left position.

Description

This function sets the position of a rectangle by adjusting all four
coordinates. The width and height of the rectangle are unchanged.

Return Value

TRUE if successful; FALSE if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if the pointer to the rectangle is NULL.

See Also

PNT
RCT
xvt_vobj_move

The "Points and Rectangles" section of the "Coordinate Systems"
chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_vobj_move.

xvt_rect_set_width
 Set the Width of a Rectangle

Summary

BOOLEAN xvt_rect_set_width(RCT *rctp, short width)

RCT *rctp

Pointer to the rectangle whose width is being set.

short width

New width.

Description

This function sets the width (in pixels) of a rectangle by adjusting
the right coordinate.

Return Value

TRUE if successful; FALSE if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if the pointer to the rectangle is NULL.

See Also

RCT
xvt_rect_get_width
xvt_rect_set_height

The "Points and Rectangles" section of the "Coordinate Systems"
chapter in the XVT Portability Toolkit Guide

xvt_res_*
 Resource Management Functions

xvt_res_add_res
xvt_res_free_menu_tree
xvt_res_free_win_def
xvt_res_get_dlg_data
xvt_res_get_dlg_def
xvt_res_get_font
xvt_res_get_image
xvt_res_get_image_data
xvt_res_get_menu
xvt_res_get_menu_data
xvt_res_get_str
xvt_res_get_str_list
xvt_res_get_win_data
xvt_res_get_win_def
xvt_res_remove_res
xvt_res_use_res

xvt_res_add_res
Add a resource file to the application

Summary

XVT_RES xvt_res_add_res(char *res_name)

char *res_name

Resource's filename.

Description

This function opens the file specified by res_name and checks that
it is a valid native resource file. If valid, it opens the specified
resource file, makes it the current application resource file, and
returns an XVT_RES object.

The number of resource files that can be open simultaneously is
limited by native constraints. To use an already opened resource,
call the function xvt_res_use_res.

Return Value

A valid XVT_RES; NULL if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• The specified resource file cannot be opened

• res_name is NULL

• Platform specific resource problems occur

Implementation Note

On XVT/Win32, a resource is a valid DLL with bound resources.

On XVT/XM a resource is a valid UID file.

On XVT/Mac a resource is any file with a valid resource fork.

See Also
XVT_RES
xvt_res_use_res
xvt_res_remove_res

Example

XVT_RES newResource = (XVT_RES)NULL;

if (NULL == (newResource =

xvt_res_add_res("newres.dll")))
{

xvt_dm_post_note("Can't load newres.dll");
}

xvt_res_free_menu_tree
 Free MENU_ITEM Tree

Summary

void xvt_res_free_menu_tree(MENU_ITEM *mip)

MENU_ITEM *mip

MENU_ITEM tree to be freed.

Description

This function frees MENU_ITEM trees. When a pointer returned by
xvt_menu_get_tree or xvt_res_get_menu is no longer needed, it

must be freed with a call to xvt_res_free_menu_tree. In addition,
you can use this function to free MENU_ITEM trees that you have
allocated yourself, provided that you have followed the conventions
of xvt_menu_get_tree.

This function assumes that all memory (for MENU_ITEM arrays and
the text members) was allocated with xvt_mem_*alloc. You can
change the tree returned by xvt_menu_get_tree or
xvt_res_get_menu yourself and still legally call
xvt_res_free_menu_tree, provided that you allocate all new
memory with xvt_mem_*alloc.

Parameter Validity and Error Conditions

If mip is NULL, the severity error "Argument NULL" is issued.

See Also

MENU_ITEM
xvt_menu_get_tree
xvt_res_get_menu
menu and menubar XRC Statement

The "Menus" and the "Resources and XRC" chapters in the XVT
Portability Toolkit Guide

Example

See the example for xvt_menu_set_tree.

xvt_res_free_win_def
 Free WIN_DEF Array

Summary

void xvt_res_free_win_def(WIN_DEF *win_def_p)

WIN_DEF *win_def_p

Pointer to WIN_DEF structures to be freed.

Description

This function frees an array of WIN_DEF structures pointed to by the
win_def_p pointer. The array of WIN_DEF structures must adhere to
the format returned by xvt_res_get_win_def or
xvt_res_get_dlg_def. Typically, you call this function when you
are done using a WIN_DEF array that was allocated with either

xvt_res_get_win_def or xvt_res_get_dlg_def. In particular, this
function performs the following actions:

• It determines the number of elements in win_def_p, by
scanning for the first element whose wtype field is set to
W_NONE. This element is assumed to be the last element in the
array.

• It frees the text for each win_def_p[i].text field that is not
NULL.

• If win_def_p[0] describes a window,
xvt_res_free_menu_tree will be called with
win_def_p[0].v.win.menup if it is not NULL.

• It destroys the logical fonts embedded in the WIN_DEF array.

• It frees arrays of XVT_COLOR_COMPONENT.

• The entire array is freed; this function assumes that all
memory has been allocated with xvt_mem_*alloc functions

Parameter Validity and Error Conditions

No error checking is performed. However, the program might crash
if the pointers are invalid.

Caution: If this function encounters the same logical font ID, text string
pointer, or array of XVT_COLOR_COMPONENT more than one, it will
attempt to destroy (font IDs) or free (text and color components) for
each instance. This could result in an error. The application should
be careful to not call this function with a WIN_DEF array that is in this
state.

See Also

xvt_font_destroy
xvt_mem_alloc
xvt_res_get_dlg_def
xvt_res_get_win_def

xvt_res_get_*
 Get Resource File Functions

xvt_res_get_dlg_data
xvt_res_get_dlg_def
xvt_res_get_font
xvt_res_get_image
xvt_res_get_image_data
xvt_res_get_menu
xvt_res_get_menu_data
xvt_res_get_str
xvt_res_get_str_list
xvt_res_get_win_data
xvt_res_get_win_def

xvt_res_get_dlg_data
 Get User Data String for Dialog Control

Summary

char *xvt_res_get_dlg_data(int rid, int cid,
 int data_tag)

int rid

Specified dialog.

int cid

Control whose user data string is being retrieved.

int data_tag

User data strings to be retrieved.

Description

This function retrieves user data for the control whose control ID is
cid in the dialog specified by rid. User data is static text
information that is specified in an XRC resource script so that your
application can retrieve the information later.

If cid is zero, the user data for the dialog itself is returned instead of
the user data for a control. The user data must have been previously
specified in an XRC script for the dialog.

data_tag identifies which of the user data strings associated with
the specified item is to be retrieved. The XRC syntax allows the
specification of an arbitrary number of user data strings, and xrc
associates a sequentially numbered data_tag with each user data
string for a particular item. An application should use a data_tag of
zero to retrieve the first user data string for an item, one for the
second, etc.

XRC allows different types of objects to share rid values within the
same XRC file. Thus, it is legal to have a menu, dialog, and window
all possessing the rid 1000. In that case,
xvt_res_get_dlg_data(1000, 1, 0) returns a different user data
string than xvt_res_get_win_data(1000, 1, 0).

Note: In addition to user data, XVT gives you another means of
associating data with a dialog. Application data is information
attached dynamically via xvt_vobj_set_data to an object that is
instantiated at runtime. Application data generally holds state
information that is kept at runtime, while user data generally holds
additional static attributes for the dialog.

Return Value

A pointer to the user data string for the specified object if successful;
NULL if unsuccessful.

Since the user data string is allocated via xvt_mem_alloc, you must
free it using xvt_mem_free.

See Also

xvt_mem_alloc
xvt_mem_free
xvt_res_get_menu_data
xvt_res_get_win_data
xvt_vobj_get_data
xvt_vobj_set_data
dialog XRC Statement

The "Dialogs" and the "Resources and XRC" chapters in the XVT
Portability Toolkit Guide

xvt_res_get_dlg_def
 Load Dialog Definition from a Resource File

Summary

WIN_DEF *xvt_res_get_dlg_def(int rid)

int rid

Resource ID of the dialog definition.

Description

This function reads a dialog definition from a resource file, and
loads it into an array of WIN_DEF structures, which it allocates from
the heap. The returned array of WIN_DEF structures are appropriate as
an argument to xvt_dlg_create_def.

If all you want to do is load a dialog resource and instantiate it in one
step, then you should call xvt_dlg_create_res. Use
xvt_res_get_dlg_def when you need to modify the dialog
specification before instantiating it.

Return Value

A pointer to an array of WIN_DEF objects if successful; NULL if
unsuccessful (on error).

You must free the array of WIN_DEF structures, when it is no longer
needed, using xvt_res_free_win_def.

See Also

xvt_dlg_create_def
xvt_dlg_create_res
xvt_res_free_win_def
xvt_res_get_win_def
dialog XRC Statement

xvt_res_get_font
 Get an XVT_FNTID from a Resource File

Summary

XVT_FNTID xvt_res_get_font(int rid)

int rid

Resource ID of the font resource in the XRC file.

Description

This function retrieves the logical font whose resource ID is rid.
The returned XVT_FNTID is initialized to the values given in the
corresponding XRC font statement. You must call
xvt_font_destroy to remove this font from the system.

Return Value

XVT_FNTID if successful; NULL_FNTID if unsuccessful.

Parameter Validity and Error Conditions

If rid is not the resource ID of a valid logical font, XVT issues an
error.

See Also

xvt_dwin_set_font_*
xvt_font_create
xvt_font_destroy
font XRC Statement
font_map XRC statement

xvt_res_get_image
 Get an Image from a Resource File

Summary

XVT_IMAGE xvt_res_get_image(int rid)

int rid

Resource ID of the image.

Description

This function retrieves an image whose resource ID is rid, and then
returns it to the caller as an XVT_IMAGE object.

To destroy the object when you no longer need it, call
xvt_image_destroy.

Return Value

A valid XVT_IMAGE object if successful; NULL_IMAGE if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• rid does not refer to an image resource in the resource file

• Sufficient memory cannot be allocated for the image object

• The resource image refers to another file, and that file does
not exist, could not be read, or is not a valid image file

See Also

XVT_IMAGE
xvt_dwin_draw_image
xvt_image_destroy
image XRC Statement

The "Portable Images" and the "Resources and XRC" chapters in the
XVT Portability Toolkit Guide

xvt_res_get_image_data
 Get User Data String for an Image

Summary

char *xvt_res_get_image_data(int rid, int data_tag)

int rid

Resource ID of the image.

int data_tag

Identifies which of the user data strings associated with the
specified item are to be retrieved.

Description

This function retrieves user data for an image. User data is static
information that is stored in a resource file so that your application
can retrieve the information later. The user data for the resource
must have been previously specified in an XRC script for the image.

The XRC syntax allows the specification of an arbitrary number of
user data strings, and xrc associates a sequentially numbered
data_tag with each user data string for a particular item. An
application should use a data_tag of zero to retrieve the first user
data string for an item, one for the second, etc.

Return Value

A pointer to the user data string for the specified object if
successful;NULL if unsuccessful. Since the user data string is
allocated with xvt_mem_alloc, you must free it using
xvt_mem_free.

See Also

xvt_mem_alloc
xvt_mem_free
xvt_res_get_dlg_data
xvt_res_get_win_data
image XRC Statement

The "Portable Images" and the "Resources and XRC" chapters in the
XVT Portability Toolkit Guide

xvt_res_get_menu
 Load Menu Definition from a Resource File

Summary

MENU_ITEM *xvt_res_get_menu(int rid)

int rid

Resource ID of the menu.

Description

This function reads the menu description specified by rid, which
must be a menubar resource, from an application’s resources and
loads it into a hierarchy of MENU_ITEM arrays. A MENU_ITEM array is
allocated (with xvt_mem_alloc) for the menubar and each pull-

down menu and each submenu. The child pointers of these arrays are
linked to reflect the menu hierarchy. Each MENU_ITEM array has an
extra item at the end with the tag field set to zero.

You can modify this data structure if you want to change the menus,
but you must follow the rules documented in MENU_ITEM and in
"Menus" chapter in the XVT Portability Toolkit Guide. To have the
menu hierarchy attached to a window and displayed as that
window’s menu, you can call xvt_menu_set_tree.

Return Value

A pointer to a MENU_ITEM hierarchy if successful; NULL if the rid
cannot be found or storage could not be allocated for any of the
MENU_ITEM arrays (in this case, any menus that were allocated have
been freed already). If successful, you must free the menu hierarchy,
when it is no longer needed, using xvt_res_free_menu_tree.

See Also

MENU_ITEM
xvt_menu_get_tree
xvt_menu_set_tree
xvt_res_free_menu_tree
menu and menubar XRC Statement

The "Menus" and the "Resources and XRC" chapters in the XVT
Portability Toolkit Guide

Example

MENU_ITEM *menup;
menup = xvt_res_get_menu(MY_MENU_RID);
if(menup != NULL)

xvt_menu_set_tree(win, menup);

xvt_res_get_menu_data
 Get User Data String for Menu

Summary

char *xvt_res_get_menu_data(int rid,
 MENU_TAG menu_tag, int data_tag)

int rid

Resource ID of the menu.

MENU_TAG menu_tag

Identifies which of the menus or menu items associated with
rid are to be retrieved.

int data_tag

Identifies which of the user data strings associated with the
menu_tag item are to be retrieved.

Description

This function retrieves user data for the menu specified by
menu_tag, or a menu item, located in the rid menu resource.

The data_tag parameter identifies which of the user data strings
associated with the menu_tag item is to be retrieved. The XRC
syntax allows the specification of an arbitrary number of user data
strings, and xrc will associate a sequentially-numbered data_tag
with each user data string for a particular item. An application
should use a data_tag of zero to retrieve the first user data string for
an item, one for the second, etc.

Note: XRC allows different types of objects to share resource ID values
within the same XRC file. Thus, it is legal to have a menu, dialog,
and window all possessing the resource ID 1000. In that case,
xvt_res_get_menu_data(1000, 1, 0) returns a different user data
string than xvt_res_get_dlg_data(1000, 1, 0).

Return Value

A pointer to the user data string for the specified object if successful;
NULL if unsuccessful. The user data string is allocated via
xvt_mem_alloc, so you must free it using xvt_mem_free.

See Also

xvt_mem_free
xvt_res_get_dlg_data
xvt_res_get_win_data
menu and menubar XRC Statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

xvt_res_get_str
 Get String Resource

Summary

char *xvt_res_get_str(int rid, char *s, int sz_s)

int rid

Resource ID of the string.

char *s

Buffer into which the string is to be stored.

int sz_s

Maximum capacity of the buffer.

Description

This function gets the string resource specified by resource ID rid
and stores it into the string specified by s. The maximum capacity of
s including the terminating NULL is sz_s. The loaded string is
truncated and NULL-terminated as necessary to fit into s.

If you have a group of string resources that are stored together in
your resource file, you might want to use xvt_res_get_str_list
instead of xvt_res_get_str.

Return Value

Value of s argument if successful; NULL if unsuccessful (on error).

Implementation Note

On XVT/Mac, sequentially numbered string resources are not
accessible by xvt_res_get_str. Instead, use
xvt_res_get_str_list.

See Also

xvt_res_get_str_list
string XRC Statement

The "Multibyte Character Sets and Localization" and the "Resources
and XRC" chapters in the XVT Portability Toolkit Guide

Example

char buf[100];if (xvt_res_get_str(STR_TEST, buf,
sizeof(buf)) != NULL)
xvt_dm_post_note("%s", buf);

else
xvt_dm_post_error("Can’t read string resource %d.",

STR_TEST);

xvt_res_get_str_list
 Get List String Resources

Summary

SLIST xvt_res_get_str_list(int rid_first, int rid_last)

int rid_first

Resource ID of the first string.

int rid_last

Resource ID of the last string.

Description

This function gets resource strings with resource IDs from
rid_first through rid_last and returns them in the form of an
SLIST. The data word associated with each string is zero.

There must be exactly rid_last - rid_first + 1 string resources,
and their resource IDs must be consecutive.

Note: If you need only a single string, or if you need several strings with
non-consecutive IDs, you can call xvt_res_get_str instead.

Return Value

SLIST containing strings if successful; NULL if unsuccessful (on
error). When the returned SLIST is no longer needed, use
xvt_slist_destroy to free it.

Implementation Note

On XVT/Mac, the rid_first argument must be the first resource ID
of a given STR# resource group. The value of rid_last is ignored;
the resource must be of type STR#, which indicates a sequence of
string resources associated with a single resource ID that is specified
by the rid_first argument.

Also on XVT/Mac, sequential string resources specified in XRC are
only accessible through xvt_res_get_str_list, and not through
xvt_res_get_str.

See Also

xvt_res_get_str
xvt_slist_*

The "Multibyte Character Sets and Localization" and the "Resources
and XRC" chapters in the XVT Portability Toolkit Guide

Example

This code adds the 50 state names (located in XRC resources) to a
list box:

#define STR_STATES1 260
#define STR_STATES2 309
...
SLIST slist;
WINDOW lbox;
...
slist = xvt_res_get_str_list(STR_STATES1,

STR_STATES2);
xvt_list_clear(lbox);
if (!slist || !xvt_list_add(lbox, -1, slist))

xvt_dm_post_error("Can not list states.");
if (slist)

xvt_slist_destroy(slist);

xvt_res_get_win_data
 Get User Data String for Window Control

Summary

char *xvt_res_get_win_data(int rid, int cid,
int data_tag)

int rid

Resource ID of the window.

int cid

Control ID whose user data is being retrieved.

int data_tag

Identifies which of the user data strings associated with the
specified item is to be retrieved.

Description

This function retrieves user data for the control whose control ID is
cid in the window specified by rid. User data is static information
that is stored in a resource file so that your application can retrieve
the information later.

If cid is zero, then the user data for the window itself is returned
instead of the user data for the control. The user data for the control
must have been previously specified in an XRC script for the
window.

data_tag identifies which of the user data strings associated with
the specified item is to be retrieved. The XRC syntax allows the
specification of an arbitrary number of user data strings, and xrc will
associate a sequentially-numbered data_tag with each user data
string for a particular item. An application should use a data_tag of
zero to retrieve the first user data string for an item, one for the
second, etc.

XRC allows different types of objects to share rid values within the
same XRC file. Thus, it is legal to have a menu, dialog, and window
all possessing the rid 1000. In that case,
xvt_res_get_dlg_data(1000, 1, 0) returns a different user data
string than xvt_res_get_win_data(1000, 1, 0).

In addition to user data, XVT gives you another means of
associating data with a window. Application data is information that
is attached dynamically via xvt_vobj_set_data to an object that is
instantiated at runtime. Application data generally holds state
information that is kept at runtime, while user data generally holds
additional static attributes for the window.

Return Value

A pointer to the user data string for the specified object if successful;
NULL if unsuccessful. The user data string is allocated via
xvt_mem_alloc, so you must free it using xvt_mem_free.

See Also

xvt_mem_alloc
xvt_mem_free
xvt_res_get_dlg_def
xvt_res_get_menu_data
window XRC Statement

Th "Windows" and the "Resources and XRC" chapters in the XVT
Portability Toolkit Guide

xvt_res_get_win_def
 Load Window Definition from a Resource File

Summary

WIN_DEF *xvt_res_get_win_def(int rid)

int rid

Resource ID of the window definition.

Description

This function reads a window description from the resource file and
loads it into an array of WIN_DEF structures, which it allocates from
the heap. The returned array of WIN_DEF structures is appropriate as
an argument to xvt_win_create_def.

If all you want to do is load a window resource and instantiate it in
one step, then you should call xvt_win_create_res. Use
xvt_res_get_win_def when you need to modify the window
specification before instantiating it.

Return Value

A pointer to an array of WIN_DEF objects if successful; NULL if
unsuccessful. When it is no longer needed, the array of WIN_DEF
structures must be freed using xvt_res_free_win_def.

See Also

xvt_res_free_win_def
xvt_res_get_dlg_def
xvt_win_create_def
xvt_win_create_res
window XRC Statement

The "Windows" and the "Resources and XRC" chapters in the XVT
Portability Toolkit Guide

xvt_res_remove_res
Remove Resource from Use

Summary

BOOLEAN xvt_res_remove_res(XVT_RES res)

XVT_RES res

A valid XVT_RES. (Resource must have been previously added
with xvt_res_add_res.)

Description

This function removes a resource from the application. The resource
is closed, and all related memory is freed.

Return Value

TRUE is returned on success; FALSE on failure.

Parameter Validity and Error Conditions

A possible cause of a failure is that you are trying to delete the only
resource. There must always be at least one resource available to the
application.

See Also

XVT_RES
xvt_res_add_res
xvt_res_use_res

Example

/* Make sure resource is valid */
if (newResource) {

if (!xvt_res_remove_res(newResource))
xvt_dm_post_note("Failed to remove resource!");

}

xvt_res_use_res
Set Current Resource

Summary

XVT_RES xvt_res_use_res(XVT_RES res)

XVT_RES res

A valid XVT_Res.

Description

This function sets the current resource to be used. All resources will
be retrieved from this resource. The return value is the resource that
was current before the call to this function. This is convenient in the
sense that the first call to this function will return the startup
resource, which is usually the resource bound to the executable.

Return Value

The XVT_RES for the resource that was current before the call; NULL
if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• res is NULL

• Platform specific resource problems occur

See Also

XVT_RES
xvt_res_add_res
xvt_res_remove_res

Example

extern XVT_RES appResource;
XVT_RES prevResource = (XVT_RES)NULL;

/* Make sure resource is valid */
if (newResource) {

if ((prevResource = xvt_res_use_res(newResource)) ==
NULL) {

xvt_dm_post_note("Error setting new resource!");
}
/* If first time resource is changed from default */
elseif (appResource == NULL) {

/* Save default (startup) resources */
appResource = prevResource;

}
}

xvt_sbar_*
 Scrollbar Functions

xvt_sbar_get_pos
xvt_sbar_get_proportion
xvt_sbar_get_range
xvt_sbar_set_pos
xvt_sbar_set_proportion
xvt_sbar_set_range

xvt_sbar_get_pos
 Get Scrollbar’s Thumb Position

Summary

int xvt_sbar_get_pos(WINDOW win, SCROLL_TYPE t)

WINDOW win

Window whose scrollbar’s thumb position is to be retreived.

SCROLL_TYPE t

Scrollbar type, horizontal or vertical.

Description

This function returns the current position of the scrollbar’s thumb.
The value returned will fall within the range set by
xvt_sbar_set_range minus the amount set by
xvt_sbar_set_proportion.

If t is HSCROLL or VSCROLL, this function gets the thumb position of
the horizontal or vertical scrollbar on the frame of win.

If t is HVSCROLL, then win must be the WINDOW of a scrollbar control
in the client area of a window or dialog.

Return Value

The current position of a scrollbar’s thumb.

Parameter Validity and Error Conditions

XVT issues an error if:

• win is not a valid WINDOW

• win is a control of type WC_HSCROLL or WC_VSCROLL; and t is
not equal to HVSCROLL

• win is a WINDOW of type W_DOC or W_PLAIN (child window),
and has been created with the appropriate scrollbar control as
set by WSF_HSCROLL or WSF_VSCROLL; and t is not equal to
HSCROLL or VSCROLL

See Also

SCROLL_TYPE
xvt_sbar_get_proportion
xvt_sbar_set_pos
xvt_sbar_set_range

xvt_sbar_get_proportion
 Get Scrollbar’s Thumb Proportion

Summary

int xvt_sbar_get_proportion(WINDOW win, SCROLL_TYPE t)

WINDOW win

Window whose scrollbar’s thumb proportion to be retreived.

SCROLL_TYPE t

Scrollbar type, horizontal or vertical.

Description

This function returns the value set by xvt_sbar_set_proportion. If
no call to xvt_sbar_set_proportion has yet been made for that
scrollbar, this function returns zero.

If t is HSCROLL or VSCROLL, this function gets the proportion of the
horizontal or vertical scrollbar on the frame of win.

If t is HVSCROLL, then win is the WINDOW of a scrollbar control in the
client area of a window or dialog.

Return Value

The current scrollbar’s thumb proportion if successful.

Parameter Validity and Error Conditions

XVT issues an error if:

• win is not a valid WINDOW

• win is a control of type WC_HSCROLL or WC_VSCROLL; and t is
not equal to HVSCROLL

• win is a WINDOW of type W_DOC or W_PLAIN (child window),
and has been created with the appropriate scrollbar control as
set by WSF_HSCROLL or WSF_VSCROLL; and t is not equal to
HSCROLL or VSCROLL

See Also

SCROLL_TYPE
xvt_sbar_set_pos
xvt_sbar_set_proportion

xvt_sbar_get_range
 Get Scrollbar’s Range Values

Summary

void xvt_sbar_get_range(WINDOW win, SCROLL_TYPE t,
 int *minp, int *maxp)

WINDOW win

Window whose scrollbar’s range values are being retrieved.

SCROLL_TYPE t

Scrollbar type, horizontal or vertical.

int *minp

Minimum range value.

int *maxp

Maximum range value.

Description

This function gets the current minimum and maximum range values
for a scrollbar, as set by a preceding call to xvt_sbar_set_range,
and stores them into the integers pointed to by minp and maxp,
respectively.

If t is HSCROLL or VSCROLL, this function gets the minimum and
maximum of the range of the horizontal or vertical scrollbar on the
frame of win.

If t is HVSCROLL, then win is the WINDOW of a scrollbar control in the
client area of a window or dialog.

If no previous call to xvt_sbar_set_range has been made for this
scrollbar, then the minimum and maximum values are undefined.

Parameter Validity and Error Conditions

XVT issues an error if:

• win is not a valid WINDOW

• win is a control of type WC_HSCROLL or WC_VSCROLL; and t is
not equal to HVSCROLL

• win is a WINDOW of type W_DOC or W_PLAIN (child window),
and has been created with the appropriate scrollbar control as
set by WSF_HSCROLL or WSF_VSCROLL; and t is not equal to
HSCROLL or VSCROLL

• minp or maxp are NULL.

See Also

SCROLL_TYPE
xvt_sbar_set_range

xvt_sbar_set_pos
 Set Position of a Scrollbar’s Thumb

Summary

void xvt_sbar_set_pos(WINDOW win, SCROLL_TYPE t,
 int pos)

WINDOW win

Window whose scrollbar’s thumb position is being set.

SCROLL_TYPE t

Scrollbar type, horizontal or vertical.

int pos

Position being set for the scrollbar’s thumb. The position has to
fall within the previously set range.

Description

This function sets the position of the scrollbar’s thumb. The value of
pos must fall within the range set by a previous call to
xvt_sbar_set_range minus the amount set by
xvt_sbar_set_proportion.

If t is HSCROLL or VSCROLL, this function sets the thumb position of
the horizontal or vertical scrollbar on a regular or child window.

If t is HVSCROLL, then win is the WINDOW of a scrollbar control in the
client area of a window or dialog.

Parameter Validity and Error Conditions

XVT issues an error if:

• win is not a valid WINDOW

• win is a control of type WC_HSCROLL or WC_VSCROLL; and t is
not equal to HVSCROLL

• win is a WINDOW of type W_DOC or W_PLAIN (child window),
and has been created with the appropriate scrollbar control as
set by WSF_HSCROLL or WSF_VSCROLL; and t is not equal to
HSCROLL or VSCROLL.

• pos is outside the previously set range and proportion

See Also

*SCROLL Values for SCROLL_TYPE
xvt_sbar_get_pos
xvt_sbar_set_proportion
xvt_sbar_set_range

xvt_sbar_set_proportion
 Set Scrollbar’s Thumb Proportion

Summary

void xvt_sbar_set_proportion(WINDOW win,
 SCROLL_TYPE t, int proportion)

WINDOW win

Window whose scrollbar’s thumb proportion is being set.

SCROLL_TYPE t

Scrollbar type, horizontal or vertical.

int proportion

Thumb proportion; it must be >= 0.

Description

This function sets the scrollbar’s thumb proportion. Conceptually,
the thumb proportion is the part of a document or drawing that is
visible in the viewable area, compared to the total size of the
document. The word "proportion" might be misleading--it should be
thought of as a sub-range.

If t is HSCROLL or VSCROLL, this function sets the thumb proportion
of the horizontal or vertical scrollbar on a regular or child window.

If t is HVSCROLL, then win is the WINDOW of a scrollbar control in the
client area of a window or dialog.

proportion is a value between zero and the scroll range of the
scrollbar as set by xvt_sbar_set_range. For example, if the scroll
range were set to (-100, 100), then legal values of proportion would
be between zero and 200.

The usable range of the scrollbar decreases by the size of the scroll
proportion. In general, if the range is set to (range_min, range_max)

and the proportion is set to proportion, then the range of possible
scrollbar positions is from range_min to (range_max proportion).

For example, if the range were set to (-100, 100) and the proportion
were set to 50, then the range of possible scrollbar positions would
be (-100, 50).

Parameter Validity and Error Conditions

XVT issues an error if:

• win is not a valid WINDOW

• win is a control of type WC_HSCROLL or WC_VSCROLL; and t is
not equal to HVSCROLL

• win is a WINDOW of type W_DOC or W_PLAIN (child window),
and has been created with the appropriate scrollbar control as
set by WSF_HSCROLL or WSF_VSCROLL; and t is not equal to
HSCROLL or VSCROLL

• The thumb proportion exceeds the difference of the
maximum and minimum range values of the scrollbar as set
by xvt_sbar_set_range.

See Also

SCROLL_TYPE
xvt_sbar_get_proportion
xvt_sbar_set_pos
xvt_sbar_set_range

xvt_sbar_set_range
 Set a Scrollbar’s Range

Summary

void xvt_sbar_set_range(WINDOW win, SCROLL_TYPE t,
 int min, int max)

WINDOW win

Window whose scrollbar’s range is being set.

SCROLL_TYPE t

Scrollbar type, horizontal or vertical.

int min

Minimum range value.

int max

Maximum range value.

Description

This function sets a scrollbar’s minimum and maximum range
values to min and max, respectively. On some platforms, this call
leaves the thumb position undefined, so you must follow it with a
call to xvt_sbar_set_pos.

If t is HSCROLL or VSCROLL, this function sets the range of the
horizontal or vertical scrollbar on a regular or child window.

If t is HVSCROLL, then win is the WINDOW of a scrollbar control in the
client area of a window or dialog.

The range of allowable scrollbar thumb positions is the range set by
this function, reduced by the proportion set by
xvt_sbar_set_proportion. In general, if the range is set to
(range_min, range_max) and the proportion is set to proportion,
then the range of possible scrollbar positions will be from
range_min to (range_max - proportion).

Parameter Validity and Error Conditions

XVT issues an error if:

• win is not a valid WINDOW

• win is a control of type WC_HSCROLL or WC_VSCROLL; and t is
not equal to HVSCROLL

• win is a WINDOW of type W_DOC or W_PLAIN (child window),
and has been created with the appropriate scrollbar control as
set by WSF_HSCROLL or WSF_VSCROLL; and t is not equal to
HSCROLL or VSCROLL

Implementation Note

Ranges and positions of scrollbars are limited to -32,768 to +
32,767.

See Also

*SCROLL Values for SCROLL_TYPE
xvt_sbar_get_range
xvt_sbar_set_pos
xvt_sbar_set_proportion

xvt_scr_*
 Screen Objects

xvt_scr_beep
xvt_scr_get_focus_topwin
xvt_scr_get_focus_vobj
xvt_scr_hide_cursor
xvt_scr_launch_browser
xvt_scr_list_wins
xvt_scr_set_busy_cursor
xvt_scr_set_focus_vobj

xvt_scr_beep
 Beep at User

Summary

void xvt_scr_beep(void)

Description

This function makes a sound by ringing a bell or playing a tone
through a speaker.

xvt_scr_get_focus_topwin
 Get Top-Level Window with the Focus

Summary

WINDOW xvt_scr_get_focus_topwin(void)

Description

This function returns the XVT top-level window (not a dialog or that
has the keyboard focus, or contains a control or child window that
has the keyboard focus (i.e., the "active" top-level window). This
function is used when an application needs to know which top-level
window is currently active. For example, if your application keeps a
menu containing a list of all of the top-level windows, it might want
to check the currently active one on that menu.

A top-level window can become active by several means, including
the user clicking on a titlebar or the client area of the window.
Depending on the platform, the user can activate a window by
choosing the window from a "task list" maintained by the operating
system. In addition, your application can call
xvt_scr_set_focus_vobj on the top-level window or some control
or child window contained in it.

Note: If you want to find out which window has the focus (including child
windows, controls, and dialogs), you should call
xvt_scr_get_focus_vobj instead of calling
xvt_scr_get_focus_topwin.

Return Value

The top-level window that has the focus if successful; NULL_WIN if
no XVT top-level window has the focus.

See Also

WINDOW
xvt_scr_get_focus_vobj
xvt_scr_set_focus_vobj
xvt_vobj_is_focusable

xvt_scr_get_focus_vobj
 Get Window with Focus

Summary

WINDOW xvt_scr_get_focus_vobj(void)

Description

This function reports which XVT window, if any (including dialogs,
child windows, and controls), has the focus. Print windows and
XVT_PIXMAPs can never have focus.

A window can become active by several means, including the user
clicking on the titlebar, on the control, or on the client area of the
window. The user can change the focus for a control by using the
platform traversal key. On some platforms, the user can activate a
window by choosing the window from a "task list" maintained by
the window system. In addition, your application can call
xvt_scr_set_focus_vobj.

There are many situations in which you will want to know which
window has the focus. Keeping track of the focus is especially
important when performing navigation among windows using the
keyboard.

Return Value

WINDOW of the XVT window, dialog, or control that has the focus if
successful; NULL_WIN if no XVT window has the focus.

Implementation Note

This function will never return the SCREEN_WIN, but on XVT/Win32,
it can return the TASK_WIN.

See Also

SCREEN_WIN
TASK_WIN
WINDOW
xvt_scr_set_focus_vobj
xvt_vobj_is_focusable

xvt_scr_hide_cursor
 Temporarily Hide Cursor

Summary

void xvt_scr_hide_cursor(void)

Description

This function makes the mouse cursor disappear. As soon as the user
moves the mouse, the cursor reappears automatically.

It is good to call this function when the user starts typing text, so that
the mouse cursor doesn’t interfere with the blinking caret or with
what the user is typing.

Implementation Note

This function has no effect on XVT/XM.

See Also

xvt_scr_set_busy_cursor
xvt_win_get_cursor
xvt_win_set_cursor

xvt_scr_launch_browser
Launch the OS Default Web Browser

Summary

BOOLEAN xvt_scr_launch_browser(const char *xrc)

Description

This function launches the default web browser as specified by the
platform's Internet configuration preferences. The xrc is a NULL-
terminated string containing the XRC to be displayed once the
browser has been launched. The XRC must be fully qualified and
adhere to composition standards, i.e. 'file:///C:/mydoc.htm' or 'http:/
/www.xvt.com'.

To send a new XRC once the browser has been launched, calling
xvt_scr_launch_browser with a new XRC will update the browser
with the new XRC.

Return Value

TRUE if successful, otherwise FALSE.

Parameter Validity and Error Conditions

XVT issues an error if:

• xrc is NULL

See Also

WC_HTML for WIN_TYPE
xvt_html_get_xrc
xvt_html_set_xrc

xvt_scr_list_wins
 List Window Titles

Summary

SLIST xvt_scr_list_wins(void)

Description

This function gets an SLIST containing the titles of top-level
windows and dialogs.

The data word in the SLIST associated with each window is its
WINDOW object. This may be used as an argument to
xvt_vobj_get_type to determine whether the window is an
ordinary XVT window, a modal dialog, or a modeless dialog.

Return Value

SLIST containing titles if successful; NULL on error (out of memory).
Data associated with each item is the WINDOW. You must free the
SLIST created, when no longer needed, using xvt_slist_destroy.

Implementation Note

If the application is running on XVT/Win32 and the attribute
ATTR_WIN_PM_DRAWABLE_TWIN has been set, the task window is
included in the list.

Modal dialogs may have titles as defined in resource scripts. On
some platforms, the titles of modal dialogs might not be visible on
the screen.

See Also

SLIST
WINDOW
xvt_slist_destroy
xvt_vobj_get_type
xvt_win_enum_wins
xvt_win_list_wins

Example

This code adds the titles of all windows to a list box:

SLIST slist;
WINDOW lbox;
...
slist = xvt_scr_list_wins();
xvt_list_clear(lbox);
if (slist)
{

int i, count;
count = xvt_slist_count(slist);
for (i = 0; i < count; i++)
{

char *title;
WINDOW window;
title = xvt_slist_get_elt(slist, i, &window);
switch(xvt_vobj_get_type(window))
{
case W_DOC:
case W_PLAIN:
case W_DBL:
case W_NO_BORDER:

xvt_list_add(lbox, -1, title);
break;

default:
break;

}
}
xvt_slist_destroy(slist);

}

xvt_scr_set_busy_cursor
 Change Cursor to Waiting Shape

Summary

void xvt_scr_set_busy_cursor(void)

Description

This function changes the CURSOR to a shape that indicates waiting
(e.g., wristwatch, hourglass, etc.). The cursor remains that way until
your application allows XVT to process the next event--either by
returning from the current event handler or by making a call to XVT
that causes events to be processed (such as creating a dialog or
window). Your application should call xvt_scr_set_busy_cursor
just before starting a long unbroken operation to let the user know
that the computer hasn’t crashed. When your long operation is done,
you return from your event handler, and the cursor is restored.

Examples of long operations are reformatting a document, reading a
document from a file, saving a document to a file, or recalculating a
spreadsheet.

Do not use xvt_win_set_cursor as a substitute for
xvt_scr_set_busy_cursor, for the following reasons:

• xvt_win_set_cursor operates on a particular window and
the cursor does not change until the cursor enters that window

• xvt_win_set_cursor might not take effect immediately if
the mouse cursor is not actually over the window

However, you should use xvt_win_set_cursor if you are writing an
application where one window is performing a long operation while
other windows remained active. In this case, you would use
xvt_win_set_cursor to set the mouse pointer to CURSOR_WAIT for a
particular window. This technique is somewhat advanced, and
requires the use of xvt_app_process_pending_events or
xvt_timer_create to create a multithreaded application.

Implementation Note

On XVT/XM, this function dispatches all update events to assure
that the display is complete before the long application is started.
During the xvt_scr_set_busy_cursor display, input into all
application windows and dialogs is disabled.

See Also

CURSOR_* Options
xvt_app_process_pending_events
xvt_scr_hide_cursor
xvt_timer_create
xvt_win_get_cursor
xvt_win_set_cursor

xvt_scr_set_focus_vobj
 Set Window Focus

Summary

void xvt_scr_set_focus_vobj(WINDOW win)

WINDOW win

Window, dialog, or control whose focus is being set.

Description

This function sets the keyboard input focus to a window, dialog, or
control.

A typical use of this function is to implement navigation between
controls in a window. To do that, you would respond to a navigation
keystroke (tab and/or arrow keys on an E_CHAR event) by calling
xvt_scr_set_focus_vobj on the next control in the navigation
sequence.

Parameter Validity and Error Conditions

If the WINDOW or any of its ancestors are not visible or enabled, XVT
issues a warning.

Implementation Note

This function can be used to change the focus between controls in
either a window or dialog. However, setting the focus to controls of
type WC_TEXT, WC_ICON, and WC_GROUPBOX is not permitted, and
would not have meaning anyway. Calling this function during an
E_FOCUS event results in undefined behavior on some platforms.

Normally, TASK_WIN is not a valid window. However, on XVT/
Win32, you can set the non-portable attribute
ATTR_WIN_PM_DRAWABLE_TWIN before calling xvt_app_create. In
that case, TASK_WIN is a valid window for this function.

See Also

E_CHAR
E_FOCUS
TASK_WIN
WINDOW
xvt_app_create
xvt_scr_get_focus_vobj
xvt_vobj_is_focusable
xvt_vobj_raise

xvt_slist_*
 List of Tagged Strings

xvt_slist_add_at_elt
xvt_slist_add_at_pos
xvt_slist_add_sorted
xvt_slist_count
xvt_slist_create
xvt_slist_debug
xvt_slist_destroy
xvt_slist_get
xvt_slist_get_data
xvt_slist_get_elt
xvt_slist_get_first
xvt_slist_get_next
xvt_slist_is_valid
xvt_slist_rem

xvt_slist_add_at_elt
 Add String or SLIST to SLIST

Summary

BOOLEAN xvt_slist_add_at_elt(SLIST x, SLIST_ELT e,
 char *sx, long data)

SLIST x

SLIST on which to operate.

SLIST_ELT e

Element on which to operate.

char *sx

String or SLIST to add.

long data

Data to associate with the new item.

Description

This function adds a new element to the SLIST x. The NULL-
terminated string sx gives the string part of the element, and data
gives its data. This function positions the new element after the e

element, or at the end of the list if e is NULL. Memory is
automatically allocated for the new element, and the contents of the
string sx is copied into it.

The sx argument can also point to an existing SLIST, which is
spliced into the list. In this case, data is ignored, XVT steals the
contents of the SLIST, and sx is left pointing to an empty list. To
release the empty list, call xvt_slist_destroy on the sx pointer
after the call to xvt_slist_add_at_elt.

The SLIST x must already exist. You can create a fresh one using
xvt_slist_create.

If sx is a string, its first character must not be equal to 255. (This is
how SLISTs are distinguished from strings.)

Note: This function does not allow you to add elements to the beginning of
an SLIST. However, you can use xvt_slist_add_at_pos to add a
new element to an SLIST at a given position.

Return Value

TRUE if successful; FALSE if unsuccessful (out of memory).

See Also

SLIST
xvt_slist_add_at_pos
xvt_slist_create
xvt_slist_destroy

The "Utilities" chapter in the XVT Portability Toolkit Guide

Example

SLIST x;if ((x = xvt_slist_create()) == NULL)
 .../* error handling not shown */

 if (!xvt_slist_add_at_elt(x, NULL, "element one", 1001))
 .../* error handling not shown */

 if (!xvt_slist_add_at_elt(x, NULL, "element two", 2001))
 .../* error handling not shown */

xvt_slist_add_at_pos
 Add to an SLIST at a Given Position

Summary

BOOLEAN xvt_slist_add_at_pos(SLIST x, int index,
 char *sx, long data)

SLIST x

SLIST on which to operate.

int index

Element position index.

char *sx

String or SLIST to add.

long data

Data to associate with new item.

Description

This function adds a new element to the SLIST x. The NULL-
terminated string sx gives the string part of the element, and data
gives its data. The function adds its new element (sx) before the
element indexed by index in the SLIST x. Memory is automatically
allocated for the new element, and the contents of the string sx are
copied into it.

The sx argument can also point to an existing SLIST, which is
spliced into the list. In this case, data is ignored, XVT steals the
contents of the SLIST, and sx is left pointing to an empty list. To
release the empty list, call xvt_slist_destroy on the sx pointer
after the call to xvt_slist_add_at_pos.

The SLIST x must already exist. You can create a fresh one with
xvt_slist_create.

If sx is a string, its first character must not be equal to 255. (This is
how SLISTs are distinguished from strings.)

Note: This function does allow you to add elements to the beginning of an
SLIST by specifying index = 0. If index is greater than the index of
the last element in x, the string, or the SLIST, sx is added to the end
of SLIST x.

Return Value

TRUE on success; FALSE if unsuccessful (out of memory).

See Also

SLIST
xvt_slist_add_at_elt
xvt_slist_create
xvt_slist_destroy

The "Utilities" chapter in the XVT Portability Toolkit Guide

Example

SLIST x;if ((x = xvt_slist_create()) == NULL)
 .../* error handling not shown */

 if (!xvt_slist_add_at_elt(x, NULL, "element two", 2001))
 .../* error handling not shown */

 if (!xvt_slist_add_at_pos(x, 0, "element one", 1001))
 .../* error handling not shown */

xvt_slist_add_sorted
 Add String to Sorted SLIST

Summary

BOOLEAN xvt_slist_add_sorted(SLIST x, char *s,
 long data, BOOLEAN unique, BOOLEAN case_sensitive)

SLIST x

SLIST on which to operate.

char *s

String to be added.

long data

Data to associate with the new item.

BOOLEAN unique

If TRUE, and if an element with a matching string is already
present, the new element is not added.

BOOLEAN case_sensitive

Determines whether the position comparison is case-sensitive.

Description

This function adds a new element to the SLIST x. The string part of
the element is given by the NULL-terminated string s, and its data is
given by data. The new element is positioned in lexically increasing
order with respect to the elements already in the SLIST. Memory is
automatically allocated for the new element and the contents of the
string s are copied into it.

The comparison to determine the position for the new element is
case-sensitive only if case_sensitive is TRUE. If unique is TRUE the
new element is not added only if an element with a matching string
is already present (the case sensitivity of this match is also
determined by case_sensitive). The function set by the attribute
ATTR_COLLATE_HOOK affects the sorting of items added to the SLIST.

The SLIST x must already exist. You can create a fresh one using
xvt_slist_create.

Return Value

TRUE on success; FALSE on error (out of memory).

See Also

ATTR_COLLATE_HOOK
SLIST
xvt_slist_create

The "Utilities" chapter in the XVT Portability Toolkit Guide

Example

SLIST x;
char *s;
long n;if ((x = xvt_slist_create()) == NULL)

 .../* error handling not shown */
while ((s = get_data(&n)) != NULL)

if (!xvt_slist_add_sorted(x, s, n, FALSE, TRUE))
 .../* error handling not shown */

xvt_slist_count
 Count Elements in SLIST

Summary

int xvt_slist_count(SLIST x)

SLIST x

SLIST on which to operate.

Description

This function counts the number of elements in the SLIST x.

Return Value

Number of elements (0 if x is NULL or empty).

See Also

SLIST

The "Utilities in the XVT Portability Toolkit Guide

Example

See the example for xvt_scr_list_wins.

xvt_slist_create
 Create New SLIST

Summary

SLIST xvt_slist_create(void)

Description

This function allocates a new SLIST with no elements.

Some XVT functions (such as xvt_fsys_list_files) also allocate
SLISTs by calling xvt_slist_create themselves.

Return Value

SLIST if successful; NULL on error (out of memory). You must free
the created SLIST with xvt_slist_destroy.

See Also

SLIST
xvt_slist_destroy

The "Utilities" chapter in the XVT Portability Toolkit Guide

Example

SLIST x;if ((x = xvt_slist_create()) == NULL)
 .../* error handling not shown */

xvt_slist_destroy (x);

xvt_slist_debug
 Append Dump of SLIST to File

Summary

void xvt_slist_debug(SLIST x)

SLIST x

SLIST on which to operate.

Description

This function dumps a representation of SLIST x to the "debug" file
(using function xvt_debug_printf). Each string and its associated
data is shown. If the SLIST x parameter is NULL, this is noted in the
debug file.

See Also

ATTR_DEBUG_FILENAME
SLIST
xvt_debug_printf

The "Utilities" chapter in the XVT Portability Toolkit Guide

Example

SLIST x;if ((x = xvt_scr_list_wins()) == NULL)
 .../* error handling not shown */

xvt_slist_debug(x);
xvt_slist_destroy(x);

xvt_slist_destroy
 Free SLIST Storage

Summary

void xvt_slist_destroy(SLIST x)

SLIST x

SLIST on which to operate. If x is NULL, this function simply
returns.

Description

This function frees the memory occupied by SLIST x, which then is
no longer a valid SLIST. Nothing is done with the data associated
with each element. If the data values are in fact pointers that have to
be freed, you must do this prior to calling xvt_slist_destroy.

See Also

SLIST
xvt_slist_create

The "Utilities" chapter in the XVT Portability Toolkit Guide

Example

The following code shows a loop that frees the memory pointed to
by each element of an SLIST (presumably it was allocated when the
element was originally added). Then the SLIST itself is freed. The
variable x is set to NULL to make sure its value (which is no longer
valid) is never used by accident.

SLIST x;
SLIST_ELT e;
char *p;

... /* code to add elements to SLIST not shown */
for (e = xvt_slist_get_first(x); e != NULL; e =

xvt_slist_get_next(x, e)) {
if (xvt_slist_get(x, e, (long *)&p) == NULL

... /* error handling not shown */
}
xvt_mem_free(p);

}
xvt_slist_destroy(x);
x = NULL;

Note: For other examples that use xvt_slist_destroy, see
xvt_scr_list_wins, xvt_res_get_str_list, xvt_list_get_sel,
and xvt_list_get_all.

xvt_slist_get
 Get String and Data from SLIST Element

Summary

char *xvt_slist_get(SLIST x, SLIST_ELT e, long *datap)

SLIST x

SLIST on which to operate.

SLIST_ELT e

Element on which to operate.

long *datap

Address to hold data associated with the element. If it is non-
NULL, the data associated with the element is placed into datap.
If it is NULL, no data is placed into datap.

Description

This function retrieves the string and data (returned through datap)
associated with element e in SLIST x. It is usually used in a for loop
that calls xvt_slist_get_first and xvt_slist_get_next. To
change the data associated with an element, use
xvt_slist_get_data.

Return Value

Pointer to string if successful; NULL if e is NULL. Note that the pointer
refers to storage in the SLIST. Do not attempt to free this pointer
yourself. If the e element parameter is NULL, NULL is returned as the
function value.

See Also

SLIST
SLIST_ELT
xvt_slist_get_data
xvt_slist_get_first
xvt_slist_get_next

The "Utilities" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_slist_get_first.

xvt_slist_get_data
 Get Data Associated with SLIST Element

Summary

long *xvt_slist_get_data(SLIST_ELT e)

SLIST_ELT e

Data to be retrieved.

Description

This function retrieves the address of the data associated with the
SLIST element e.

Return Value

Address of associated SLIST data.

See Also

SLIST_ELT
xvt_slist_get

The "Utilities" chapter in the XVT Portability Toolkit Guide

Example

This code illustrates how you can change the data element by
putting this function on the left side of an assignment operation:

*xvt_slist_get_data(elt) = d;

xvt_slist_get_elt
 Get String and Data from SLIST Element

Summary

char *xvt_slist_get_elt(SLIST x, int index,
 long *datap)

SLIST x

SLIST on which to operate.

int index

Index position of element.

long *datap

Address to hold the associated data. If it is non-NULL, the data
associated with the element is placed into datap. If it is NULL, no
data is placed into datap.

Description

This function retrieves the string and data (returned through datap)
associated with element numbered index (origin 0) in the SLIST x.

The requested element isn’t located particularly quickly, as there is
no index table of element pointers. The function simply traverses the
list element-by-element until it finds the one numbered index.

Return Value

Pointer to string if successful; NULL if element not found. Note that
the pointer refers to storage within the SLIST. Do not attempt to free
this pointer yourself.

See Also

SLIST
xvt_slist_get
xvt_slist_get_data
xvt_scr_list_wins

The "Utilities" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_scr_list_wins.

xvt_slist_get_first
 Get First Element in SLIST

Summary

SLIST_ELT xvt_slist_get_first(SLIST x)

SLIST x

SLIST on which to operate.

Description

This function retrieves the first element of SLIST x and returns a
reference to it of type SLIST_ELT. The string and data components of
the SLIST_ELT can then be obtained by calling xvt_slist_get.

This function is almost always executed in the first expression of a
loop that cycles through all elements. The "incrementation"
expression in the loop is normally a call to xvt_slist_get_next.

Return Value

First element if successful; NULL if x is NULL or empty.

See Also

SLIST
SLIST_ELT
xvt_slist_get
xvt_slist_get_next

The "Utilities" chapter in the XVT Portability Toolkit Guide

Example

SLIST x;
SLIST_ELT e;
struct ... {
...
} *state;
char *name;
long ltype;
struct state st;..../* code to initialize state not shown
*/if ((x = xvt_fsys_list_files(state->type, state->pat,

state->dirs)) == NULL)
xvt_dm_post_error("Can’t list files.");

for (e = xvt_slist_get_first(x); e != NULL;
e = xvt_slist_get_next(x, e)) {

if (stat(name = xvt_slist_get(x, e, <ype), &st)
== -1) {
xvt_dm_post_error("Can’t get stat info.");
break;

}

xvt_slist_get_next
 Get Next Element of SLIST

Summary

SLIST_ELT xvt_slist_get_next(SLIST x, SLIST_ELT e)

SLIST x

SLIST on which to operate.

SLIST_ELT e

Element prior to the element on which to operate.

Description

This function retrieves the element in x following element e. It is
usually used in the "incrementation" expression of a for loop that
calls xvt_slist_get_first in its first expression. The string and

data components of the retrieved element can be obtained by calling
xvt_slist_get.

Return Value

The next element if successful; NULL if no elements remain, or if e is
NULL. If the element parameter is NULL, NULL is returned as the
function value.

See Also

SLIST
SLIST_ELT
xvt_slist_get
xvt_slist_get_first

The "Utilities" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_slist_get_first.

xvt_slist_is_valid
 Test if SLIST Reference is Valid

Summary

BOOLEAN xvt_slist_is_valid(SLIST x)

SLIST x

SLIST object or pointer to be tested.

Description

Given an SLIST object or pointer x, this function tests whether it is
an SLIST. Generally, this test is reliable only if x is a genuine SLIST
or a string.

Return Value

TRUE if x is a real SLIST; FALSE otherwise.

See Also

SLIST

The "Utilities" chapter in the XVT Portability Toolkit Guide

xvt_slist_rem
 Remove Element of SLIST

Summary

BOOLEAN xvt_slist_rem(SLIST x, SLIST_ELT e)

SLIST x

SLIST on which to operate.

SLIST_ELT e

Element on which to operate.

Description

This function removes element e from the SLIST x and frees the
memory it occupies. If its data word is a pointer to memory that also
has to be freed, your application must take care of freeing that
memory.

Return Value

TRUE if successful; FALSE if e is not in the SLIST.

See Also

SLIST
SLIST_ELT

The "Utilities" chapter in the XVT Portability Toolkit Guide

Example

/* remove first element from an SLIST */
SLIST x;
SLIST_ELT e;.../* code to build up SLIST not shown */
if ((e = xvt_slist_get_first(x)) == NULL)

 .../* error handling not shown */
 if (!xvt_slist_rem(x, e))

 .../* error handling not shown */

xvt_str_*
 String Operations

xvt_str_collate
xvt_str_collate_ignoring_case
xvt_str_compare
xvt_str_compare_ignoring_case
xvt_str_compare_n_char
xvt_str_concat
xvt_str_concat_n_char
xvt_str_convert_mb_to_wc
xvt_str_convert_mbs_to_wcs
xvt_str_convert_to_lower
xvt_str_convert_to_upper
xvt_str_convert_wc_to_mb
xvt_str_convert_wchar_to_lower
xvt_str_convert_wchar_to_upper
xvt_str_convert_wcs_to_mbs
xvt_str_copy
xvt_str_copy_n_char
xvt_str_copy_n_size
xvt_str_create_codeset_map
xvt_str_destroy_codeset_map
xvt_str_duplicate
xvt_str_find_char_set
xvt_str_find_eol
xvt_str_find_first_char
xvt_str_find_last_char
xvt_str_find_not_char_set
xvt_str_find_substring
xvt_str_find_token
xvt_str_get_byte_count
xvt_str_get_char_count
xvt_str_get_char_size
xvt_str_get_n_char_count
xvt_str_get_n_char_size
xvt_str_get_next_char
xvt_str_get_prev_char
xvt_str_is_alnum
xvt_str_is_alpha
xvt_str_is_digit
xvt_str_is_equal

xvt_str_is_invariant
xvt_str_is_lower
xvt_str_is_space
xvt_str_is_upper
xvt_str_is_xdigit
xvt_str_match
xvt_str_parse_double
xvt_str_parse_long
xvt_str_parse_ulong
xvt_str_sprintf and xvt_str_vsprinf
xvt_str_translate_codeset

xvt_str_collate
 Compare Multibyte Strings

Summary

int xvt_str_collate(const char *mbs1, const char *mbs2)

const char *mbs1

First string to compare.

const char *mbs2

Second string to compare.

Description

This function compares the multibyte string mbs1 with the multibyte
string mbs2. It compares the strings interpreting both strings as
appropriate to the current locale. If the attribute ATTR_COLLATE_HOOK
is set, then the application collate function is called, otherwise an
XVT internal collate function is called. This function is the
multibyte replacement for the ANSI function strcoll.

Return Value

Positive value if mbs1 is greater than mbs2; negative value if mbs1 is
less than mbs2; zero if they are equal in value and length.

See Also

ATTR_COLLATE_HOOK
xvt_str_collate_ignoring_case
xvt_str_compare

Example

if (xvt_str_collate(list[i], list[i+1]) > 0) {
/* swap strings */

char* temp;temp = list[i];
list[i] = list[i+1];
list[i+1] = temp;

}

xvt_str_collate_ignoring_case
 Compare Multibyte Strings Ignoring Case of Character Set

Summary

int xvt_str_collate_ignoring_case(const char *mbs1,
const char *mbs2)

const char *mbs1

First string to compare.

const char *mbs2

Second string to compare.

Description

This function compares the multibyte string mbs1 with the multibyte
string mbs2 ignoring the case for those character sets that do
distinguish between upper and lowercase. It compares the strings
interpreting both strings as appropriate to the current locale. If the
attribute ATTR_COLLATE_HOOK is set, then the application collate
function is called, otherwise an XVT internal collate function is
called.

Return Value

Positive value if mbs1 is greater than mbs2; negative value if mbs1 is
less than mbs2; zero if they are equal in value and length.

See Also

ATTR_COLLATE_HOOK
xvt_str_collate
xvt_str_compare_ignoring_case

xvt_str_compare
 Compare Numeric Value of Multibyte String Characters

Summary

int xvt_str_compare(const char *mbs1, const char *mbs2)

const char *mbs1

First string to compare.

const char *mbs2

Second string to compare.

Description

This function compares the multibyte string mbs1 with the multibyte
string mbs2. It compares the numeric values of the characters in the
strings. It is the multibyte replacement for the ANSI function
strcmp.

Return Value

Positive value if mbs1 is greater than mbs2; negative value if mbs1 is
less than mbs2; zero if they are equal in value and length.

See Also

xvt_str_collate
xvt_str_compare_ignoring_case
xvt_str_match

xvt_str_compare_ignoring_case
 Compare Numeric Value of Multibyte String Characters Ignoring Case of Character Set

Summary

int xvt_str_compare_ignoring_case(const char *mbs1,
 const char *mbs2)

const char *mbs1

First string to compare.

const char *mbs2

Second string to compare.

Description

This function compares the multibyte string mbs1 with the multibyte
string mbs2. It works identically to the standard C function strcmp,
except for ignoring the case. This function differs from
xvt_str_match in that it allows the comparison of strings containing
"*" and "?" characters.

Return Value

Positive value if mbs1 is greater than mbs2; negative value if mbs1 is
less than mbs2; zero if they are equal in value and length.

See Also

xvt_str_collate_ignoring_case
xvt_str_compare
xvt_str_match

xvt_str_compare_n_char
 Compare n Characters of Multibyte String

Summary

int xvt_str_compare_n_char(const char *mbs1,
 const char *mbs2, const size_t n)

const char *mbs1

First string to compare.

const char *mbs1

Second string to compare.

const size_t n

Number of strings to compare.

Description

This function compares n characters of the multibyte string mbs1
with the multibyte string mbs2. It compares the numeric values of the
characters in the strings until n characters have been compared or the
end of one of the strings is reached. It is the multibyte replacement
for the ANSI function strncmp.

Return Value

Positive value if mbs1 is greater than mbs2; negative value if mbs1 is
less than mbs2; zero if they are equal in value and length.

See Also

xvt_str_compare

xvt_str_concat
 Append Multibyte Strings

Summary

char *xvt_str_concat(char *mbs1, const char *mbs2)

char *mbs1

First string.

const char *mbs2

Second string.

Description

This function appends a copy of the multibyte string mbs2 to the end
of the multibyte string mbs1, overwriting the NULL character at the
end of mbs1. It is the multibyte replacement for the ANSI function
strcat.

Return Value

Modified mbs1 (sufficient memory in mbs1 is required).

See Also

xvt_str_concat_n_char

xvt_str_concat_n_char
 Append n Characters of Multibyte Strings

Summary

char *xvt_str_concat_n_char(char *mbs1,
 const char *mbs2, const size_t n)

char *mbs1

First multibyte string.

const char *mbs2

Second multibyte string.

const size_t n

Number of characters to append from the second string.

Description

This function appends a copy of n multibyte characters from the
string mbs2 to the end of the string mbs1, overwriting the NULL
character at the end of mbs1. It copies until n multibyte characters or
the end of string mbs2 is reached. This function is the multibyte
replacement for the ANSI function strncat.

Return Value

Modified mbs1 (sufficient memory in mbs1 is required).

See Also

xvt_str_concat

xvt_str_convert_mb_to_wc
 Convert First Character of Multibyte String to Wide Character

Summary

int xvt_str_convert_mb_to_wc(XVT_WCHAR * wc,
 const char * mbs)

XVT_WCHAR * wc

Pointer to wide character.

const char * mbs

Multibyte string.

Description

This function converts the first character of the multibyte string mbs
to the wide character wc. It replaces the ANSI function mbtowc.

Return Value

Zero if mbs is NULL, or if mbs is the NULL character ’<fc0’, or if wc is
NULL; -1 if mbs does not point to a valid multibyte character; size in
bytes of the multibyte character otherwise.

See Also

xvt_str_convert_mbs_to_wcs
xvt_str_convert_wc_to_mb

Example

int i, len;
XVT_WCHAR WC;for (i = 0; str[i]; i += len) {

len = xvt_str_convert_mb_to_wc(&wc, &str[i]);
if (len <= 0) break;
if (wc == wc_text) {

...
}

}

xvt_str_convert_mbs_to_wcs
 Convert Multibyte Character String to Wide Character String

Summary

int xvt_str_convert_mbs_to_wcs(XVT_WCHAR *wcs,
const char *mbs, const size_t n)

XVT_WCHAR *wcs

Pointer to an array of wide characters.

const char *mbs

Multibyte string to convert.

const size_t n

Number of characters to convert.

Description

This function converts the characters in the multibyte string mbs to
the wide character string wcs, stopping after it copies n characters or
the end of mbs is reached. If a NULL character is encountered before
n characters are converted, the NULL is converted and processing
terminates. This function replaces the ANSI function mbstowcs.

Return Value

The number of characters converted, not including the NULL
character if successful. -1 if an invalid multibyte character is
encountered. Sufficient memory in wcs is required to hold the wide
character string.

See Also

xvt_str_convert_mb_to_wc
xvt_str_convert_wcs_to_mbs

xvt_str_convert_to_lower
 Convert First n Bytes in Multibyte String to Lowercase Characters

Summary

size_t xvt_str_convert_to_lower(char *mbs1,
 const char *mbs2, const size_t n)

char *mbs1

Target string.

const char *mbs2

String to convert.

const size_t n

Number of bytes to convert.

Description

This function converts the first n bytes in the multibyte string mbs2
to lowercase characters and copies them into the multibyte string
mbs1. If a NULL character is encountered before n bytes are
processed, the NULL is copied to the end of mbs1 and processing
terminates.

Return Value

The number of bytes processed. The values of mbs1 and mbs2 can
refer to the same string.

See Also

xvt_str_convert_to_upper
xvt_str_convert_wchar_to_lower

xvt_str_convert_to_upper
 Convert First n Bytes in Multibyte String to Uppercase Characters

Summary

size_t xvt_str_convert_to_upper(char *mbs1,
 const char *mbs2, size_t n)

char *mbs1

Target string.

const char *mbs2

String to convert.

size_t n

Number of bytes to convert.

Description

This function converts the first n bytes in the multibyte string mbs2
to uppercase characters and copies them into the multibyte string
mbs1. If a NULL character is encountered before n bytes are processed
the NULL is copied to the end of mbs1 and processing terminates.

Return Value

The number of bytes processed. The values of mbs1 and mbs2 can
refer to the same string.

See Also

xvt_str_convert_to_lower
xvt_str_convert_wchar_to_lower

xvt_str_convert_wc_to_mb
 Convert Wide Character to Multibyte Character

Summary

int xvt_str_convert_wc_to_mb(char * mbs,
 const XVT_WCHAR wc)

char * mbs

Target string.

const XVT_WCHAR wc

Wide character to convert.

Description

This function converts the wide character wc to a multibyte character
in the multibyte array pointed to by mbs. It also returns the size in
bytes of the multibyte character. Sufficient memory in mbs is
required to hold a multibyte character. The string mbs is not NULL-
terminated unless the wc character is the NULL character. This
function replaces the ANSI function wctomb.

Return Value

Zero if mbs is NULL or wc is the NULL character; -1 if wc is not a valid
wide character; size in bytes otherwise.

See Also

xvt_str_convert_mb_to_wc
xvt_str_convert_wcs_to_mbs

Example

case E_CHAR:
if (!xvt_event_is_virtual_key(ep)) {

int len;
char* mbc[XVT_MAX_MB_SIZE];len =

xvt_str_convert_wc_to_mb(
mbc, ep->v.chr.ch);

if (len > 0) {
int i;
for (i = 0; i < len; i++)

line[offset++] = mbc[i];
}

}

xvt_str_convert_wchar_to_lower
 Convert Wide Character to Lowercase Wide Character

Summary

XVT_WCHAR xvt_str_convert_wchar_to_lower(XVT_WCHAR wc)

XVT_WCHAR wc

Wide character.

Description

This function converts the wide character wc to a lowercase wide
character. It is the wide character replacement for the ANSI function
tolower.

Return Value

Lowercase wide character.

See Also

xvt_str_convert_to_lower
xvt_str_convert_wchar_to_upper

xvt_str_convert_wchar_to_upper
 Converts Wide Character to Uppercase Wide Character

Summary

XVT_WCHAR xvt_str_convert_wchar_to_upper(XVT_WCHAR wc)

XVT_WCHAR wc

Wide character.

Description

This function converts the wide character wc to an uppercase wide
character. It is the wide character replacement for the ANSI function
toupper.

Return Value

Uppercase wide character.

See Also

xvt_str_convert_to_upper
xvt_str_convert_wchar_to_lower

xvt_str_convert_wcs_to_mbs
 Converts Wide Character String to Multibyte String

Summary

int xvt_str_convert_wcs_to_mbs(char *mbs,
 const XVT_WCHAR *wcs, const size_t n)

char *mbs

Target string.

const XVT_WCHAR *wcs

Pointer to an array of wide characters.

const size_t n

Size of mbs in bytes.

Description

This function converts characters in the wide character string wcs to
the multibyte string mbs, stopping when the next stored multibyte
character exceeds the limit of n total bytes in mbs or if a NULL
character is stored. It replaces the ANSI function wcstombs.

Return Value

Number of bytes written in mbs, not including the NULL character
(sufficient memory in mbs is required to hold the multibyte string).

See Also

xvt_str_convert_mbs_to_wcs
xvt_str_convert_wc_to_mb

xvt_str_copy
 Copies One Multibyte String into Another

Summary

char *xvt_str_copy(char *mbs1, const char *mbs2)

char *mbs1

Target string.

const char *mbs2

Source string.

Description

This function copies the multibyte string mbs2 into the multibyte
string mbs1 including the terminating NULL. It is the multibyte
replacement for the ANSI function strcpy.

Return Value

Modified mbs1 (sufficient memory in mbs1 is required to hold the
multibyte string).

See Also

xvt_str_copy_n_char
xvt_str_copy_n_size

xvt_str_copy_n_char
 Copies n Characters from One Multibyte String into Another

Summary

size_t xvt_str_copy_n_char(char *mbs1,
 const char *mbs2, size_t n)

char *mbs1

Target string.

const char *mbs2

Source string.

size_t n

Number of characters to copy.

Description

This function copies n characters from the multibyte string mbs2 into
the multibyte string mbs1. It copies until n multibyte characters or the
end of string mbs2 is reached. If the number of characters in mbs2 is
less than n, a NULL character is appended to the end of mbs1.

This function is the multibyte replacement for the ANSI function
strncpy. Note some differences, however. The function takes a
character count, not a byte count, and does not pad the unused area
with NULL characters. It also returns a size_t for the number of bytes
(not characters) actually copied, including a NULL character if one
was copied.

Return Value

Number of bytes actually copied.

See Also

xvt_str_copy
xvt_str_copy_n_size

xvt_str_copy_n_size
 Copy n Bytes from one Multibyte String to Another

Summary

size_t xvt_str_copy_n_size (char * mbs1,
 const char * mbs2, size_t n)

char * mbs1

Target string.

const char * mbs2

Source string.

size_t n

Number of bytes to copy.

Description

This function copies n bytes from the multibyte string mbs2 into the
multibyte string mbs1. If the number of bytes in mbs2 is less then n,
a NULL character is appended at the end of mbs1. If the number of

bytes does not fall on a character boundary, then the string is copied
to the last character boundary before n bytes.

This function is the multibyte replacement for the ANSI function
strncpy.Note some differences, however. The function does not pad
the unused area with NULL characters. It also returns a size_t for the
number of bytes (not characters) actually copied, including a NULL
character if one was copied.

Return Value

Number of bytes copied (sufficient memory in mbs1 is required).

See Also

xvt_str_copy
xvt_str_copy_n_char

xvt_str_create_codeset_map
Creates an xvt_codeset_map From Two Codeset Map Files

Summary

XVT_CODESET_MAP xvt_str_create_codeset_map(
XVT_IOSTREAM fromcodeset, XVT_IOSTREAM tocodeset)

XVT_IOSTREAM fromcodeset

IO stream to read the compiled codeset file to map from.

XVT_IOSTREAM tocodeset

IO stream to read the compiled codeset file to map to.

Description

This function loads the binary codeset table (.bct) map file from
which to map text into Unicode and the binary codeset table map file
from which to map text into from Unicode. The IO streams must be
open for reading appropriately formatted data. The
XVT_CODESET_MAP can be set up to map to or from Unicode by
passing NULL for the appropriate XVT_IOSTREAM.

The .bct map files are generated by the compiler utility or
maptabc.app.

See the Reference section "Tools" for more information on
maptabc.

Return Value

An XVT_CODESET_MAP object is returned if successful; NULL if an
error occurred.

Parameter and Validity Conditions

XVT returns NULL if any of the following conditions occur:

• If both the XVT_IOSTREAM parameters are NULL.

• If either of the XVT_IOSTREAM parameters do not refer to data
in the .bct file format or the format of the data selected is an
older format and needs to be recompiled.

• There is insufficient memory to create the XVT_CODESET_MAP
object.

See Also

XVT_CODESET_MAP
xvt_str_destroy_codeset_map
xvt_str_translate_codeset

xvt_str_destroy_codeset_map
Destroys an XVT_CODESET_MAP and Frees Associated Memory

Summary

void xvt_str_destroy_codeset_map(
XVT_CODESET_MAP codeset_map)

XVT_CODESET_MAP codeset_map

Codeset map to destroy.

Description

This function destroys an XVT_CODESET_MAP object and frees all
associated memory.

Parameter and Validity Conditions

XVT issues an error if codeset_map is NULL or is not a valid
XVT_CODESET_MAP.

See Also

XVT_CODESET_MAP
xvt_str_create_codeset_map
xvt_str_translate_codeset

xvt_str_duplicate
 Duplicate Multibyte String and Allocate New Memory

Summary

char *xvt_str_duplicate(const char * mbs)

const char * mbs

String to duplicate.

Description

This function allocates new memory with xvt_mem_alloc and
copies the multibyte string mbs including the terminating NULL. The
string must be freed by the caller with xvt_mem_free.

Return Value

The newly allocated memory; NULL if insufficient memory is
available or if mbs is NULL.

See Also

xvt_mem_alloc
xvt_mem_free
xvt_str_copy

xvt_str_find_char_set
 Search Multibyte String for Character

Summary

char *xvt_str_find_char_set(const char *mbs,
 const char *mbset)

const char *mbs

String to search.

const char *mbset

Set of characters for which to search.

Description

This function searches the multibyte string mbs for the first
occurrence of a multibyte character that is also in the multibyte
string mbset. It is the multibyte replacement for the ANSI function
strcspn.

Return Value

Pointer to the first occurrence of mbc in mbs; NULL if mbc is not found
in mbs.

See Also

xvt_str_find_first_char
xvt_str_find_not_char_set

xvt_str_find_eol
 Find End-of-Line Character in Multibyte String

Summary

char *xvt_str_find_eol(const char *mbs, const long n,
 long *lenp, EOL_FORMAT *fp)

const char *mbs

Pointer to the lines of the text.

const long n

Number of bytes in the specified text.

long *lenp

Length of the line.

EOL_FORMAT *fp

Type of end-of-line sequence.

Description

This function breaks a collection of text lines pointed to by mbs into
individual lines.

n is the total number of bytes pointed to by mbs, including the end-
of-line sequences separating the lines and ending the last line. The
collection of text lines need not be NULL-terminated; if it is, the NULL
byte should not be included in the n count.

The first time your application calls xvt_str_find_eol with the
address of the lines of text, it scans the text for an end-of-line
sequence (not necessarily the one used by the local operating
system). The second and subsequent calls must be made with the
mbs argument set to NULL, which tells xvt_str_find_eol to
continue scanning from where it left off. The n argument is unused
when mbs is NULL.

Each time xvt_str_find_eol is called, it returns a pointer to the
next line in the buffer mbs and stores its length, excluding the end-
of-line sequence, in the lenp argument. It also determines the type
of line-ending sequence found, and stores the result in fp. These are
the possible values returned in fp:

EOL_NORMAL

For the first call, this symbol means that the line was terminated
with a normal end-of-line sequence for some XVT
environment, but not necessarily the local one. For subsequent
calls, this means that the end-of-line sequence was the same as
that ending the first line (i.e., the lines are terminated
consistently).

EOL_DIFF

The line terminated with an end-of-line sequence different from
the one terminating the first line.

EOL_NONE

The line did not terminate with an end-of-line sequence. This
can be true only for the last line.

The data pointed to by mbs is not tampered with in any way. Lines
pointed to by returned values are not NULL-terminated--you must use
the stored length to find their ends. NULL is returned when no lines
remain.

If you don’t want the length of a returned line, you can use a lenp
argument of NULL. Similarly, a NULL fp argument suppresses a
returned EOL_FORMAT.

Note: It is not necessary to use xvt_str_find_eol to break text read from
a file into separate lines. The standard C runtime library always
converts native end-of-line sequences into "<fcn" on reading.

Return Value

Pointer to line (not NULL-terminated, with end-of line-sequence
intact) if successful; NULL if no lines remain.

See Also

EOL_* Values for EOL_FORMAT
EOL_SEQ

Example

This code adds text lines from a buffer to a list box:

WINDOW lbox;
char *buf;
char *line;
long len;
...
xvt_list_clear(lbox);
line = xvt_str_find_eol(buf, strlen(buf), &len,

NULL);
while (line != NULL) {

 l[len] =’0’;
xvt_list_add(lbox, -1, line;
line = xvt_str_find_eol(NULL, 0, &len, NULL);

 }

xvt_str_find_first_char
 Find First Character in Multibyte String

Summary

char *xvt_str_find_first_char(const char *mbs,
 const char *mbc)

const char *mbs

String to search.

const char *mbc

Multibyte character for which to search.

Description

This function searches the multibyte string mbs for the first
occurrence of the multibyte character in mbc. It is the multibyte
replacement for the ANSI function strchr.

Return Value

A pointer to the first occurrence of mbc in mbs; a pointer to the
terminating NULL character in mbs if mbc is the NULL character; NULL
if mbc is not found in mbs.

See Also

xvt_str_find_char_set
xvt_str_find_last_char

xvt_str_find_last_char
 Find Last Character in Multibyte String

Summary

char *xvt_str_find_last_char(const char *mbs,
 const char *mbc)

const char *mbs

String to search.

const char *mbc

Multibyte character for which to search.

Description

This function searches the multibyte string mbs for the last
occurrence of the multibyte character in mbc. It is the multibyte
replacement for the ANSI function strrchr.

Return Value

A pointer to the last occurrence of mbc in mbs; a pointer to the
terminating NULL character in mbs if mbc is the NULL character; NULL
if mbc is not found in mbs.

See Also

xvt_str_find_char_set
xvt_str_find_first_char

xvt_str_find_not_char_set
 Search Multibyte String for Character not in Set

Summary

char *xvt_str_find_not_char_set(const char *mbs,
 const char *mbset)

const char *mbs

String to search.

const char *mbset

Set of characters.

Description

This function searches the multibyte string mbs for the first
occurrence of a multibyte character that is not also in the multibyte
string mbset. It is the multibyte replacement for the ANSI function
strspn.

Return Value

A pointer to the first occurrence of a character not in mbset that is in
mbs; NULL if all characters in mbs are in mbset.

See Also

xvt_str_find_char_set
xvt_str_find_last_char

Example

char *eon;
/* Find the end of the number */
eon = xvt_str_find_not_char_set(input_line,
"0123456789");

xvt_str_find_substring
 Find Substring

Summary

char *xvt_str_find_substring(const char *mbs1,
 const char *mbs2)

const char *mbs1

String to search.

const char *mbs2

Substring for which to search.

Description

This function searches the multibyte string mbs1 for the first
occurrence of the multibyte string mbs2. It is the multibyte
replacement for the ANSI function strstr.

Return Value

A pointer to the first occurrence of mbs2 in mbs1; NULL if mbs2 is not
found in mbs1.

See Also

xvt_str_compare_n_char
xvt_str_find_first_char

xvt_str_find_token
 Separate Multibyte String into Tokens

Summary

char *xvt_str_find_token(const char *mbs,
 const char *delimiter_set, size_t *n)

const char *mbs

String of tokens.

const char *delimiter_set

Set of delimiter characters.

size_t *n

Number of bytes in token.

Description

This function breaks the multibyte string mbs into tokens that are
separated by one or more characters from the string of delimiters
delimiter_set. It returns a pointer to the next token following a
delimiter and returns the number of bytes in the token before the
next delimiter or end of string in the parameter n.

To find all the tokens in a string, you must call xvt_str_find_token
in a loop, once for each token. On each loop, pass in the value
returned, which is the value of the current token, incremented by the
byte count of the token. You can use xvt_str_copy_n_size to save
the token. If no token is found, NULL is returned and n is set to zero.

This function is the multibyte replacement for the ANSI function
strtok. Note some differences, however. The function does not
cache the string on the first call and does not insert NULL characters
into the string. It leaves the value of mbs unchanged. Therefore,
when using xvt_str_copy_n_size to copy the token, make sure to
properly NULL-terminate the copied string afterward.

Return Value

Pointer into mbs of the next token; NULL if no token is found. Sets n
to the number of bytes in the token.

See Also

xvt_str_copy_n_size
xvt_str_get_n_char_count

Example

#define MAX_TOKEN_LEN 6 main()
{

 char *delims = " ,.";
char *string = "Gee, what a great API."
char *token = string;
size_t nbytes; char tokenbuf[MAX_TOKEN_LEN];while

((token = xvt_str_find_token(token, delims,
 &nbytes)) != NULL)

 {
 /* Copy token but don’t exceed buffer size */

xvt_str_copy_n_size(tokenbuf, token,
mi(nbytes,MAX_TOKEN_LEN-1)); /* Null terminate token for
as much as we could copy */ tokenbuf[min(nbytes,
MAX_TOKEN_LEN-1)] = ’0’; printf ("%*s
", token); token += nbytes;

 }
 }

The program prints out the following tokens:

Gee
what
a
great
API

xvt_str_get_byte_count
 Count Bytes in Multibyte String

Summary

size_t xvt_str_get_byte_count(const char *mbs)

const char *mbs

Multibyte string.

Description

This function counts the number of bytes in the multibyte string mbs
up to the terminating NULL. This function is the multibyte equivalent
of strlen.

See Also

xvt_str_get_char_count
xvt_str_get_n_char_size

xvt_str_get_char_count
 Count Characters in Multibyte String

Summary

size_t xvt_str_get_char_count(const char *mbs

)const char *mbs

Multibyte string.

Description

This function counts the number of characters in the multibyte string
mbs. This function differs from the strlen function, which returns
the number of bytes in a NULL-terminated multibyte string.

Return Value

The number of characters in the multibyte string mbs.

See Also

xvt_str_get_byte_count
xvt_str_get_n_char_count

xvt_str_get_char_size
 Count Number of Bytes in Multibyte Character

Summary

int xvt_str_get_char_size(const char * mbs)

const char * mbs

Multibyte character.

Description

This function counts the number of bytes in the multibyte character
pointed to by mbs. It replaces the ANSI function mblen.

Return Value

The number of bytes in the multibyte character pointed to by mbs. If
*mbs is the NULL character ’<fc0’, 0 is returned. If an error occurs, -
1 is returned.

See Also

xvt_str_convert_mb_to_wc
xvt_str_get_byte_count

Example

char* s;/* skip first character */
s = str + xvt_str_get_char_size(str);

xvt_str_get_n_char_count
 Count Characters in n Bytes of Multibyte String

Summary

size_t xvt_str_get_n_char_count(const char *mbs,
 const size_t n, size_t *used)

const char *mbs

Multibyte string.

const size_t n

Number of bytes to process.

size_t *used

Number of bytes processed.

Description

This function returns the number of complete characters in the first
n bytes of the multibyte string mbs. If mbs is NULL, this function
returns zero, otherwise the number of characters is returned. The
number of bytes processed is returned in used. If the nth byte is not
the end of a complete character, then the character defined by that
byte is not included in the count. If a NULL character is encountered,
the number of characters up to the NULL is returned but the NULL
character is not included in the count. NULL can be passed as the
argument used if this information is not desired.

Return Value

The number of complete multibyte characters.

See Also

xvt_str_get_char_count
xvt_str_get_n_char_size

Example

int nbytes, nchars;
char* token;if ((token = xvt_str_find_token(str, delims,
&nbytes))

 ! = NULL) {
 nchars = xvt_str_get_n_char_count(token,

 nbytes, NULL);
 if (0 == xvt_str_compare_n_char(token,

 last_keyword, nchars)) {
...

 }
 }

xvt_str_get_n_char_size
 Counts Bytes in n Characters of Multibyte String

Summary

size_t xvt_str_get_n_char_size(const char *mbs,
 const size_t n)

const char *mbs

Multibyte string.

const size_t n

Number of characters.

Description

This function counts the number of bytes in the first n characters of
the multibyte string mbs.

Return Value

Number of bytes; zero if s is NULL.

See Also

xvt_str_get_char_count
xvt_str_get_n_char_count

xvt_str_get_next_char
 Get Next Character in a Multibyte String

Summary

char * xvt_str_get_next_char(const char * mbs)

const char * mbs

Pointer to multibyte string.

Description

This function returns a pointer to the next character in the multibyte
string mbs following the character currently pointed to by mbs. The
function assumes mbs points to the beginning of a multibyte
character.

Return Value

A pointer to the next character in the multibyte string mbs following
the character currently pointed to by mbs; a pointer to the NULL
character if the current character or next character is a NULL
character; NULL if the next character is not a valid multibyte
character.

See Also

xvt_str_get_char_size
xvt_str_get_prev_char

xvt_str_get_prev_char
 Get Preceding Character in a Multibyte String

Summary

char * xvt_str_get_prev_char (const char *start,
 const char *mbs)

const char *start

Pointer to the start of multibyte string.

const char *mbs

Pointer into multibyte string.

Description

This function returns a pointer to the character preceding the
character pointed to by mbs in the multibyte string start. This
function assumes start points to the beginning of a multibyte string
and mbs points to the beginning of a multibyte character in the string
start. The efficiency of this function may be limited to codeset
design and available functionality on some platforms. Use it
sparingly.

Return Value

A pointer to the character preceding the character pointed to by mbs
in the multibyte string start; start if mbs equals start or if the
character pointer for the preceding character is less than start.

See Also

xvt_str_get_next_char

xvt_str_is_*
 xvt_str_is_* Functions

xvt_str_is_alnum
xvt_str_is_alpha
xvt_str_is_digit
xvt_str_is_equal
xvt_str_is_invariant
xvt_str_is_lower
xvt_str_is_space
xvt_str_is_upper
xvt_str_is_xdigit

xvt_str_is_alnum
 Check if Multibyte Character is Alphanumeric

Summary

BOOLEAN xvt_str_is_alnum(const char *mbs)

const char *mbs

Pointer to multibyte character.

Description

This function checks if the first character of the multibyte string mbs
is an alphanumeric character (a-z, A-Z, 0-9). This check also
includes alphabetical characters with diacritical marks (depending
on the current locale). It is the multibyte replacement for the ANSI
function isalnum.

Return Value

TRUE if the first character is alphanumeric; FALSE otherwise.

See Also

xvt_str_is_alpha
xvt_str_is_digit
xvt_str_is_equal
xvt_str_is_invariant
xvt_str_is_lower
xvt_str_is_space
xvt_str_is_upper
xvt_str_is_xdigit

xvt_str_is_alpha
 Check if Multibyte Character is Alphabetic

Summary

BOOLEAN xvt_str_is_alpha(const char *mbs)

const char *mbs

Pointer to multibyte character.

Description

This function checks if the first character of the multibyte string mbs
is an alphabetic character (a-z, A-Z). This check also includes
alphabetical characters with diacritical marks (depending on the
current locale). It is the multibyte replacement for the ANSI function
isalpha.

Return Value

TRUE if the first character is alphabetic; FALSE otherwise.

See Also

xvt_str_is_alnum
xvt_str_is_digit
xvt_str_is_equal
xvt_str_is_invariant
xvt_str_is_lower
xvt_str_is_space
xvt_str_is_upper
xvt_str_is_xdigit

xvt_str_is_digit
 Check if Multibyte Character is a Decimal

Summary

BOOLEAN xvt_str_is_digit(const char *mbs)

const char *mbs

Pointer to multibyte character.

Description

This function checks if the first character of the multibyte string mbs
is a decimal character (0-9). It is the multibyte replacement for the
ANSI function isdigit.

Return Value

TRUE if the first character is a decimal; FALSE otherwise.

See Also

xvt_str_is_alnum
xvt_str_is_alpha
xvt_str_is_equal
xvt_str_is_invariant
xvt_str_is_lower
xvt_str_is_space
xvt_str_is_upper
xvt_str_is_xdigit

xvt_str_is_equal
 Check if Strings are Equal

Summary

BOOLEAN xvt_str_is_equal(const char *mbs1,
 const char *mbs2)

const char *mbs1

First string.

const char *mbs2

Second string.

Description

This function determines if multibyte strings mbs1 and mbs2 are
equal (character for character) and of the same length.

Return Value

TRUE if the strings are equal and of the same length; FALSE if the
strings are not equal.

See Also

xvt_str_compare

xvt_str_is_invariant
 Check if Multibyte Character is Invariant

Summary

BOOLEAN xvt_str_is_invariant(const char *mbs)

const char *mbs

Pointer to a multibyte character.

Description

This function detects if the first character of the multibyte string mbs
is in the ISO 646 invariant code set (space ! " % & ’ () * + , - . / 0-9
: ; < = > ? _ A-Z a-z).

Return Value

TRUE if the character is in the ISO 646 invariant code set; FALSE
otherwise.

See Also

xvt_str_is_alnum
xvt_str_is_alpha
xvt_str_is_digit
xvt_str_is_equal
xvt_str_is_lower
xvt_str_is_space
xvt_str_is_upper
xvt_str_is_xdigit

xvt_str_is_lower
 Check if First Multibyte Character is Lowercase

Summary

BOOLEAN xvt_str_is_lower(const char *mbs)

const char *mbs

Pointer to multibyte character.

Description

This function determines if the first character of the multibyte string
mbs is a lowercase character (a-z). This check also includes
lowercase alphabetical characters with diacritical marks (depending
on the current locale). It is the multibyte replacement for the ANSI
function islower.

Return Value

TRUE if the first character is lowercase; FALSE otherwise.

See Also

xvt_str_is_alnum
xvt_str_is_alpha
xvt_str_is_digit
xvt_str_is_equal
xvt_str_is_invariant
xvt_str_is_space
xvt_str_is_upper
xvt_str_is_xdigit

xvt_str_is_space
 Check if First Multibyte Character is a Space

Summary

BOOLEAN xvt_str_is_space(const char *mbs)

const char *mbs

Pointer to multibyte character.

Description

This function determines if the first character of the multibyte string
mbs is a standard white-space character. White-space characters
include: space (’ ’), form feed (’<fcf’), new-line (’<fcn’), carriage
return (’<fcr’), horizontal tab (’<fct’), vertical tab (’v’). This
function is the multibyte replacement for the ANSI function
isspace.

Return Value

TRUE if the first character is a standard white-space character; FALSE
otherwise.

See Also

xvt_str_is_alnum
xvt_str_is_alpha
xvt_str_is_digit
xvt_str_is_equal
xvt_str_is_invariant
xvt_str_is_lower
xvt_str_is_upper
xvt_str_is_xdigit

xvt_str_is_upper
 Check if First Multibyte Character is Uppercase Alphabetic

Summary

BOOLEAN xvt_str_is_upper(const char *mbs)

const char *mbs

Pointer to multibyte character.

Description

This function determines if the first character of the multibyte string
mbs is uppercase alphabetic (A-Z). This check also includes
uppercase alphabetical characters with diacritical marks (depending
on the current locale). It is the multibyte replacement for the ANSI
function isupper.

Return Value

TRUE if the first character is uppercase alphabetic; FALSE otherwise.

See Also

xvt_str_is_alnum
xvt_str_is_alpha
xvt_str_is_digit
xvt_str_is_equal
xvt_str_is_invariant
xvt_str_is_lower
xvt_str_is_space
xvt_str_is_xdigit

xvt_str_is_xdigit
 Check if First String Character is a Hexadecimal Digit

Summary

BOOLEAN xvt_str_is_xdigit(const char *mbs)

const char *mbs

Pointer to multibyte character.

Description

This function determines if the first character of the multibyte string
mbs is a hexadecimal digit (0-9, A-F, a-f). It is the multibyte
replacement for the ANSI function isxdigit.

Return Value

TRUE if the first character is a hexadecimal digit; FALSE otherwise.

See Also

xvt_str_is_alnum
xvt_str_is_alpha
xvt_str_is_digit
xvt_str_is_equal
xvt_str_is_invariant
xvt_str_is_lower
xvt_str_is_space
xvt_str_is_upper

xvt_str_match
 Match Multibyte Pattern Against String

Summary

BOOLEAN xvt_str_match(const char *mbs,
 const char *pat, BOOLEAN case_sensitive)

const char *mbs

Multibyte string to be scanned.

const char *pat

String with pattern.

BOOLEAN case_sensitive

Determines whether matching is case-sensitive.

Description

This function is used to compare a string to a pattern. It returns TRUE
if the string mbs matches the pattern pat (possibly containing the
wildcard characters "*" and "?"), and FALSE otherwise. Either mbs
and pat (or both) can be NULL. If they are not NULL, they must be
NULL-terminated strings.

Within the pattern pat, the wildcard character "*" matches any
sequence of zero or more characters. The wildcard character "?"
matches any single character. Other characters in the pattern match
only themselves, unless case_sensitive is FALSE, which causes
letters to match either upper- or lowercase versions of themselves in
mbs.

The entire pattern must match the entire string mbs for the match to
succeed. Use the wildcard "*" at the beginning or end of the pattern
if the match can occur anywhere in the string.

The matching algorithm used by xvt_str_match is identical to that
used by xvt_fsys_list_files.

Return Value

TRUE if the string matches the pattern, or if both mbs and pat are
NULL; FALSE if there is no match, or if either mbs or pat (but not both)
are NULL.

Implementation Note

The matching algorithm is not the same as that used by NTFS to
match filenames; xvt_str_match doesn’t treat the "extension" in a
special way, and it allows multiple "*" wildcards in the pattern. The
matching algorithm is the same as that typically used by UNIX
shells.

See Also

xvt_fsys_list_files

Example

Given this initialization:

char *s = "Virtual";

The following table shows the results from several calls to
xvt_str_match:

Expression Result
xvt_str_match(s, "Virtual", FALSE) TRUE
xvt_str_match(s, "virtual", FALSE) TRUE
xvt_str_match(s, "Virtual", TRUE) TRUE
xvt_str_match(s, "virtual", TRUE) FALSE
xvt_str_match(s, "V*rtu*", FALSE) TRUE
xvt_str_match(s, "?ir?ual", FALSE) TRUE
xvt_str_match(s, "V*V", FALSE) FALSE
xvt_str_match(s, "*", FALSE) TRUE
xvt_str_match(s, "?", FALSE) FALSE
xvt_str_match(NULL, NULL, TRUE) TRUE
xvt_str_match(s, NULL, TRUE) FALSE
xvt_str_match(NULL, "VIRTUAL", TRUE) FALSE

xvt_str_parse_double
Convert Multibyte String to Double-Precision Floating Point Value

Summary

double xvt_str_parse_double(const char *mbs,
 char **mbs_end)

const char *mbs

String to convert.

char **mbs_end

Pointer to a character pointer.

Description

This function converts the multibyte string mbs to a double-precision
floating point value. It skips over any white-space characters at the
beginning of mbs. It stops converting when it reaches a character that
can’t be part of a number (including multibyte characters). It looks
for a number formatted like
[+|-][digits][.digits][d|D|e|E[+|-]digits]. This function is
the multibyte replacement for the ANSI function strtod.

Return Value

Double-precision floating point value; sets *mbs_end to the first
non-number character if mbs_end is not NULL; zero if no number is
found (mbs_end is set to mbs). If the number exceeds the double
range, a warning is signaled and HUGE_VAL with the same sign as the
number is returned.

See Also

xvt_str_parse_long
xvt_str_parse_ulong

xvt_str_parse_long
 Convert a Multibyte String to a Long Integer Value

Summary

long xvt_str_parse_long(const char *mbs,
 char **mbs_end, short base)

const char *mbs

Strings to convert.

char **mbs_end

Pointer to a character pointer.

short base

Base to use for the conversion.

Description

This function converts the multibyte string mbs to a long integer
value in the indicated numeric base. It skips over any white-space
characters at the beginning of mbs. It stops converting when it
reaches a character that can’t be part of a number (this includes
multibyte characters). It looks for a number formatted like [+|-
][0x|0X|0][digits].

The value for base must be zero or between 2 and 16. If base is
between 2 and 16, the number is converted to a number in the
specified base. If base is zero, then the number is converted using a
numeric base that is determined by the prefix (see below).

Prefix Base Is
0x or 0X 16
0 8
none 10

The numbers must contain numerals and letters that are valid for the
base. For example, if base is 8, the number can contain only the
numerals 0-7. If base is 16, the number can contain only the
numerals 0-9 and the letters A-F and a-f.

This function is the multibyte replacement for the ANSI function
strtol.

Return Value

long integer value; sets *mbs_end to the first non-number character
if mbs_end is not NULL; zero if no number is found (and mbs_end is
set to mbs). If the number exceeds the long range, a warning is
signaled and LONG_MAX or LONG_MIN is returned.

See Also

xvt_str_parse_double
xvt_str_parse_ulong

xvt_str_parse_ulong
 Convert Multibyte String to an Unsigned Long Integer Value

Summary

unsigned long xvt_str_parse_ulong(const char *mbs,
 char **mbs_end, short base)

const char *mbs

String to convert.

char **mbs_end

Pointer to a character pointer.

short base

Base to use for the conversion.

Description

This function converts the multibyte string mbs to an unsigned long
integer value in the indicated numeric base and returns it. It skips
over any white-space characters at the beginning of mbs. It stops
converting when it reaches a character that can’t be part of a number
(this includes multibyte characters). It looks for a number formatted
like [+][0x|0X|0][digits].

The value for base must be zero or between 2 and 16. If base is
between 2 and 16, the number is converted to a number in the
specified base. If base is zero, then the number is converted using a
numeric base that is determined by the prefix (see below).

Prefix Base Is
0x or 0X 16

0 8
none 10

The numbers must contain numerals and letters that are valid for the
base. For example, if base is 8, the number can contain only the
numerals 0-7. If base is 16, the number can contain only the
numerals 0-9 and the letters A-F and a-f.

This function is the multibyte replacement for the ANSI function
strtoul.

Return Value

unsigned long integer value; sets *mbs_end to first non-number
character if mbs_end is not NULL; zero if no number is found
(mbs_end is set to mbs). If the number exceeds the unsigned long
range, a warning is signaled and ULONG_MAX is returned.

See Also

xvt_str_parse_double
xvt_str_parse_long

xvt_str_sprintf and xvt_str_vsprinf
 Process Formats

Summary

size_t xvt_str_sprintf(char *mbs, const char *format,
 ...)

 size_t xvt_str_vsprintf(char *mbs, const char *format,
 va_list varg)

char *mbs

Target string.

const char *format

Format string.

va_list varg

Argument list.

Description

These functions process formats according to the ANSI C
specification for sprintf and vsprintf. They also process formats

according to the compiler ANSI C Library (as available) and
specifying the argument order.

The format specifiers are introduced by the % character or by the
sequence %digit$ followed by the normal specifiers. The
conversion can be applied to the nth argument in the argument list,
rather than the next unused argument by using the %digit$
sequence. digit is a decimal integer in the range 1-9 (inclusive) and
gives the position of the argument in the argument list. All format
specifiers for a given format string must follow this convention or
none of them can. The application cannot mix conventions. Also the
caller cannot reference an argument more than once nor can it skip
arguments.

This feature provides for the definition of format strings that select
arguments in an order appropriate to the specific locale and
language. This syntax generally follows that described in the Sun
Release 4.1 C Library Functions description of printf.

Return Value

The number of bytes processed.

See Also

printf

Example

char format_us[] = "%d/%od/%d";
char format_eu[] = "%2$d/%1$d/%3$d";
char* format;
if (locale == US_LOCALE)

 format = format_us;
 else

 format = format_eu;
xvt_str_sprintf(outstr, format, month, day, year);
xvt_dwin_draw_text(x, y, outstr, -1);

xvt_str_translate_codeset
Translates a Text String According to the XVT_CODESET_MAP

Summary

long xvt_str_translate_codeset(XVT_CODESET_MAP
codeset_map, char *string,
char *strbuf, size_t bufsize)

XVT_CODESET_MAP codeset_map

Codeset map used in codeset translation.

char *string

Text string to translate.

char *strbuf

Output buffer for translated string.

size_t bufsize

Size in bytes of output buffer.

Description

This function traverses the input string and converts the characters
from one character codeset to another according to the
XVT_CODESET_MAP. The input string is assumed to be encoded in the
"from codeset" of the XVT_CODESET_MAP. The "to codeset" should
support the same languages and contain the same characters as the
input character codeset. Any character found in the input string for
which there is no mapping value in the "to codeset" is discarded. The
resulting string is returned in strbuf up to a length of bufsize bytes.

Return Value

The number of characters processed is returned if successful; -1 if an
error occurred.

Parameter and Validity Conditions

XVT issues an error if any parameter is NULL or codeset_map is not
a valid XVT_CODESET_MAP.

See Also

XVT_CODESET_MAP
xvt_str_create_codeset_map
xvt_str_destroy_codeset_map

xvt_timer_*
 Timer Objects

xvt_timer_create
xvt_timer_destroy

xvt_timer_create
 Start Generation of Timer Events

Summary

long xvt_timer_create(WINDOW win, long interval)

WINDOW win

Window whose timer events are being started. win must be a
window of type W_DOC, W_PLAIN, W_DBL, W_TASK, W_NO_BORDER,
W_MODAL, WD_MODAL, or WD_MODELESS.

long interval

Interval of E_TIMER events in milliseconds.

Description

This function starts a timer that sends an E_TIMER event to the event
handler for win. The event is sent at an interval of milliseconds as
indicated by interval. An ID uniquely identifying the timer is
returned.

Timer events are useful for setting connection or login timeouts, as
well as for crude animation or "slide-show" displays. In addition,
timer events can be used to implement a crude sort of multi-
threading, where a window in which a continuous operation is to be
performed is set up to receive continuous timer events, and performs
a bit of the operation with each timer tick. For multi-threading ideas,
see xvt_app_process_pending_events.

Return Value

The ID of the timer assigned to the window. If the return value is
XVT_TIMER_ERROR, then no timer was available to be started.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are not met:

• win must be a valid XVT WINDOW and must not be a control or
print window.

• interval must be positive.

Implementation Note

The number of timers that can be created for a window or dialog and
the total number of timers that can be created are platform-specific.

See Also

E_TIMER
xvt_app_process_pending_events
xvt_timer_destroy

The "Events" chapter in the XVT Portability Toolkit Guide

xvt_timer_destroy
 Turn Off Timer

Summary

void xvt_timer_destroy(long id)

long id

Timer ID returned by xvt_timer_create.

Description

This function turns off the timer identified by id, and makes it
available for reuse. Turning off the timer causes XVT to stop
sending E_TIMER events to an event handler as a result of that
particular timer. Since timers tie up resources, using the
xvt_timer_create/xvt_timer_destroy method of eliminating
timer events is preferred to the technique of masking the events to
prevent the event handler from receiving the events.

On some platforms, E_TIMER events can remain in the queue even
after xvt_timer_destroy has been called. Therefore, to be
completely safe, your application should call
xvt_win_set_event_mask before calling xvt_timer_destroy to
mask E_TIMER events. This guarantees that any remaining E_TIMER
events in the event queue for a particular window are ignored.

Parameter Validity and Error Conditions

If id is not the ID of a valid timer returned from xvt_timer_create,
XVT issues an error.

See Also

E_TIMER
xvt_timer_create

Example

WINDOW window;
long timer_id;
...
/* turn off timer */
xvt_timer_destroy(timer_id);
/* mask any pending E_TIMER events */
xvt_win_set_event_mask(window, ~EM_TIMER &
xvt_win_get_event_mask(window));

xvt_treeview_add_child_node
 Add a child treeview node to existing treeview node

Summary

BOOLEAN xvt_treeview_add_child_node(

XVT_TREEVIEW_NODE parent_node,

XVT_TREEVIEW_NODE child_node);

XVT_TREEVIEW_NODE parent_node

Defines the parent node. Must be of type
XVT_TREEVIEW_NODE_NONTERMINAL.

XVT_TREEVIEW_NODE child_node

Defines the child node. Can be of type
XVT_TREEVIEW_NODE_TERMINAL or
XVT_TREEVIEW_NODE_NONTERMINAL.

Description

This function adds the treeview child_node to the existing treeview
parent_node. The view of treeview control is not updated by this
call.

Return Value

TRUE is successful; FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·parent_node and child_node must not be null

·parent_node must of type
XVT_TREEVIEW_NODE_NONTERMINAL

See Also

XVT_TREEVIEW_NODE

XVT_TREEVIEW_NODE_* Values for XVT_TREEVIEW_NODE_TYPE

xvt_treeview_get_child_node

xvt_treeview_create_node

xvt_treeview_get_parent_node

xvt_treeview_get_root_node

xvt_treeview_remove_child_node

xvt_treeview_update

xvt_treeview_collapse_node
 Collapses node

Summary

void xvt_treeview_collapse_node(XVT_TREEVIEW_NODE node,

BOOLEAN recurse);

XVT_TREEVIEW_NODE node

The node to collapse.

BOOLEAN recurse

Flag stating whether to recursively collapse all child nodes.

Description

This function will collapse the node if expanded. The expansion
state of the node’s children are not changed unless recurse is TRUE,
then all child nodes are also collapsed. The view of treeview control
is not updated by this call.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_expand_node

xvt_treeview_update

xvt_treeview_create
 Creates treeview control

Summary

WINDOW xvt_treeview_create(WINDOW parent_win,

RCT * rct_p, char * title, long ctl_flags,

long data, int ctl_id, XVT_IMAGE item_image,

XVT_IMAGE collapsed_image, XVT_IMAGE expanded_image,

long attrs, int line_height);

WINDOW parent_win

Window in which the control should be placed. It must be a
valid window of type W_*.

RCT * rct_p

Defines the bounding rectangle for the control in terms of the
parent window’s client area. This parameter must not be NULL
and must point to a valid rectangle.

char * title

Used to set the text of the control. It has no effect for this
control. If it is NULL, the control will have no title.

long ctl_flags

Controls the attributes and the initial state of a control. The
applicable control flags vary among controls, and a complete
table listing the valid control flags for each control can be found
in Window/Dialog/Control Creation Function Parameters.

long data

Contains any application data that you wish to attach to a
control. Typically, this will be a pointer to some structure
allocated from the heap, cast into a long such that later your
application can retrieve the structure and look at it.

int ctl_id

An ID number for the control relative to its parent window.
When XVT sends an E_CONTROL event to the event handler
for the window containing the control, it sets the v.ctl.id field of
the EVENT structure to the ID of the control that was activated.
A control ID-parent window combination is a way of uniquely
identifying a control independent of its window handle. Keep in
mind that it is not necessary to use control IDs, but if you choose
to use them, then all of the IDs for the controls in a window must
be unique. You can also call the xvt_win_get_ctl function with
an ID and parent window to retrieve the WINDOW for a
control.

XVT_IMAGE item_image

The image for an item within the node. If the image is
NULL_IMAGE then the item will have no image. This image
will be used for all items within the treeview unless it is
overridden with a item image at the node level.

XVT_IMAGE collapsed_image

The image for a node in the collapsed state. If the image is
NULL_IMAGE then the node will have no image. This image
will be used for all collapsed nodes within the treeview unless
it is overridden with a collapsed node image at the node level.

XVT_IMAGE expanded_image

The image for a node in the expanded state. If the image is
NULL_IMAGE then the node will have no image. This image
will be used for all expanded nodes within the treeview unless
it is overridden with an expanded node image at the node level.

long attrs

Controls the additional attributes, those outside of ctl_flags, for
the control. These attributes can be ORed together. See
“Treeview Attribute Constants” for complete list.

int line_height

The height of the line for a node. If set to 0, the control will
calculate the line height based on the control font size.

Description

This function creates the treeview control and adds it to parent_win.
This function does not add the control to dialogs.

Return Value

A WINDOW if successful; NULL_WIN if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·parent_win must be a valid XVT window of type W_*. You cannot
create a control in a dialog, a print window, a task window, or a
screen window. (The exception to this is if your application is
running with XVT/Win32, and has set the nonportable attribute
ATTR_WIN_PM_DRAWABLE_TWIN. In that case, it can create
controls in the task window.)

·rct_p must point to a valid rectangle.

·ctl_flags must be appropriate for the control you want to create, as
defined in Window/Dialog/Control Creation Function Parameters.

·attrs must be one or more of the defined treeview attribute constants

See Also

CTL_FLAG_* Options

E_CONTROL

EVENT

RCT

WINDOW

WIN_TYPE

xvt_treeview_get_attributes

xvt_treeview_get_line_height

xvt_treeview_get_root_node

xvt_treeview_resume

xvt_treeview_set_attributes

xvt_treeview_set_line_height

xvt_treeview_suspend

xvt_treeview_update

xvt_vobj_get_data

xvt_vobj_get_title

xvt_vobj_set_data

xvt_vobj_set_title

xvt_win_get_ctl

Window/Dialog/Control Creation Function Parameters

The "Controls" chapter in the “XVT Portability Toolkit
Guide”

Treeview Attribute Constants

xvt_treeview_create_node
 Creates a treeview node

Summary

XVT_TREEVIEW_NODE
xvt_treeview_create_node(XVT_TREEVIEW_NODE_TYPE type,

XVT_IMAGE item_image, XVT_IMAGE collapsed_image,

XVT_IMAGE expanded_image, char *string,

XVT_TREEVIEW_CALLBACK callback, long data);

XVT_TREEVIEW_NODE_TYPE type

The treeview node can be of type
XVT_TREEVIEW_NODE_TERMINAL,a leaf with no
children, or XVT_TREEVIEW_NODE_NONTERMINAL, a
branch which may have have children.

XVT_IMAGE item_image

The image for an item within the node. If the image is
NULL_IMAGE then the item will use the treeview control’s
item image.

XVT_IMAGE collapsed_image

The image for a node in the collapsed state. If the image is
NULL_IMAGE then the node will use the treeview control’s
collapsed image.

XVT_IMAGE expanded_image

The image for a node in the expandeded state. If the image is
NULL_IMAGE then the node will use the treeview control’s
expanded image.

char *string

Used to set the title of the node. If it is NULL, the node will have
no title.

XVT_TREEVIEW_CALLBACK callback

callback is a pointer to a function that will be executed in
response to a double-click on any node or the “Enter” key on a
selected node. The node will continue to perform the standard
behavior if the callback function returns TRUE. Set callback to
NULL for no call back.

long data

Contains any application data that you wish to attach to a
control. Typically, this will be a pointer to some structure
allocated from the heap, cast into a long such that later your
application can retrieve the structure and look at it.

Description

This function creates a treeview node that can later be assigned to
the treeview control’s root node or to another node as a child node.

Return Value

A XVT_TREEVIEW_NODE if successful; NULL if unsuccessful
(on error).

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·type is not of XVT_TREEVIEW_NODE_TYPE

See Also

XVT_TREEVIEW_NODE

XVT_TREEVIEW_NODE_* Values for XVT_TREEVIEW_NODE_TYPE

xvt_treeview_add_child_node

xvt_treeview_create

xvt_treeview_destroy_node

xvt_treeview_get_node_callback

xvt_treeview_get_node_data

xvt_treeview_get_node_image_collapsed

xvt_treeview_get_node_image_expanded

xvt_treeview_get_node_image_item

xvt_treeview_get_node_string

xvt_treeview_get_node_type

xvt_treeview_set_node_callback

xvt_treeview_set_node_data

xvt_treeview_set_node_image_collapsed

xvt_treeview_set_node_image_expanded

xvt_treeview_set_node_string

xvt_treeview_set_node_type

 xvt_treeview_destroy_node
 Destroys treeview node

Summary

void xvt_treeview_destroy_node(XVT_TREEVIEW_NODE node);

XVT_TREEVIEW_NODE node

A valid treeview node.

Description

This function will destroy the treeview node. If the node has a
parent, the node will be removed from the parent. If the node is of
type XVT_TREEVIEW_NODE_NONTERMINAL then all child
nodes will also be destroyed. The view of treeview control is not
updated by this call.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE_* Values for XVT_TREEVIEW_NODE_TYPE

xvt_treeview_update

xvt_vobj_destroy

xvt_treeview_expand_node
 Expands node

Summary

void xvt_treeview_expand_node(XVT_TREEVIEW_NODE node,

BOOLEAN recurse);

XVT_TREEVIEW_NODE node

A valid treeview node.

BOOLEAN recurse

Flag stating whether to recursively expand all child nodes.

Description

This function will collapse the node if expanded. The expansion
state of the node’s children are not changed unless recurse is TRUE,
then all child nodes are also collapsed. The view of treeview control
is not updated by this call.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_collapse_node

xvt_treeview_update

xvt_treeview_get_attributes
 Get the attributes for the treeview control

Summary

long xvt_treeview_get_attributes(WINDOW ctl_win);

WINDOW ctl_win

Window of control of type WC_TREEVIEW.

Description

This function returns the current attributes for the treeview control.

Return Value

ORed list of treeview attributes.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·ctl_win must not be null

·ctl_win must of type WC_TREEVIEW

See Also

WIN_TYPE

Treeview Attribute Constants

xvt_treeview_create

xvt_treeview_set_attributes

xvt_treeview_get_child_node
 Get a child node from a parent node

Summary

XVT_TREEVIEW_NODE xvt_treeview_get_child_node(

XVT_TREEVIEW_NODE parent_node, int position);

XVT_TREEVIEW_NODE parent_node

Defines the parent node. Must be of type
XVT_TREEVIEW_NODE_NONTERMINAL.

int position

The position of the child node, 0 to the number of children
minus 1, within the parent to retrieve.

Description

This function retrieves the nth child node of the parent.

Return Value

XVT_TREEVIEW_NODE of the nth child node of the parent if
valid.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·parent_node must not be null

·parent_node must of type
XVT_TREEVIEW_NODE_NONTERMINAL

See Also

XVT_TREEVIEW_NODE

XVT_TREEVIEW_NODE_* Values for XVT_TREEVIEW_NODE_TYPE

xvt_treeview_add_child_node

xvt_treeview_get_parent_node

xvt_treeview_get_root_node

xvt_treeview_remove_child_node

xvt_treeview_get_line_height
 Get line height of treeview node

Summary

long xvt_treeview_get_line_height(WINDOW ctl_win);

WINDOW ctl_win

Window of control of type WC_TREEVIEW.

Description

This function returns the line height of the treeview node. If treeview
control was created with the line height set to 0 then this function
returns the line as calculated from the node image heights.

Return Value

The line height of the treeview node.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·ctl_win must not be null

·ctl_win must of type WC_TREEVIEW

See Also

WIN_TYPE

xvt_treeview_create

xvt_treeview_set_line_height

xvt_treeview_get_node_callback
 Get the node call back function

Summary

XVT_TREEVIEW_CALLBACK

xvt_treeview_get_node_callback(XVT_TREEVIEW_NODE node);

XVT_TREEVIEW_NODE node

The node.

Description

This function returns the call back function assigned to a node either
at node creation or by using xvt_treeview_set_node_callback.

The callback is a pointer to a function that will be called in response
to a double-click on any node or the “Enter” key on a selected node.
The node will continue to perform the standard behavior if the
callback function returns TRUE. Set callback to NULL for no call
back.

Return Value

XVT_TREEVIEW_CALLBACK for treeview node if successful.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

XVT_TREEVIEW_CALLBACK

xvt_treeview_create_node

xvt_treeview_set_node_callback

xvt_treeview_get_node_data
 Get the node data

Summary

long xvt_treeview_get_node_data(XVT_TREEVIEW_NODE node);

XVT_TREEVIEW_NODE node

The node.

Description

This function returns the data assigned to a node either at node
creation or by using xvt_treeview_set_node_data.

Return Value

long value contain node data.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_create_node

xvt_treeview_set_node_data

xvt_treeview_get_node_image_collapsed
 Get the collapsed image for a node

Summary

XVT_IMAGE xvt_treeview_get_node_image_collapsed(

XVT_TREEVIEW_NODE node);

XVT_TREEVIEW_NODE node

The node.

Description

This function returns the collapsed image assigned to a node either
at node creation or by using
xvt_treeview_set_node_image_collapsed.

Return Value

XVT_IMAGE for the collapsed image of the node.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_create_node

xvt_treeview_set_node_image_collapsed

xvt_treeview_get_node_image_expanded
 Get the expanded image for a node

Summary

XVT_IMAGE xvt_treeview_get_node_image_expanded(

XVT_TREEVIEW_NODE node);

XVT_TREEVIEW_NODE node

The node.

Description

This function returns the expanded image assigned to a node either
at node creation or by using
xvt_treeview_set_node_image_expanded.

Return Value

XVT_IMAGE for the expanded image of the node.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_create_node

xvt_treeview_set_node_image_expanded

xvt_treeview_get_node_image_item
 Get the item image for a node

Summary

XVT_IMAGE xvt_treeview_get_node_image_item(

XVT_TREEVIEW_NODE node);

XVT_TREEVIEW_NODE node

The node.

Description

This function returns the item image assigned to a node either at
node creation or by using xvt_treeview_set_node_image_item.

Return Value

XVT_IMAGE for the item image of the node.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_create_node

xvt_treeview_set_node_image_item

xvt_treeview_get_node_num_children
 Get the number of child nodes for a node

Summary

int xvt_treeview_get_node_num_children(

XVT_TREEVIEW_NODE node);

XVT_TREEVIEW_NODE node

The node.

Description

This function returns the number of child nodes in node. Nodes of
type XVT_TREEVIEW_NODE_TERMINAL have 0 children.

Return Value

Number of child nodes.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

XVT_TREEVIEW_NODE_* Values for XVT_TREEVIEW_NODE_TYPE

xvt_treeview_add_child_node

xvt_treeview_get_node_num_vis_children

xvt_treeview_remove_child_node

xvt_treeview_get_node_num_vis_children
 Get the number of visible child nodes for a node

Summary

int xvt_treeview_get_node_num_vis_children(

XVT_TREEVIEW_NODE node);

XVT_TREEVIEW_NODE node

The node.

Description

This function returns the number of visible child nodes, through
expansion, in node. Nodes of type
XVT_TREEVIEW_NODE_TERMINAL have 0 children.

Return Value

Number of visible child nodes.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

XVT_TREEVIEW_NODE_* Values for XVT_TREEVIEW_NODE_TYPE

xvt_treeview_add_child_node

xvt_treeview_get_node_num_children

xvt_treeview_remove_child_node

xvt_treeview_get_node_string
 Get the item text for a node

Summary

char * xvt_treeview_get_node_string(

XVT_TREEVIEW_NODE node,

char *string, int sz_string);

XVT_TREEVIEW_NODE node

The node.

char *string

Character buffer for item text.

int sz_string

Maximum character buffer capacity.

Description

This function copies the item text to the string buffer that was
assigned to a node either at node creation or by using
xvt_treeview_set_node_string. The maximum number of characters
copied to the string buffer is determined by sz_string.

Return Value

Pointer to string buffer.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

·string must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_create_node

xvt_treeview_set_node_string

xvt_treeview_get_node_type
 Get node type

Summary

XVT_TREEVIEW_NODE_TYPE
xvt_treeview_get_node_type(XVT_TREEVIEW_NODE node);

XVT_TREEVIEW_NODE node

The node.

Description

This function returns the node type assigned to a node either at node
creation or by using xvt_treeview_set_node_type.

Return Value

XVT_TREEVIEW_NODE_TYPE of node.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

XVT_TREEVIEW_NODE_TYPE

xvt_treeview_create_node

xvt_treeview_set_node_type

xvt_treeview_get_parent_node
 Get parent node

Summary

XVT_TREEVIEW_NODE xvt_treeview_get_parent_node(

XVT_TREEVIEW_NODE child_node);

XVT_TREEVIEW_NODE node

The node.

Description

This function returns the parent node of a child node.

Return Value

XVT_TREEVIEW_NODE for the parent, if assigned. NULL if no
parent.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_add_child_node

xvt_treeview_destroy_node

xvt_treeview_remove_child_node

 xvt_treeview_get_root_node
 Get root node form treeview control

Summary

XVT_TREEVIEW_NODE xvt_treeview_get_root_node(

WINDOW ctl_win);

WINDOW ctl_win

Window of control of type WC_TREEVIEW.

Description

This functions returns the root node for the treeview control for
which all other nodes of the treeview control are children. The root
node may or may not be visible based on the
TREEVIEW_SHOW_ROOT_NODE attribute.

Return Value

XVT_TREEVIEW_NODE containing the root node of the treeview
control.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·ctl_win must not be null

·ctl_win must of type WC_TREEVIEW

See Also

WIN_TYPE

XVT_TREEVIEW_NODE

Treeview Attribute Constants

xvt_treeview_add_child_node

xvt_treeview_create

xvt_treeview_create_node

xvt_treeview_set_attributes

 xvt_treeview_node_selected
 Get node selection state

Summary

BOOLEAN xvt_treeview_node_selected(

XVT_TREEVIEW_NODE node);

XVT_TREEVIEW_NODE node

The node.

Description

This function returns the selection state of a node. The selection state
is dependant on the following attributes:
TREEVIEW_SELECT_NONE, TREEVIEW_SELECT_ONE, or
TREEVIEW_SELECT_MANY. The selection is set via user
interaction.

Return Value

TRUE is node is selected, FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_get_node_callback

xvt_treeview_set_node_callback

 xvt_treeview_remove_child_node
 Remove child node from list

Summary

BOOLEAN xvt_treeview_remove_child_node(

XVT_TREEVIEW_NODE child_node);

XVT_TREEVIEW_NODE node

The node.

Description

This function removes the child node from its parent. The node is
note destroyed.

Return Value

TRUE is node is successful, FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·child node must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_add_child_node

xvt_treeview_create_node

xvt_treeview_destroy_node

xvt_treeview_get_parent_node

 xvt_treeview_resume
 Resume updating of treeview control

Summary

void xvt_treeview_resume(WINDOW ctl_win);

WINDOW ctl_win

Window of control of type WC_TREEVIEW.

Description

This function resumes the updating of the treeview control and will
update the control’s view if needed.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·ctl_win must not be null

·ctl_win must of type WC_TREEVIEW

See Also

WIN_TYPE

xvt_treeview_suspend

xvt_treeview_update

 xvt_treeview_set_attributes
 Set the attributes for treeview control

Summary

void xvt_treeview_set_attributes(WINDOW ctl_win,

long attrs);

WINDOW ctl_win

Window of control of type WC_TREEVIEW.

long attrs

Treeview Attribute Constants

Description

This function sets the current attributes, those outside of ctl_flags,
for treeview control. These attributes can be ORed together. See
“Treeview Attribute Constants” for complete list.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·ctl_win must not be null

·ctl_win must of type WC_TREEVIEW

·attrs must be one or more of the defined treeview attribute constants

See Also

WIN_TYPE

Treeview Attribute Constants

xvt_treeview_create

xvt_treeview_get_attributes

xvt_treeview_update

 xvt_treeview_set_line_height
 Set line height for a node

Summary

void xvt_treeview_set_line_height(

WINDOW ctl_win, long line_height);

WINDOW ctl_win

Window of control of type WC_TREEVIEW.

long line_height

New line height.

Description

This function sets the height of the line for a node. If set to 0, the
control will calculate the line height based on the control font size.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·ctl_win must not be null

·ctl_win must of type WC_TREEVIEW

See Also

WIN_TYPE

xvt_treeview_create

xvt_treeview_set_line_height

 xvt_treeview_set_node_callback
 Set the node call back function

Summary

void xvt_treeview_set_node_callback(

XVT_TREEVIEW_NODE node,

XVT_TREEVIEW_CALLBACK fcn);

XVT_TREEVIEW_NODE node

The node.

XVT_TREEVIEW_CALLBACK fcn

The callback function expects to be passed the following
parameters: (WINDOW ctl_win, XVT_TREEVIEW
REEVIEW_NODE node) and returns a BOOLEAN. Set callback to
NULL for no call back.

Description

This function sets the call back function for a node.

The callback is a pointer to a function that will be called in response
to a double-click on any node or the “Enter” key on a selected node.

The node will continue to perform the standard behavior if the
callback function returns TRUE. Set callback to NULL for no call
back.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

XVT_TREEVIEW_CALLBACK

xvt_treeview_create_node

xvt_treeview_get_node_callback

 xvt_treeview_set_node_data
 Set the node data

Summary

void xvt_treeview_set_node_data (

XVT_TREEVIEW_NODE node, long data);

XVT_TREEVIEW_NODE node

The node.

long data

Node data.

Description

This function sets the data assigned to a node.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_create_node

xvt_treeview_get_node_data

 xvt_treeview_set_node_image_collapsed
 Set the collapsed image for a node

Summary

void xvt_treeview_set_node_image_collapsed(

XVT_TREEVIEW_NODE node, XVT_IMAGE image);

XVT_TREEVIEW_NODE node

The node.

XVT_IMAGE image

The image for a node in the collapsed state. If the image is
NULL_IMAGE then the node will use the treeview control’s
collapsed image.

Description

This function sets the collapsed image for a node.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_create_node

xvt_treeview_get_node_image_collapsed

 xvt_treeview_set_node_image_expanded
 Set the expanded image for a node

Summary

void xvt_treeview_set_node_image_expanded(

XVT_TREEVIEW_NODE node, XVT_IMAGE image);

XVT_TREEVIEW_NODE node

The node.

XVT_IMAGE image

The image for a node in the expanded state. If the image is
NULL_IMAGE then the node will use the treeview control’s
expanded image.

Description

This function sets the expanded image for a node.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_create_node

xvt_treeview_get_node_image_expanded

xvt_treeview_set_node_image_item
 Set the item image for a node

Summary

void xvt_treeview_set_node_image_item(

XVT_TREEVIEW_NODE node, XVT_IMAGE image);

XVT_TREEVIEW_NODE node

The node.

XVT_IMAGE image

The item image for a node. If the image is NULL_IMAGE then
the node will use the treeview control’s item image.

Description

This function sets the item image for a node.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_create_node

xvt_treeview_get_node_image_item

xvt_treeview_set_node_string
 Set the item text for a node

Summary

void xvt_treeview_set_node_string(

XVT_TREEVIEW_NODE node, char *string);

XVT_TREEVIEW_NODE node

The node.

char *string

Null terminated character buffer for item text. Set sting to
NULL for no item text.

Description

This function copies the item text to in string buffer and assigns it to
the node.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

·string must not be null

See Also

XVT_TREEVIEW_NODE

xvt_treeview_create_node

xvt_treeview_get_node_string

xvt_treeview_set_node_type
 Set node type

Summary

void xvt_treeview_set_node_type(

XVT_TREEVIEW_NODE node,

XVT_TREEVIEW_NODE_TYPE type);

XVT_TREEVIEW_NODE node

The node.

XVT_TREEVIEW_NODE_TYPE type

The treeview node can be of type
XVT_TREEVIEW_NODE_TERMINAL,a leaf with no children, or
XVT_TREEVIEW_NODE_NONTERMINAL, a branch which
may have have children.

Description

This function sets the node type assigned to a node. If the node type
is changing from XVT_TREEVIEW_NODE_NONTERMINAL to
XVT_TREEVIEW_NODE_TERMIAL all children of the node will
be destroyed.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·node must not be null

·type is not of XVT_TREEVIEW_NODE_TYPE

See Also

XVT_TREEVIEW_NODE

XVT_TREEVIEW_NODE_TYPE

xvt_treeview_create_node

xvt_treeview_destroy_node

xvt_treeview_get_node_type

xvt_treeview_suspend
 Suspend updating of treeview control

Summary

void xvt_treeview_suspend(WINDOW ctl_win);

WINDOW ctl_win

Window of control of type WC_TREEVIEW.

Description

This function suspends the updating of the treeview control until the
updating is resumed with xvt_treeview_resume.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·ctl_win must not be null

·ctl_win must of type WC_TREEVIEW

See Also

WIN_TYPE

xvt_treeview_resume

xvt_treeview_update

xvt_treeview_update
 Force update of treeview control

Summary

void xvt_treeview_suspend(WINDOW ctl_win);

WINDOW ctl_win

Window of control of type WC_TREEVIEW.

Description

This function forces the updating of the treeview control’s view.

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

·ctl_win must not be null

·ctl_win must of type WC_TREEVIEW

See Also

WIN_TYPE

xvt_treeview_resume

xvt_treeview_suspend

xvt_tx_*
 Text Edit Functions

xvt_tx_add_par
xvt_tx_append
xvt_tx_clear
xvt_tx_create
xvt_tx_create_def
xvt_tx_destroy
xvt_tx_get_attr
xvt_tx_get_limit
xvt_tx_get_line
xvt_tx_get_margin
xvt_tx_get_next_tx
xvt_tx_get_num_chars
xvt_tx_get_num_lines
xvt_tx_get_num_par_lines
xvt_tx_get_num_pars
xvt_tx_get_origin
xvt_tx_get_sel
xvt_tx_get_tabstop
xvt_tx_get_view
xvt_tx_rem_par
xvt_tx_reset
xvt_tx_resume
xvt_tx_scroll_hor
xvt_tx_scroll_vert
xvt_tx_set_attr
xvt_tx_set_limit
xvt_tx_set_margin
xvt_tx_set_par
xvt_tx_set_scroll_callback
xvt_tx_set_sel
xvt_tx_set_tabstop
xvt_tx_suspend

xvt_tx_add_par
 Add Paragraph to Text Edit Object

Summary

BOOLEAN xvt_tx_add_par(TXEDIT tx, T_PNUM pnum, char *s)

TXEDIT tx

Text edit object.

T_PNUM pnum

Number of the paragraph before which to add the string.

char *s

String to add.

Description

This function adds the NULL-terminated string s to the text edit object
designated by tx. The string becomes a new paragraph. It is added
before paragraph pnum (zero is the first). A pnum beyond the last
paragraph (e.g., USHRT_MAX) causes the new paragraph to be added
after the last paragraph.

Return Value

TRUE if successful; FALSE if unsuccessful.

See Also

T_PNUM
TXEDIT
xvt_tx_append
xvt_tx_rem_par
xvt_tx_set_par

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

FILE *in;
...
xvt_tx_suspend(txedit);
while (fgets(buf, sizeof(buf), in) != NULL) {

 len = strlen(buf);
if (had_newline = (buf[len - 1] == ’

’))
 buf[len - 1] = ’0’;

 if (new_par) {
 if (!xvt_tx_add_par(txedit, USHRT_MAX, buf)) {

 xvt_dm_post_error(
"Error adding paragraph.");

 break;
 }

 }
else if (!xvt_tx_append(txedit, USHRT_MAX, buf)) {

 xvt_dm_post_error(
 "Error appending to paragraph.");

 break;
 }
new_par = had_newline;

 }
fclose(in);
xvt_dm_post_note("Read in %d paragraphs and %d lines.",

 xvt_tx_get_num_pars(txedit),
 xvt_tx_get_num_lines(txedit));

 xvt_tx_resume(txedit);

xvt_tx_append
 Add to Text Edit Paragraph

Summary

BOOLEAN xvt_tx_append(TXEDIT tx, T_PNUM pnum, char *s)

TXEDIT tx

Text edit object.

T_PNUM pnum

Number of the paragraph on which to append the string.

char *s

String to append.

Description

This function appends the NULL-terminated string s to the end of
paragraph pnum (zero is the first) in the text edit object designated by
tx. If pnum is greater than the last paragraph (e.g., USHRT_MAX), the
string is appended to the last paragraph.

Note: A newly-created text edit object has zero paragraphs. Therefore, you
must first call xvt_tx_add_par before calling xvt_tx_append for a
newly-created text edit object.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

See Also

T_PNUM
TXEDIT
xvt_tx_add_par
xvt_tx_rem_par
xvt_tx_set_par

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_tx_add_par.

xvt_tx_clear
 Clear Text Edit Object

Summary

BOOLEAN xvt_tx_clear(TXEDIT tx)

TXEDIT tx

Text edit object.

Description

This function removes all text from the text edit object designated by
tx without destroying tx. If you want to destroy a text edit object,
call xvt_tx_destroy instead.

Note: A cleared text edit object has no paragraphs. Therefore, you must
call xvt_tx_add_par before calling xvt_tx_append or
xvt_tx_set_par.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

See Also

TXEDIT
xvt_tx_add_par
xvt_tx_append
xvt_tx_destroy
xvt_tx_rem_par
xvt_tx_set_par

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_create
 Create Text Edit Object

Summary

TXEDIT xvt_tx_create(WINDOW win, RCT *rctp,
 unsigned attrib, XVT_FNTID font_id, int margin,
int limit)

WINDOW win

Window in which to create the text edit object.

RCT *rctp

Border rectangle, in window-relative coordinates. If the
TX_BORDER attribute isn’t set, this is taken as the requested view
rectangle. If TX_BORDER is set, the view rectangle is inset by 4
pixels. Also, the bottom coordinate of the view rectangle may
be reduced so that an integral number of text lines will appear
in the view.

unsigned attrib

Attribute flags, normally formed by ORing one or more of the
symbols defined in TX_* Attributes.

XVT_FNTID font_id

Handle of the logical font. All text in a single text edit object
must have the same logical font (same family, style, and point
size). Your application can get a logical font by calling
xvt_font_create or xvt_res_get_font, or by copying the

v.font.font_id member from an E_FONT event with
xvt_font_copy.

int margin

Right margin, in pixels. This is meaningful only if the TX_WRAP
attribute is set. A value of zero means wrap to the view width.

int limit

Character limit. The maximum number of characters that can be
typed into a single paragraph. A value of zero implies no limit.

Description

This function creates a new text edit object in an existing window
and returns an object of type TXEDIT, which must be used in
subsequent calls to operate on the object. The application owns the
font_id, and is responsible for allocating and freeing it. The text
edit system creates its own copy of the logical font.

Note: You can also use xvt_tx_create_def to create text edit objects.
This function has all of the capabilities of xvt_tx_create, plus it
allows your application to assign application data to the text edit
object and to give the text edit object an ID. The ID can be used later
in a call to xvt_win_get_tx to retrieve a TXEDIT in a particular
window. Also note that you can use xvt_win_create_def and
xvt_win_create_res to create a window and multiple text edit
objects with a single function call.

It is not possible to create a text edit object in a dialog.

Return Value

The TXEDIT descriptor if successful; NULL_TXEDIT if unsuccessful.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• There is insufficient memory available.

• The function is called during an E_UPDATE

• The window is invalid

• The font is invalid

• rctp is NULL

See Also

E_FONT
RCT
TX_* Attributes
TXEDIT
WINDOW
XVT_FNTID
xvt_font_copy
xvt_font_create
xvt_res_get_font
xvt_tx_create_def
xvt_tx_destroy
xvt_tx_set_scroll_callback
xvt_tx_set_tabstop
xvt_win_create_def
xvt_win_create_res
xvt_win_get_tx

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_create_def
 Create a Text Edit Object from a Data Structure

Summary

TXEDIT xvt_tx_create_def(WIN_DEF *win_def_p, WINDOW
parent_win, long app_data)

WIN_DEF *win_def_p

Pointer to a WIN_DEF structure (see description below).

WINDOW parent_win

Parent window in which the text edit object will be created.

long app_data

Contains any application data you wish to attach to the text edit
object (it usually is a pointer to a data structure cast into a long).

Description

This function adds an XVT text edit object to the win parent
window. This function does not add text edit objects to dialogs.

win_def_p points to a WIN_DEF structure describing the text edit
object to be created. When filling in the WIN_DEF, keep in mind the
following:

• win_def_p->wtype is always set to WC_TEXTEDIT.

• win_def_p->rct defines the bounding rectangle for the text
edit object in terms of the window’s client area.

• win_def_p->v.tx.attrib specifies the attribute flag of the
text edit object. You set the flag by ORing together one or
more of the TX_* Attributes.

• win_def_p->text is used to set the text of the text edit object.
It must either be NULL or point to a NULL-terminated string.

• win_def_p->units is one of the type U_PIXELS, U_CHARS, or
U_SEMICHARS, and specifies the units used to measure the
bounding rectangle defined by win_def_p->rct.

• win_def_p->v.tx.margin is used to set the width of the right
margin in pixels. It is meaningful only if the TX_WRAP attribute
is set. A value of zero means wrap to the view width.

• win_def_p->v.tx.tx_id is an ID number for the text edit
object. This is a way of uniquely identifying a text edit object
in a window. Keep in mind that it is not necessary to specify
an ID, but if you choose to use it in your application, then you
must set this field. All of the IDs for the text edit objects in a
window must be unique.

• win_def_p->v.tx.limit defines the maximum number of
characters allowed per parargraph. Setting win_def_p-
>v.tx.limit to zero implies no limit.

• win_def_p->v.tx.font_id is the logical font to be displayed
in the text edit object. You can obtain a valid font structure by
calling xvt_font_create.

Keep in mind that xvt_tx_create_def has all of the capabilities of
xvt_tx_create, plus it allows the application to give the text edit
object an ID. The ID can later be used in a call to xvt_win_get_tx
to retrieve a TXEDIT in a particular window.

Return Value

A TXEDIT if successful; NULL_TXEDIT if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• There is insufficient memory available.

• The function is called during an E_UPDATE event

• The window is invalid

• win_def_p->wtype is not WC_TEXTEDIT

• win_def_p->units is not U_PIXELS, U_CHARS, or
U_SEMICHARS

• win_def_p->v.tx.font_id is not a valid logical font

See Also

TXEDIT
TX_* Attributes
U_* Values for UNIT_TYPE
U_* Values for UNIT_TYPE
WIN_DEF
WINDOW
xvt_tx_create
xvt_tx_destroy
xvt_tx_set_tabstop
xvt_vobj_get_data
xvt_vobj_set_data
xvt_win_create_def
xvt_win_create_res
xvt_win_get_tx

The "Controls" chapter in the Guide

xvt_tx_destroy
 Destroy Text Edit Object

Summary

BOOLEAN xvt_tx_destroy(TXEDIT tx)

TXEDIT tx

Text edit object.

Description

This function deletes all text from the text edit object designated by
tx and releases all memory associated with it. Finally, the value of
tx will no longer designate a valid text edit object.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

See Also

TXEDIT
xvt_tx_clear
xvt_tx_create
xvt_tx_create_def
xvt_tx_rem_par

The "Controls" chapter in the Guide

xvt_tx_get_attr
 Get Text Edit Attributes

Summary

unsigned xvt_tx_get_attr(TXEDIT tx)

TXEDIT tx

Text edit object.

Description

This function retrieves the attributes of the text edit object
designated by tx. The attributes can be set by xvt_tx_create,
xvt_tx_create_def, or xvt_tx_set_attr. For a complete
description of the attributes, see xvt_tx_create.

Return Value

The attributes OR’d together.

See Also

TXEDIT
xvt_tx_create
xvt_tx_create_def
xvt_tx_set_attr

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_get_limit
 Get Text Edit Character Limit

Summary

int xvt_tx_get_limit(TXEDIT tx)

TXEDIT tx

Text edit object.

Description

This function retrieves the character limit (the maximum number of
characters per paragraph) of the text edit object designated by tx.
The character limit is set by xvt_tx_create, xvt_tx_create_def,
or xvt_tx_set_limit.

Return Value

The character limit.

See Also

TXEDIT
xvt_tx_create
xvt_tx_create_def
xvt_tx_set_limit

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_get_line
 Get Line from Text Edit Object

Summary

char *xvt_tx_get_line(TXEDIT tx, T_PNUM pnum,
 ACCESS_CMD cmd, T_LNUM lnum, unsigned *lenp)

TXEDIT tx

Text edit object.

T_PNUM pnum

Number of the paragraph that contains the line.

ACCESS_CMD cmd

Command. For each line, you must call it three times: once with
cmd set to A_LOCK, once with cmd set to A_GET, and once with
cmd set to A_UNLOCK.

T_LNUM lnum

Line number in the paragraph.

unsigned *lenp

Returned length of the line in bytes.

Description

This function retrieves the text of line lnum in paragraph pnum in the
text edit object designated by tx. For each line, you must call it three
times: once with cmd set to A_LOCK, once to actually get the text with
cmd set to A_GET, and once with cmd set to A_UNLOCK. For the A_LOCK
and A_UNLOCK calls, the lenp argument can be NULL, and the return
value should be ignored.

For the A_GET call, a pointer to the text line is returned. That pointer
is valid until the A_UNLOCK call is made. The length of the line is
returned through the lenp argument. This is essential, because the
text itself is not NULL-terminated.

Note: You must not interleave A_LOCK / A_GET / A_UNLOCK sequences.
The complete three-call sequence for a line must be completed
before another line can be accessed.

Return Value

A pointer to the text if successful; NULL if pnum or lnum are out of
range. No valid data is returned if cmd is A_LOCK or A_UNLOCK. Do not
attempt to free or modify the line text.

See Also

ACCESS_CMD
T_LNUM
T_PNUM
TXEDIT
xvt_tx_get_num_chars
xvt_tx_get_num_lines
xvt_tx_get_num_pars
xvt_tx_get_num_par_lines

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

The following code illustrates how to get the text in the first visible
line of a text edit:

void
text_get_string(TXEDIT tx, char *line, int line_len)
{

 if (tx != NULL_TXEDIT)
{

 char *lp;
T_PNUM pnum;
T_LNUM lnum;
unsigned int len;
xvt_tx_get_origin(tx, &pnum, &lnum, NULL,

NULL);
 (void) xvt_tx_get_line(tx, pnum, A_LOCK,
lnum, &len);
lp = xvt_tx_get_line(tx, pnum, A_GET, lnum,

&len);
 xvt_str_copy_n_size(line, lp, min(len,

line_len-1));
line[len] = ’0’;
(void) xvt_tx_get_line(tx, pnum, A_UNLOCK,

lnum, &len);
 }
else

 line[0] = ’0’;
 }

xvt_tx_get_margin
 Get Text Edit Margin

Summary

int xvt_tx_get_margin(TXEDIT tx)

TXEDIT tx

Text edit object.

Description

This function retrieves the right margin of the text edit object
designated by tx, as set by xvt_tx_create, xvt_tx_create_def, or
xvt_tx_set_margin.

Note: This value is meaningful only if the TX_WRAP attribute is set.

Return Value

The margin in pixels. A value of zero means that word wrapping
occurs at a value slightly less than the view width.

See Also

TXEDIT
xvt_tx_create
xvt_tx_create_def
xvt_tx_set_margin

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_get_next_tx
 Get Next Text Edit Object

Summary

TXEDIT xvt_tx_get_next_tx(TXEDIT tx, WINDOW win)

TXEDIT tx

Previous textedit object or NULL_TXEDIT.

WINDOW win

Parent window or NULL_WIN.

Description

This function returns the next text edit object from the internal list
maintained by the text edit module. If win is a valid window, the next
text edit object whose parent window is win is returned. If win is
NULL_WIN, then the next text edit object in any window is returned.
If the tx parameter is NULL_TXEDIT, the first text edit object that
meets the criteria above is returned; otherwise, the search in the list
starts from tx in the list.

Nothing should be assumed about the order of text edit objects in the
internal list.

Return Value

The next valid text edit object after tx that meets the criteria set by
the win parameter; NULL_TXEDIT if the end of the list is reached.

See Also

NULL_TXEDIT
TXEDIT
WINDOW
xvt_win_get_tx

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

The following example clears all of the text edit objects in the
application:

TXEDIT tx = NULL_TXEDIT;while (NULL_TXEDIT != (tx =
xvt_tx_get_next_tx(tx, NULL_WIN)))

 xvt_tx_clear(tx);

xvt_tx_get_num_chars
 Get Number of Characters in Text Edit Line

Summary

T_CNUM xvt_tx_get_num_chars(TXEDIT tx, T_PNUM pnum,
 T_LNUM lnum)

TXEDIT tx

Text edit object.

T_PNUM pnum

Number of the paragraph containing the line.

T_LNUM lnum

Line number in the paragraph.

Description

This function retrieves the number of characters in line lnum of
paragraph pnum of the text edit object designated by tx. Line
numbers and paragraph numbers both start at zero. An lnum that’s
too large is taken to mean the last line of the paragraph.

Return Value

The number of characters if successful; zero if pnum is out of range.

See Also

T_CNUM
T_LNUM
T_PNUM
TXEDIT
xvt_tx_get_num_pars
xvt_tx_get_num_par_lines

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_get_num_lines
 Get Number of Lines in Text Edit Object

Summary

T_LNUM xvt_tx_get_num_lines(TXEDIT tx)

TXEDIT tx

Text edit object.

Description

This function retrieves the total number of lines in the text edit
object designated by tx. This function is useful when computing the
range of the vertical scrollbar of a window containing the text edit
object.

If TX_WRAP is not set, then the number of lines is equal to the number
of paragraphs. If TX_WRAP is set, then the number of lines is greater
than or equal to the number of paragraphs, due to wrapping.

Return Value

The number of lines.

See Also

T_LNUM
TXEDIT
xvt_tx_add_par
xvt_tx_get_num_pars

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_tx_add_par.

xvt_tx_get_num_par_lines
 Get Number of Lines in Text Edit Paragraph

Summary

T_LNUM xvt_tx_get_num_par_lines(TXEDIT tx, T_PNUM pnum)

TXEDIT tx

Text edit object.

T_PNUM pnum

Number of the paragraph from which to inquire line count.

Description

This function retrieves the number of lines in paragraph pnum (zero
is the first) of the text edit object designated by tx. This function is
useful for computing the number of lines to scroll via
xvt_tx_scroll_vert to view a particular paragraph.

Note that if you add the return value from this function for each
paragraph in a text edit object, this value will equal the return value
of xvt_tx_get_num_lines.

Return Value

The number of lines if successful; zero if pnum is out of range.

See Also

T_PNUM
TXEDIT
xvt_tx_get_num_lines
xvt_tx_get_num_pars
xvt_tx_scroll_vert

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_get_num_pars
 Get Number of Paragraphs in Text Edit Object

Summary

T_PNUM xvt_tx_get_num_pars(TXEDIT tx)

TXEDIT tx

Text edit object.

Description

This function retrieves the total number of paragraphs in the text edit
object designated by tx. Note that if the TX_WRAP attribute isn’t set,
the number of lines is equal to the number of paragraphs.

Return Value

The number of paragraphs.

See Also

T_PNUM
TXEDIT
TX_* Attributes
xvt_tx_add_par

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_tx_add_par.

xvt_tx_get_origin
 Get Top Paragraph and Line of View Rectangle

Summary

void xvt_tx_get_origin(TXEDIT tx, T_PNUM *pnump,
 T_LNUM *lnump, T_LNUM *org_linep,
 T_CPOS *org_offsetp)

TXEDIT tx

Text edit object.

T_PNUM *pnump

Paragraph number containing top line.

T_LNUM *lnump

Line number within the paragraph.

T_LNUM *org_linep

Line number from the start of the whole text edit object.

T_CPOS *org_offsetp

Horizontal origin of the view, in pixels.

Description

This function gets the paragraph and line shown at the top of the
view rectangle for the text edit object designated by tx. The absolute
paragraph number and line number within that paragraph are
returned through the pnump and lnump arguments. In addition to

returning the top visible line in terms of the paragraph and a line
within that paragraph, this function returns the line at the top of the
view in terms of an absolute line count from the top of the text edit
object. That value is returned through the org_linep argument.

This function returns the horizontal origin of the view in terms of the
number of pixels that have been shifted to the left of the view,
through the org_offsetp argument. Your application can set any of
these pointers to NULL if it doesn’t need that particular data item.

An application can create scrollbar controls around a text edit object,
but the application must do the scrolling and scrollbar manipulation
itself. This function is useful when a text edit object is created along
with application-created scrollbar controls. You can use it to
determine where to set the thumb position, or to figure out how
much to scroll when the thumb of the scrollbar is operated.

Note: The function xvt_tx_get_num_lines is also useful when
manipulating scrollbars, to determine the vertical scroll range.

See Also

T_CPOS
T_LNUM
T_PNUM
TXEDIT
xvt_tx_get_line
xvt_tx_get_num_lines
xvt_tx_get_num_pars
xvt_tx_get_num_par_lines
xvt_tx_set_scroll_callback

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_tx_get_line.

xvt_tx_get_sel
 Get Text Edit Selection

Summary

void xvt_tx_get_sel(TXEDIT tx, T_PNUM *p1, T_LNUM *l1,
 T_CNUM *c1, T_PNUM *p2, T_LNUM *l2, T_CNUM *c2)

TXEDIT tx

Text edit object.

T_PNUM *p1

Starting paragraph number.

T_LNUM *l1

Starting line number.

T_CNUM *c1

Starting character number.

T_PNUM *p2

Ending paragraph number.

T_LNUM *l2

Ending line number.

T_CNUM *c2

Ending character number.

Description

This function gets the boundaries of the text selection for the text
edit object designated by tx. The selection starts with paragraph p1,
line l1 within the paragraph, character c1 within the line, and it ends
just before p2, l2, c2. All numbering starts with zero.

If there is no current text selection, but there is a current insertion
point, the return values will be such that (p1 == p2 && l1 == l2 &&
c1 == c2), where the values returned in p1, l1, and c1 give the
current insertion point. In this manner, both the text selection and the
current insertion point are handled by the same functions.

See Also

T_CNUM
T_CPOS
T_LNUM
T_PNUM
TXEDIT
xvt_tx_rem_par
xvt_tx_set_sel

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_tx_rem_par.

xvt_tx_get_tabstop
 Get Text Edit Tabstop

Summary

T_CNUM xvt_tx_get_tabstop(TXEDIT tx)

TXEDIT tx

Text edit object.

Description

This function retrieves the current tabstop value of the text edit
object designated by tx. This value is the number of average width
characters between tab stops.

Return Value

The current tabstop value.

See Also

T_CNUM
TXEDIT
xvt_tx_set_tabstop

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_get_view
 Get Text Edit View Rectangle

Summary

RCT *xvt_tx_get_view(TXEDIT tx, RCT *rct

)TXEDIT tx

Text edit object.

RCT *rct

Address of a rectangle.

Description

This function retrieves the view rectangle of the text edit object
designated by tx. For a discussion of the view rectangle, see

xvt_tx_create. The view rectangle is the same as or inside of the
border rectangle, which can be retrieved separately with
xvt_vobj_get_outer_rect.

You can’t directly change the view rectangle; instead, change the
border with xvt_vobj_move.

The rectangle coordinates are copied into the rct whose address is
passed as a parameter, and this address is returned as the function
value.

Return Value

The rectangle address passed as a parameter.

See Also

RCT
TXEDIT
xvt_tx_create
xvt_tx_get_origin
xvt_vobj_get_outer_rect
xvt_vobj_move

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_rem_par
 Delete Text Edit Paragraph

Summary

BOOLEAN xvt_tx_rem_par(TXEDIT tx, T_PNUM pnum)

TXEDIT tx

Text edit object.

T_PNUM pnum

Number of the paragraph to be deleted.

Description

This function deletes the paragraph pnum (zero is the first) from the
text edit object designated by tx.

Return Value

TRUE if successful; FALSE if unsuccessful (on error).

See Also

T_PNUM
TXEDIT
xvt_tx_add_par
xvt_tx_append
xvt_tx_get_num_pars
xvt_tx_set_par

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

The following code deletes the selected first paragraph:

TXEDIT txedit;
T_PNUM p1, p2;
T_LNUM l1, l2;
T_CNUM c1, c2;

...
 xvt_tx_get_sel(txedit, &p1, &l1, &c1,

 &p2, &l2, &c2);
 if (!xvt_tx_rem_par(txedit, p1))

 xvt_dm_post_error("Error deleting paragraph.");

xvt_tx_reset
 Reset Text Edit Object

Summary

void xvt_tx_reset(TXEDIT tx)

TXEDIT tx

Text edit object.

Description

This function resets the text edit object designated by tx. Any
selected text is unselected, the caret is positioned before the first
character, the text is scrolled as far up and to the left as possible, all
paragraphs are rewrapped, and an update event is queued for the
border rectangle.

Note: Changing any of the following three attributes via the function
xvt_tx_set_attr also results in xvt_tx_reset being called:
TX_WRAP, TX_BORDER, and TX_ONEPAR. In addition, calling
xvt_tx_set_margin or xvt_tx_set_limit can also cause
xvt_tx_reset to be called.

See Also

TX_* Attributes
TXEDIT
xvt_tx_clear
xvt_tx_set_attr
xvt_tx_set_limit
xvt_tx_set_margin

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_resume
 Resume Text Edit Screen Updating

Summary

void xvt_tx_resume(TXEDIT tx)

TXEDIT tx

Text edit object.

Description

This function causes screen updating to be resumed for the text edit
object designated by tx. Call it to resume and repaint a text edit
object that you suspended with xvt_tx_suspend.

See Also

TXEDIT
xvt_tx_add_parxvt_tx_suspend

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_tx_add_par.

xvt_tx_scroll_hor
 Scroll Text Edit Object Horizontally

Summary

void xvt_tx_scroll_hor(TXEDIT tx, int pixel_amt)

TXEDIT tx

Text edit object.

int pixel_amt

Amount in pixels to scroll horizontally.

Description

This function scrolls the text in the view rectangle of the text edit
object designated by tx, by pixel_amt pixels in the horizontal
direction. If pixel_amt is positive the text moves to the right; if
negative, to the left.

You can use xvt_tx_get_origin to determine by how much the text
edit is currently scrolled horizontally.

See Also

TXEDIT
xvt_tx_scroll_vert
xvt_tx_get_origin
xvt_tx_set_scroll_callback

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

void do_hscroll(tx, what)
TXEDIT tx;
SCROLL_CONTROL what;
{

 switch (what) {
case SC_LINE_UP:

 xvt_tx_scroll_hor(tx, 10);
break;

 case SC_LINE_DOWN:
 xvt_tx_scroll_hor(tx, -10);
break;

 case SC_PAGE_UP:
 xvt_tx_scroll_hor(tx, 100);
break;

 case SC_PAGE_DOWN:
 xvt_tx_scroll_hor(tx, -100);
break;

 case SC_THUMB:
 xvt_dm_post_note("not implemented yet");
break;

 }
 }

xvt_tx_scroll_vert
 Scroll Text Edit Object Vertically

Summary

void xvt_tx_scroll_vert(TXEDIT tx, int line_amt)

TXEDIT tx

Text edit object.

int line_amt

Lines to scroll vertically.

Description

This function scrolls vertically the text in the view rectangle of the
text edit object designated by tx by line_amt lines. If line_amt is
positive, the text moves downward; if negative, upward.

See Also

TXEDIT
xvt_tx_get_origin
xvt_tx_scroll_hor
xvt_tx_set_scroll_callback

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

void do_vscroll(tx, what)
TXEDIT tx;
SCROLL_CONTROL what;
{

 switch (what) {
case SC_LINE_UP:

 xvt_tx_scroll_vert(tx,1);
break;

 case SC_LINE_DOWN:
 xvt_tx_scroll_vert(tx, -1);
break;

 case SC_PAGE_UP:
 xvt_tx_scroll_vert(tx, 10);
break;

 case SC_PAGE_DOWN:
 xvt_tx_scroll_vert(tx, 10);
break;

 case SC_THUMB:
 xvt_dm_post_note("not implemented yet");
break;

 }
 }

xvt_tx_set*
 xvt_tx_set_* Functions

xvt_tx_set_attr
xvt_tx_set_limit
xvt_tx_set_margin
xvt_tx_set_par
xvt_tx_set_scroll_callback
xvt_tx_set_sel
xvt_tx_set_tabstop

xvt_tx_set_attr
 Change Text Edit Attributes

Summary

void xvt_tx_set_attr(TXEDIT tx, unsigned attrib)

TXEDIT tx

Text edit object.

unsigned attrib

New attributes.

Description

This function changes the attributes of the text edit object designated
by tx to those specified by attrib. For a list of attributes, see
xvt_tx_create. The text edit object is automatically reset if any of
the following attributes are changed: TX_WRAP, TX_BORDER, or
TX_ONEPAR.

To alter a single attribute bit, you should first get the current
attributes via xvt_tx_get_attr, then set or reset the single attribute
bit of interest, and finally set the new attributes via
xvt_tx_set_attr. For example, to turn off the read only attribute of
a text edit object, you should do the following:

xvt_tx_set_attr(tx, xvt_tx_get_attr(tx) &
~TX_READONLY);

See Also

TX_* Attributes
TXEDIT
xvt_tx_create
xvt_tx_get_attr
xvt_tx_reset

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_set_limit
 Change Text Edit Character Limit

Summary

void xvt_tx_set_limit(TXEDIT tx, int limit)

TXEDIT tx

Text edit object.

int limit

New character limit value.

Description

This function changes the character limit of the text edit object
designated by tx to the value limit. The character limit is the
maximum number of characters allowed per paragraph. If limit is
zero, there is no character limit.

The text edit object is not updated or reset. If the number of
characters in any paragraph is above the new limit, the paragraph is
left as is.

See Also

TXEDIT
xvt_tx_create
xvt_tx_create_def
xvt_tx_get_limit

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_set_margin
 Change Text Edit Margin

Summary

void xvt_tx_set_margin(TXEDIT tx, int margin)

TXEDIT tx

Text edit object.

int margin

New right margin.

Description

This function changes the right margin of the text edit object
designated by tx to that specified by margin. The text edit object is
automatically reset (see xvt_tx_reset), so the text will be wrapped
to the new margin. No wrapping or resetting occurs, of course, if the
TX_WRAP attribute isn’t set. A value of zero means that word
wrapping occurs at a value slightly less than the view width.

See Also

TX_* Attributes
TXEDIT
xvt_tx_create
xvt_tx_create_def
xvt_tx_get_margin
xvt_tx_reset

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_set_par
 Change Text Edit Paragraph

Summary

BOOLEAN xvt_tx_set_par(TXEDIT tx, T_PNUM pnum, char *s)

TXEDIT tx

Text edit object.

T_PNUM pnum

Number of the paragraph whose text is to be replaced.

char *s

Replacement paragraph.

Description

This function completely replaces the text of paragraph pnum (zero
is the first) in the text edit object designated by tx with the NULL-
terminated string s.

Paragraph pnum must exist. Hence, this function can’t be used to add
text to a brand-new or cleared text edit object. Use xvt_tx_add_par
instead.

Return Value

TRUE if successful; FALSE if unsuccessful (on errror).

See Also

T_PNUM
TXEDIT
xvt_tx_add_par
xvt_tx_append
xvt_tx_rem_par

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

The following code changes the text of the selected first paragraph:

TXEDIT txedit;
T_PNUM p1, p2;
T_LNUM l1, l2;
T_CNUM c1, c2;xvt_tx_get_sel(txedit, &p1, &l1, &c1,

 &p2, &l2, &c2);
 if (!xvt_tx_set_par(txedit, p1,

 "This is the new paragraph text."))
 xvt_dm_post_error("Error changing paragraph.");

xvt_tx_set_scroll_callback
 Set Text Edit Scroll Callback Function

Summary

void xvt_tx_set_scroll_callback(TXEDIT tx,
 SCROLL_CALLBACK fcn)

TXEDIT tx

Text edit object.

SCROLL_CALLBACK fcn

Scroll callback function.

Description

This function sets the scroll-activity callback function for the text
edit object designated by tx. If you want to logically connect
horizontal or vertical scrollbars to the horizontal or vertical scrolling
behavior of the text edit object, call xvt_tx_set_scroll_callback
after creating a text edit object.

Setting the scroll callback allows your application to be notified
when the text edit object automatically scrolls itself due to the user
dragging out a selection or using the arrow keys. When this happens,
your callback is called, and you can adjust the thumb position of the
scrollbars to reflect the new view.

The scroll callback function is also called if the number of lines in
the text edit object changes. This allows you to adjust the vertical
scrollbar range appropriately.

You should declare your callback function as follows:

void XVT_CALLCONV1 scroll_callback(TXEDIT tx,
 T_LNUM org_line, T_LNUM nlines, T_CPOS
org_offset)

 {
 ...

 }

The text edit system calls your function whenever text in the view
rectangle is scrolled or the number of lines changes. The tx
argument designates the affected text edit object. The org_line
argument is the number of the line at the top of the new view
rectangle, numbered from the top of the text edit object’s text,
starting with zero (numbering spans paragraphs). The nlines
argument is the total number of lines in the object (not in the view).
The org_offset argument is the number of pixels to the left of the
view.

The org_line and org_offset parameters are the same values
returned by xvt_tx_get_origin in the org_linep and org_offsetp
parameters. The parameter nlines is the same as the return value for
xvt_tx_get_num_lines.

To prevent unnecessary scrollbar updating, org_line, nlines, and
org_offset may be equal to USHRT_MAX if they have not changed
since the previous callback.

Typically you’ll do the following on each call:

• If nlines isn’t equal to USHRT_MAX, set the range of the
vertical scrollbar to start at zero and end at nlines with a call
to xvt_sbar_set_range; if you are using the scrollbar
proportion (described later), then set the upper bound of the
scroll range to nlines plus the value used for the scrollbar
proportion

• If org_line isn’t USHRT_MAX, set the position of the vertical
scrollbar to org_line with a call to xvt_sbar_set_pos

• If org_offset isn’t USHRT_MAX, set the position of the
horizontal scrollbar to org_offset with a call to
xvt_sbar_set_pos

If you want to have the vertical scrollbar thumbsize reflect the
viewable portion of the document with respect to the total document,
then call xvt_sbar_set_proportion when the text edit object is
created. Set the scroll proportion to the number of lines that are
visible in the text edit object. This number can be computed by
dividing the height of the text edit object by the height of the mapped
logical font (which you can obtain with xvt_font_get_metrics).

The range of the horizontal scrollbar isn’t meaningful to the text edit
system; you need to set it, probably the first time your callback is
invoked. You can set it to whatever you like (e.g., 0 to 2000).

See Also

SCROLL_CALLBACK
TXEDIT
USHRT_MAX
XVT_CALLCONV*
xvt_font_get_metrics
xvt_sbar_set_pos
xvt_sbar_set_proportion
xvt_sbar_set_range
xvt_tx_get_num_lines
xvt_tx_get_origin
xvt_tx_scroll_hor
xvt_tx_scroll_vert

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

...
 xvt_tx_set_scroll_callback(tx, scroll_callback);

 ...void XVT_CALLCONV1 scroll_callback(TXEDIT tx,
 T_LNUM org_line, T_LNUM nlines, T_CPOS org_offset)

 {
 static BOOLEAN first_horz_setting = TRUE;
WINDOW win = xvt_vobj_get_parent(tx);if (nlines !=

USHRT_MAX)
 xvt_sbar_set_range(win, VSCROLL, 0, nlines)

 if (org_line != USHRT_MAX)
 xvt_sbar_set_pos(win, VSCROLL, org_line);

 if (org_offset != USHRT_MAX) {
 if (first_horz_setting) {

 first_horz_setting = FALSE;
xvt_sbar_set_range(win, HSCROLL, 0, 2000);

 }
xvt_sbar_set_pos(win, HSCROLL, org_offset);

 }
 }

xvt_tx_set_sel
 Set Text Edit Selection

Summary

void xvt_tx_set_sel(TXEDIT tx, T_PNUM p1, T_LNUM l1,
 T_CNUM c1, T_PNUM p2, T_LNUM l2, T_CNUM c2)

TXEDIT tx

Text edit object.

T_PNUM p1

Starting paragraph number.

T_LNUM l1

Starting line number.

T_CNUM c1

Starting character number.

T_PNUM p2

Ending paragraph number.

T_LNUM l2

Ending line number.

T_CNUM c2

Ending character number.

Description

This function sets the text selection for the text edit object
designated by tx. The selection starts with paragraph p1, line l1
within the paragraph, character c1 within the line, and it ends just
before p2, l2, c2. The start can be after the end. All numbering starts
with zero.

To set the current insertion point instead of the text selection, call
xvt_tx_set_sel with parameters such that (p1 == p2 && l1 == l2
&& c1 == c2), where the values in p1, l1, and c1 specify the current
insertion point. In this manner, both the text selection and current
insertion point are handled by the same functions.

See Also

T_CNUM
T_CPOS
T_LNUM
T_PNUM
TXEDIT
xvt_tx_get_sel

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_set_tabstop
 Change Text Edit Tabstop

Summary

void xvt_tx_set_tabstop(TXEDIT tx, tabstop)

TXEDIT tx

Text edit object.

T_CNUM tabstop

New tabstop value.

Description

This function changes the tabstop value of the text edit designated
by tx to that specified by tabstop. The text edit object is
automatically reset (see xvt_tx_reset) so that all tabstops will be
redrawn according to the new tabstop. The tabstop value is the
number of average-width characters between tab stops. The default
value is eight.

See Also

T_CNUM
TXEDIT
xvt_tx_get_tabstop
xvt_tx_reset

The "Controls" chapter in the XVT Portability Toolkit Guide

xvt_tx_suspend
 Suspend Text Edit Screen Updating

Summary

void xvt_tx_suspend(TXEDIT tx)

TXEDIT tx

Text edit object.

Description

This function causes screen updating to be suspended for the text
edit object designated by tx. Call it when you are about to make a
major change to the text, such as when loading text from a file with
calls to xvt_tx_add_par.

To restore operations to normal and redraw the text edit object with
its new contents, you must call xvt_tx_resume.

See Also

TXEDIT
xvt_tx_add_par
xvt_tx_resume

The "Controls" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_tx_add_par.

xvt_vobj_*
 Visible Object Functions

xvt_vobj_destroy
xvt_vobj_get_attr
xvt_vobj_get_client_rect
xvt_vobj_get_data
xvt_vobj_get_flags
xvt_vobj_get_formatter
xvt_vobj_get_outer_rect
xvt_vobj_get_palet
xvt_vobj_get_parent
xvt_vobj_get_title
xvt_vobj_get_type
xvt_vobj_is_focusable
xvt_vobj_is_valid
xvt_vobj_move
xvt_vobj_raise
xvt_vobj_set_attr
xvt_vobj_set_data
xvt_vobj_set_enabled
xvt_vobj_set_formatter
xvt_vobj_set_palet
xvt_vobj_set_title
xvt_vobj_set_visible
xvt_vobj_translate_points

xvt_vobj_destroy
 Close And Destroy Window

Summary

void xvt_vobj_destroy(WINDOW win)

WINDOW win

Window or control to close and destroy.

Description

This function closes and destroys any visible object, window,
dialog, or control specified by win.

win can be any window created by the following:

xvt_win_create
xvt_win_create_res
xvt_win_create_def
xvt_print_create_win

Or, it can be any control created by the following:

xvt_ctl_create
xvt_ctl_create_def

Or, it can be a control created as a side-effect of calling the
following:

xvt_win_create_res
xvt_win_create_def

Or, it can be a dialog created by the following:

xvt_dlg_create_res
xvt_dlg_create_def

For a regular window or dialog, you usually call xvt_vobj_destroy
either in response to an E_CLOSE event, or when the user chooses a
"Close" item from a menu.

Do not free the memory associated with a window or dialog before
xvt_vobj_destroy is called, as additional events may be sent to the
window or dialog during the closing process. You should free
memory (application data) associated with a window or dialog in
response to an E_DESTROY event for that window or dialog.

Once this function returns, you should not attempt to use the window
any longer (not even to call xvt_vobj_get_data). An E_DESTROY
event may be dispatched before the call to xvt_vobj_destroy
returns. The safest thing to do is return from the event handler
immediately after calling xvt_vobj_destroy.

See Also

E_CLOSE
E_DESTROY
WINDOW
xvt_app_create
xvt_ctl_create
xvt_ctl_create_def
xvt_dlg_create_def
xvt_dlg_create_res
xvt_pmap_create
xvt_print_create_win
xvt_win_create
xvt_win_create_def
xvt_win_create_res
xvt_vobj_get_data

Example

switch (cmd) {
case M_FILE_CLOSE:

 xvt_vobj_destroy(win);
break;
...

xvt_vobj_get_attr
 Retrieve Attribute Value

Summary

long xvt_vobj_get_attr(WINDOW win, long data)

WINDOW win

Window for which the attribute value is to be retrieved.

long data

Attribute for which the value is to be retrieved.

Description

This function retrieves the attr value from the attribute list for a
window, win. If win is NULL_WIN, the attr is retrieved from the
application attribute list. For certain attributes, this function can be
called before xvt_app_create is called. For descriptions of these
attributes, see the XVT Portable Attributes and the XVT Platform-
Specific Books.

The type of return value from xvt_vobj_get_attr is a long, but this
long value is the result of casting the true attribute type. In all cases
where the true attribute type is not long, you need to cast the return
of xvt_vobj_get_attr into the type that is appropriate for that
particular attribute.

Return Value

The value of the attribute (cast to a long).

Parameter Validity and Error Conditions

XVT issues an error if the following parameter conditions are not
met:

• If attr is an attribute that does require the use of win, then it
must be a valid XVT WINDOW

• attr must be one of the portable ATTR_* constants defined in
this reference, or one of the non-portable ATTR_* constants
defined in the XVT Platform-Specific Books

Implementation Note

Platform-specific attributes, for example ATTR_MAC_*, are only
defined on the platform for which they are intended and must be
conditionally compiled with XVTWS. For example:

#if (XVTWS == MACWS)
 int min_size = (int)xvt_vobj_get_attr(NULL_WIN,

 ATTR_MAC_MIN_SIZE);
 #endif

Or, alternatively:

#ifdef ATTR_MAC_MIN_SIZE
 int min_size = (int)xvt_vobj_get_attr(NULL_WIN,

 ATTR_MAC_MIN_SIZE);
 #endif

See Also

XVT Portable Attributes
WINDOW
XVTWS, *WS Values
xvt_app_create
xvt_vobj_set_attr

xvt_vobj_get_client_rect
 Get the Client Rectangle for a Window

Summary

RCT *xvt_vobj_get_client_rect(WINDOW win, RCT *rctp)

WINDOW win

Window whose client rectangle is being queried. This can be
any XVT window.

RCT *rctp

Pointer to the client rectangle.

Description

This function gets the dimensions of the client area of any XVT
WINDOW including regular windows, dialogs, controls, print
windows, TASK_WINs, SCREEN_WINs, and XVT_PIXMAPs.

The client area of a WINDOW is the portion found inside the frame
excluding the width of the border and any border decorations the
WINDOW might have, such as the size borders, menubar, titlebars, and
scrollbars.To get the dimensions of the window including the frame,
menubar, and decorations, your application needs to call
xvt_vobj_get_outer_rect.

The coordinates are relative to the coordinates of the WINDOW, and are
stored in the RCT pointed to by rctp. The left and top members of
the RCT structure are always zero, so the right member is equal to
the width and the bottom member is equal to the height.

At creation time, the client area is set to the dimensions your
application set when calling the creation function. If the window is
resized by the user, your application receives an E_SIZE event. Upon
receiving this event, your application does not need to call
xvt_vobj_get_client_rect, as the new client size is contained in
the E_SIZE event.

Note: Since controls and print windows do not get any events, calling
xvt_vobj_get_client_rect is the only method for determining
their client area.

Note: For the WC_HTML WINDOW type, the value returned from
xvt_vobj_get_client_rect is identical to the value returned from
xvt_vobj_get_outer_rect.

Return Value

RCT pointed to by rctp.

Parameter Validity and Error Conditions

XVT issues an error if win is not a valid WINDOW.

See Also

E_SIZE
RCT
SCREEN_WIN
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_vobj_get_outer_rect

The "Windows" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_vobj_move.

xvt_vobj_get_data
 Get Application Data Associated with a Window

Summary

long xvt_vobj_get_data(WINDOW win)

WINDOW win

Window, dialog, control, or pixmap whose application data is to
be retrieved.

Description

This function retrieves the data for win. Every XVT WINDOW (regular,
task, screen, print, dialog, control, or pixmap), can have a long int
associated with it for your application’s own use.

Frequently the application data is a pointer to a structure of your own
design. In this case, your application should cast the return value
from xvt_vobj_get_data into a pointer of the correct type.

You can associate application data with a WINDOW when it is created,
with these creation functions:

xvt_ctl_create
xvt_ctl_create_def
xvt_dlg_create_def
xvt_dlg_create_res
xvt_tx_create_def
xvt_vobj_set_data
xvt_win_create
xvt_win_create_def
xvt_win_create_res

Alternatively, you can use xvt_vobj_set_data to associate
application data once the WINDOW has been created (usually in the
handling of E_CREATE). If you choose the latter approach, then
remember not to use the application data before it has been set.

Note: When responding to an E_DESTROY event for a WINDOW,
xvt_vobj_get_data is the only function you can call on the WINDOW
being destroyed.

Return Value

long integer for application data associated with the WINDOW.

Parameter Validity and Error Conditions

XVT issues an error if win is not a valid WINDOW or XVT_PIXMAP.

See Also

E_CREATE
E_DESTROY
WINDOW
XVT_PIXMAP
xvt_ctl_create
xvt_ctl_create_def
xvt_dlg_create_def
xvt_dlg_create_res
xvt_font_get_app_data
xvt_tx_create_def
xvt_vobj_set_data
xvt_win_create
xvt_win_create_def
xvt_win_create_res

The "Windows" chapter in the XVT Portability Toolkit Guide

Example

See the example for xvt_vobj_set_data.

xvt_vobj_get_flags
 Get Current State of the Creation Flags

Summary

long xvt_vobj_get_flags(WINDOW win)

WINDOW win

Window, dialog, or control which is being inquired.

Description

This function retrieves the current state of the creation flags of win.

The flags associated with a vobj’s visibility and enabled state reflect
the explicit setting of those states, not the implicit values. This
function does not traverse up win’s ancestors to see if one of them is

invisible or disabled. It is the application’s responsibility to
determine the enabled/visible status of any of win’s ancestors.

Return Value

The current state of the object creation flags;
an OR’d combination of WSF_* values if win is a window;
an OR’d combination of DLG_FLAG_* values if win is a dialog;
an OR’d combination of CTL_FLAG_* values if win is a control.

See Also

CTL_FLAG_* Options
DLG_FLAG_* Options
WIN_DEF
WINDOW
WSF_* Options Flags
xvt_ctl_create
xvt_ctl_create_def
xvt_dlg_create_def
xvt_win_create
xvt_win_create_def

Example

long flags;
flags = xvt_vobj_get_flags(win);
if(flags & WSF_DISABLED) {

 xvt_vobj_set_enabled(win, TRUE);
}

xvt_vobj_get_formatter
Get the Format Callback Function for a Window, Dialog, Or Control

Summary

XVT_FORMAT_HANDLER xvt_vobj_get_formatter(WINDOW win)

WINDOW win

XVT window, dialog, or control handle.

Description

The function returns a pointer to the format handler callback
function assigned to the specified window by the application.

Return Value

Returns the pointer to the callback function assigned by the
application.

Parameter and Validity Conditions

XVT returns NULL and issues an error if any of the following
conditions occur:

o If any of the parameters is NULL.

o If win is not a valid XVT WINDOW.

See Also

XVT_FORMAT_HANDLER
XVT_PATTERN
xvt_pattern_create
xvt_pattern_destroy
xvt_pattern_match
xvt_vobj_set_formatter

xvt_vobj_get_outer_rect
 Get Bounding Rectangle for Window

Summary

RCT *xvt_vobj_get_outer_rect(WINDOW win, RCT *rctp)

WINDOW win

Window whose bounding rectangle is to be retrieved.

RCT *rctp

Bounding rectangle.

Description

This function returns the outer rectangle for any XVT WINDOW
including regular windows, dialogs, controls, print windows,
TASK_WINs, SCREEN_WINs, and XVT_PIXMAPs.

In contrast to the client area of a WINDOW, the outer rectangle includes
any border decorations the WINDOW might have. This is especially
true for document windows that might have size borders, titlebars,
menubars, and scrollbars.

The coordinates of the outer rectangle are relative to the container of
the WINDOW. For example, if win is a control, the coordinates are in
the coordinates of its parent window or dialog. If win is a dialog or
TASK_WIN, the coordinates are relative to the SCREEN_WIN. If win is
SCREEN_WIN, the coordinates are the size of the physical screen.

At creation time, the outermost rectangle is determined by XVT to
be the client area plus the frame and border decorations. If the
window is resized by the user, your application receives an E_SIZE
event. Upon receiving this event, your application can call
xvt_vobj_get_outer_rect to determine the size of the new outer
rectangle.

Parameter Validity and Error Conditions

XVT issues an error if the any of the following parameter conditions
are not met:

• win must be a valid XVT window or pixmap

• rctp must be non-NULL

See Also

E_SIZE
RCT
SCREEN_WIN
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_vobj_get_client_rect
xvt_vobj_move

xvt_vobj_get_palet
 Get a Visible Object’s Palette

Summary

XVT_PALETTE xvt_vobj_get_palet(WINDOW win)

WINDOW win

Visible object from which to get the palette.

Description

This function gets the color palette associated with a visible object.
If no palette has been explicitly set for this object, the palette
associated with its nearest ancestor that has a palette is returned.

Return Value

The object’s palette, or the palette associated with its nearest
ancestor if available; otherwise NULL.

Parameter Validity and Error Conditions

XVT issues an error if win is NULL or invalid.

See Also

WINDOW
XVT_PALETTE
xvt_palet_create
xvt_vobj_set_palet

Example

See the example for xvt_palet_create.

xvt_vobj_get_parent
 Get Parent of Window, Dialog, or Control

Summary

WINDOW xvt_vobj_get_parent(WINDOW win)

WINDOW win

Window, dialog, control, or pixmap whose parent is to be
retrieved.

Description

This function returns the parent (container) window for any WINDOW
that can be drawn on the screen including regular windows, dialogs,
controls, TASK_WINs, SCREEN_WINs, and XVT_PIXMAPs.

The parent for a WINDOW is specified when the WINDOW is defined.
Dialogs and TASK_WINs have SCREEN_WINs as their parents. Top-
level windows have TASK_WINs or SCREEN_WINs as their parents.
Child windows have other windows as their parents. If win is
SCREEN_WIN or print window, NULL_WIN is returned.

Return Value

The parent of win.

Parameter Validity and Error Conditions

XVT issues an error if win is not a valid XVT window.

Implementation Note

If the application is running on XVT/Win32, and the attribute
ATTR_WIN_PM_DRAWABLE_TWIN has been set, the parents of controls
can be dialogs, regular windows, and TASK_WINs.

See Also

SCREEN_WIN
TASK_WIN
WINDOW
XVT_PIXMAP
xvt_ctl_create
xvt_ctl_create_def
xvt_dlg_create_def
xvt_dlg_create_res
xvt_pmap_create
xvt_vobj_get_outer_rect
xvt_vobj_move
xvt_win_create
xvt_win_create_def
xvt_win_create_res

Example

See the example for xvt_vobj_move.

xvt_vobj_get_title
 Get Title of Window or Control

Summary

char *xvt_vobj_get_title(WINDOW win, char *title,
 int sz_title)

WINDOW win

Window, dialog, or control whose title is to be retrieved.

char *title

Buffer to hold title.

int sz_title

Maximum buffer capacity.

Description

This function gets the title of a regular window, dialog, or control
and stores it in title, whose maximum capacity (including the
NULL-terminator) is sz_title. The title is truncated as needed to fit
into title.

Not all control types have valid titles; only the following control
types have valid title information:

WC_PUSHBUTTON
WC_RADIOBUTTON
WC_CHECKBOX
WC_EDIT
WC_TEXT
WC_LISTEDIT
WC_GROUPBOX

Calling xvt_vobj_get_title on other controls returns NULL.

Note: "Title" is loosely interpreted to mean, "whatever text is appropriate
for the item in question." For example, for controls of type WC_EDIT
and WC_LISTEDIT, this function returns the contents of the edit field.

Note: For the WC_HTML WINDOW type, xvt_vobj_get_title returns the
title of the HTML page.

Return Value

Pointer to title if successful; NULL if the control type does not have
a valid title. (See the above list of control types which have valid
titles.)

Parameter Validity and Error Conditions

XVT issues an error if one of the following conditions is not met:

• win must be a valid WINDOW

• title must not be NULL

• sz_title must be greater than zero

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_vobj_set_title
xvt_win_set_doc_title

xvt_vobj_get_type
 Get Type of Window

Summary

WIN_TYPE xvt_vobj_get_type(WINDOW win)

WINDOW win

Window, dialog, control, or pixmap whose type is retrieved.

Description

This function returns the type of a WINDOW specified by win, which
can be any valid WINDOW object including regular, dialog, control,
screen, print windows, and pixmaps.

The type of a WINDOW is defined implicitly by the creation function
used to create the window. Regular windows are of type W_DOC,
W_PLAIN, W_DBL, WD_MODAL, or W_NOBORDER. Dialogs are of type
WD_MODAL or WD_MODELESS. Controls are of type WC_*. Task windows
are of type W_TASK, and the screen windows of type W_SCREEN. Print
windows are of type W_PRINT. Pixmaps are of type W_PIXMAP.

You could use xvt_vobj_get_type, for example, if you wanted to
have the same drawing code to render a page layout on either the
window or the printer, but you also wanted to be able to distinguish
between the two for certain operations.

Return Value

The type of the window, which is one of the WIN_TYPE values.

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
WIN_TYPE
xvt_ctl_create
xvt_ctl_create_def
xvt_dlg_create_def
xvt_dlg_create_res
xvt_scr_list_wins
xvt_win_create
xvt_win_create_def
xvt_win_create_res

Example

See the example for xvt_scr_list_wins.

xvt_vobj_is_focusable
 Check if Visible Object Can Receive Focus

Summary

BOOLEAN xvt_vobj_is_focusable(WINDOW win)

WINDOW win

Window, dialog, or control which is being inquired.

Description

This function finds out if win is capable of receiving focus.
Focusability is a static property of a visible object and is not affected
by its current visibility or enabled state.

Note: The WC_HTML WINDOW type, is not capable of gaining focus.

Return Value

TRUE if win is capable of receiving focus; FALSE otherwise.

See Also

WINDOW
xvt_scr_set_focus_vobj

xvt_vobj_is_valid
 Check Whether a Window Handle is a Valid Window, Dialog, or Control

Summary

BOOLEAN xvt_vobj_is_valid(WINDOW win)

WINDOW win

Window, dialog, or control that is being inquired.

Description

This function tests to see whether win refers to a valid, visible object
for a window, dialog, or control.

Return Value

TRUE if win is a valid object; FALSE otherwise.

See Also

WINDOW

xvt_vobj_move
 Move and Resize Window

Summary

void xvt_vobj_move(WINDOW win, RCT *rctp)

WINDOW win

Window or control to be moved and/or resized.

RCT *rctp

New client rectangle.

Description

This function moves and/or resizes win so that its new client
rectangle has coordinates as specified by rctp. win can be a regular
window, dialog, or control. The coordinates specified by rctp are
relative to the window’s parent. The parent of dialogs is
SCREEN_WIN. The parent of windows or controls is the parent that
was passed to the function used to create the window or control.

Calling xvt_vobj_move on windows or dialogs generates E_SIZE
events. This allows you to write your application in such a way that
you only adjust window layout when an E_SIZE event is received.

Implementation Note

In the XVT/XM implementation, the window manager may not
honor the request, so don’t be surprised if the window doesn’t show
up at the requested location.

Normally, TASK_WIN is not a valid window for this function.
However, on XVT/Win32, you can set the non-portable attribute
ATTR_WIN_PM_DRAWABLE_TWIN before calling xvt_app_create. In
that case, TASK_WIN would be a valid window for this function. On
other platforms, any attempt to move the task window is simply
ignored.

See Also

E_SIZE
RCT
SCREEN_WIN
WINDOW
xvt_app_create
xvt_ctl_create
xvt_ctl_create_def
xvt_dlg_create_def
xvt_dlg_create_res
xvt_vobj_get_client_rect
xvt_win_create
xvt_win_create_def
xvt_win_create_res

Example

This code illustrates how to change the height of a window without
changing its position or width:

void
window_set_height(WINDOW window, short height)
{

 RCT client_rect;
PNT position;
position.h = 0;
position.v = 0;
xvt_vobj_translate_points(window,

 xvt_vobj_get_parent(window), &position, 1);
 xvt_vobj_get_client_rect(window, &client_rect);
xvt_rect_set_pos(&client_rect, position);
xvt_rect_set_height(&client_rect, height);
xvt_vobj_move(window, &client_rect);

 }

xvt_vobj_raise
 Raise the Given Window

Summary

void xvt_vobj_raise(WINDOW win)

WINDOW win

Window to be raised.

Description

This function raises the given WINDOW to the top of the stacking order
among its siblings. For example, if the WINDOW is a child of a top-

level window, you can call this function to make WINDOW the top-
most child of those parented to the top-level window. However, the
top-level WINDOW is not raised above other windows on the display.

Return Value

None.

Parameter Validity and Error Conditions

Only windows and modeless dialogs are valid arguments to
xvt_vobj_raise. For example, windows of type W_DOC, W_PLAIN,
W_DBL, W_NO_BORDER, and WD_MODELESS are valid arguments to
xvt_vobj_raise.

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on XVT/Win32, if you set the
ATTR_WIN_PM_DRAWABLE_TWIN attribute to TRUE, TASK_WIN is a valid
window. On some platforms, it is not possible to raise windows
above dialogs, especially modal dialogs.

See Also

TASK_WIN
WINDOW
W_*, WC_*, WD_*, Values for WIN_TYPE
xvt_scr_set_focus_vobj

xvt_vobj_set_attr
 Set a Value in the System Attribute Table

Summary

void xvt_vobj_set_attr(WINDOW win, XVT_ATTR attr,
long value)

WINDOW win

Valid window or NULL_WIN.

XVT_ATTR attr

Attribute. It should be set to one of the ATTR_* constants.

long value

New value.

Description

This function sets a system-wide attribute value, which has an effect
that depends on the attribute being set. Only a few of the XVT
Attributes can be set by your application; the rest are "read-only."
An example of some attributes that are settable by your application
are ATTR_ERRMSG_HANDLER and ATTR_EVENT_HOOK.

For application-wide attributes, win is set to NULL_WIN. attr should
be set to one of the ATTR_* constants.

value should be the new value. Although value is a long parameter,
you can cast other data types, such as data pointers and function
pointers, into a long and pass them to this function, as appropriate
for the particular attribute you’re setting.

For details of which attributes can be set, and the semantics of doing
so, see XVT Portable Attributes.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are not met:

• win must be either a valid WINDOW or NULL_WIN, as appropriate
for the attribute being set

• attr must be defined, and must not be a read-only attribute

Implementation Note

Platform-specific attributes, for example ATTR_MAC_*, are only
defined on the platform for which they are intended and need to be
conditionally compiled with XVTWS. For example:

#if (XVTWS==MACWS)
 xvt_vobj_set_attr(NULL_WIN, ATTR_MAC_MIN_SIZE,

1OOL);
 #endif

Or, alternatively:

#ifdef ATTR_MAC_MIN_SIZE
 xvt_vobj_set_attr(NULL_WIN, ATTR_MAC_MIN_SIZE

100L);
 #endif

See Also

XVT Portable Attributes
ATTR_ERRMSG_HANDLER
ATTR_EVENT_HOOK
NULL_WIN
WINDOW
XVTWS, *WS Values
xvt_font_map_using_default
xvt_vobj_get_attr

For information on the non-portable ATTR_* Constants, see the XVT
Platform-Specific Books

Example

See the example for xvt_font_map_using_default.

xvt_vobj_set_data
 Associate Application Data with Window

Summary

void xvt_vobj_set_data(WINDOW win, long data)

WINDOW win

Window, dialog, control, or pixmap whose data is to be set.

long data

Data to associate with the window.

Description

Every XVT WINDOW (regular, task, screen, print, dialog, control, or
pixmap) has an associated long int for your application’s own use.
This function sets the value of that data word for win. You might use
this long word to store a pointer to window state data containing
information about the status of objects you are displaying in that
window. For example, it could contain information needed for
redrawing the client area of the window during an E_UPDATE event.

In addition to xvt_vobj_set_data, these creation functions
associate application data with a WINDOW:

xvt_ctl_create
xvt_ctl_create_def
xvt_dlg_create_def
xvt_dlg_create_res
xvt_win_create
xvt_win_create_def
xvt_win_create_res

In contrast to the creation functions, you can only use
xvt_vobj_set_data to re-associate application data once the
WINDOW has been created.

After application data has been set, your application can retrieve it
by calling xvt_vobj_get_data with the appropriate WINDOW.

See Also

WINDOW
xvt_ctl_create
xvt_ctl_create_def
xvt_dlg_create_def
xvt_dlg_create_res
xvt_tx_create_def
xvt_vobj_get_data
xvt_win_create
xvt_win_create_def
xvt_win_create_res

Example

This code illustrates the use of xvt_vobj_set_data and
xvt_vobj_get_data for accessing application data associated with a
window:

typedef struct s_state {
 int contents;
int source;
int index;
char str[100];
int count;
} State;/* Application state data for window */

 ...
long XVT_CALLCONV1 win101_eh(WINDOW xdWindow,

 EVENT *xdEvent)
{

 State *state;
switch (xdEvent->type) {
case E_CREATE:

 state = (State *)
xvt_mem_zalloc(sizeof(State));

xvt_vobj_set_data(xdWindow, PTR_LONG(state));
break;
...

 case E_UPDATE:
 state = (State *)

xvt_vobj_get_data(xdWindow);
...

 }
 }

xvt_vobj_set_enabled
 Enable or Disable Window

Summary

void xvt_vobj_set_enabled(WINDOW win, BOOLEAN enabled)

WINDOW win

Window, dialog, or control to be enabled or disabled.

BOOLEAN enabled

Determines whether to enable or disable the window.

Description

This function enables or disables a window, dialog, or a control. If a
window is disabled, its event handler cannot receive focus,
character, or mouse events. If a dialog is disabled, its events handler
cannot receive focus or character events. If a control is disabled, it
cannot be operated by the user and does not generate E_CONTROL
events.

Disabling a window or dialog also disables all controls (and child
windows in the case of a window) contained in that WINDOW. Note
that it might not be possible, or desirable, to disable modal dialogs
or TASK_WINs.

Parameter Validity and Error Conditions

XVT issues an error if the following conditions are not met:

• win must be a valid window, dialog, or conrol

• You must not call this function during an E_UPDATE event

See Also

CTL_FLAG_* Options
DLG_FLAG_* Options
E_CONTROL
E_UPDATE
TASK_WIN
WINDOW
WSF_* Options Flags
xvt_ctl_create
xvt_ctl_create_def
xvt_dlg_create_def
xvt_dlg_create_res
xvt_win_create
xvt_win_create_def
xvt_win_create_res

xvt_vobj_set_formatter
Set the Format Callback Function for a Window, Dialog, or Control

Summary

void xvt_vobj_set_formatter(WINDOW win,
XVT_FORMAT_HANDLER handler, void *data)

WINDOW win

XVT window, dialog, or control handle.

XVT_FORMAT_HANDLER handler

Application-defined string format handler callback function.

void *data

Application-defined data passed through to the format handler
callback function.

Description

This function attaches an application-defined string format callback
function and application-defined function data to the specified
WINDOW object.

Parameter and Validity Conditions

XVT issues an error if any of the following conditions occur:

o If win or handler is NULL.

o If win is not a valid XVT WINDOW.

See Also

XVT_FORMAT_HANDLER
XVT_PATTERN
xvt_pattern_create
xvt_pattern_destroy
xvt_pattern_match
xvt_vobj_get_formatter

xvt_vobj_set_palet
 Set a Visible Object’s Palette

Summary

void xvt_vobj_set_palet(WINDOW win, XVT_PALETTE palet)

WINDOW win

Visible object for which the palette is to be set.

XVT_PALETTE palet

Palette to associate with the object.

Description

This function associates a color palette with a visible object,
overriding any palette previously associated with the window.

You can only set the palette on the top-level windows and pixmaps.
Child windows inherit their parent’s palette.

Return Value

None.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are true:

• palet is NULL or invalid

• win is not a pixmap or a top-level window

• You call this function during an E_UPDATE event

See Also

E_UPDATE
WINDOW
XVT_PALETTE
xvt_palet_create
xvt_vobj_get_palet

Example

See the example for xvt_palet_create.

xvt_vobj_set_title
 Set Title of Window or Control

Summary

void xvt_vobj_set_title(WINDOW win, char *title)

WINDOW win

Window, dialog or control whose title is to be set.

char *title

Title to be set.

Description

This function changes the title of a control, top-level window, or
dialog to the NULL-terminated string pointed to by title.

Setting the title of a control really means setting the appropriate
control-specific text. The effect of setting the text of a control varies
with control type as follows:

• For WC_EDIT or WC_LISTEDIT, the content of the edit field is
set.

• For WC_GROUPBOX, WC_TEXT, WC_PUSHBUTTON,
WC_RADIOBUTTON, or WC_CHECKBOX, the control’s label is

changed. (This function can also change the mnemonic
characters of these controls.)

• For other controls, this function has no effect.

If an application-defined format function is attached to the WINDOW
object, xvt_vobj_set_title may result in setting the title to a different
string, as specified by the format handler function, or may cause
xvt_vobj_set_title to return without taking any action.

This function cannot be used to change the text of a text edit object;
you must use the xvt_tx_* functions instead.

Note: If you want the title of a top-level window to obey the user interface
style guidelines for each platform you’re planning to run on, use the
similar function xvt_win_set_doc_title instead.

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_vobj_get_title
xvt_tx_*
xvt_win_get_ctl
xvt_win_set_doc_title

xvt_vobj_set_visible
 Show or Hide Window or Control

Summary

void xvt_vobj_set_visible(WINDOW win, BOOLEAN show)

WINDOW win

Window, dialog, or control to be shown or hidden.

BOOLEAN show

Determines whether to show or hide the window.

Description

This function shows or hides the window, dialog, or control
specified by win. A hidden control, dialog, or window does not
appear on the screen and can’t receive user input. win is made visible
if show is TRUE, or invisible otherwise.

Parameter Validity and Error Conditions

Regular windows, dialogs, and controls can be hidden (or reshown),
but print windows, TASK_WINs, SCREEN_WINs, and XVT_PIXMAPs
cannot be hidden (and reshown). Hiding a modal dialog is not
allowed.

See Also

CTL_FLAG_* Options
DLG_FLAG_* Options
SCREEN_WIN
TASK_WIN
WINDOW
WSF_* Options Flags
XVT_PIXMAP
xvt_vobj_set_enabled
xvt_win_create

The "Windows" the and "Dialogs" chapters in the XVT Portability
Toolkit Guide

Example

See the example for xvt_win_create.

xvt_vobj_translate_points
 Translate Window Coordinates

Summary

void xvt_vobj_translate_points(WINDOW from_win,
 WINDOW to_win, PNT *pntp, int npnts)

WINDOW from_win

Source window.

WINDOW to_win

Destination window.

PNT *pntp

Array of points.

int npnts

Number of points, inpntp.

Description

This function translates npnts points in the pntp array from being
relative to from_win to being relative to to_win. (It performs an in-
memory replacement of the values in the PNT array.)

In addition to any regular window, dialog window, or control, you
can use TASK_WIN and SCREEN_WIN. However, print windows and
XVT_PIXMAPs are not allowed.

xvt_vobj_translate_points is especially useful when arranging
windows to fit in their parent’s client area.

Parameter Validity And Error Conditions

XVT issues an error if any of the following parameter conditions are
not met:

• from_win and to_win must be valid WINDOWs and cannot be
print windows or XVT_PIXMAPs

• pntp must be non-NULL

• npnts must be positive

See Also

PNT
SCREEN_WIN
TASK_WIN
WINDOW
xvt_vobj_get_client_rect
xvt_vobj_move

Example

See the example for xvt_vobj_move.

xvt_win_*
 Window Functions

xvt_win_create
xvt_win_create_def
xvt_win_create_res
xvt_win_dispatch_event
xvt_win_enum_wins
xvt_win_get_ctl
xvt_win_get_ctl_color_component
xvt_win_get_ctl_colors
xvt_win_get_ctl_font
xvt_win_get_cursor
xvt_win_get_cxo
xvt_win_get_event_mask
xvt_win_get_handler
xvt_win_get_nav
xvt_win_get_tx
xvt_win_has_menu
xvt_win_list_cxos
xvt_win_list_wins
xvt_win_process_modal
xvt_win_release_pointer
xvt_win_set_caret_pos
xvt_win_set_caret_size
xvt_win_set_caret_visible
xvt_win_set_ctl_color_component
xvt_win_set_ctl_colors
xvt_win_set_ctl_font
xvt_win_set_cursor
xvt_win_set_doc_title
xvt_win_set_event_mask
xvt_win_set_handler
xvt_win_trap_pointer
xvt_win_unset_ctl_color_component

xvt_win_create
 Create a Window

Summary

WINDOW xvt_win_create(WIN_TYPE wtype, RCT *rct_p,
 char *title, int menu_rid, WINDOW parent_win,
long win_flags, EVENT_MASK mask, EVENT_HANDLER eh,
long app_data)

WIN_TYPE wtype

Indicates which type of window is to be created. It should be set
to W_MODAL, W_DOC, W_DBL, W_NO_BORDER, or W_PLAIN. The type
of window you choose depends on the border style you prefer,
and on whether the window is a top-level or child window. If
you want to create a top-level window, you must set wtype to
W_MODAL, W_DOC, W_DBL, or W_PLAIN. If you want to create a child
window, you must set wtype to W_PLAIN or W_NO_BORDER.

RCT *rct_p

Points to a rectangle specifying the window’s client area in its
parent’s coordinate system. The rectangle must be in pixels.
rct_p can be specified as XVT_MAX_WINDOW_RECT, asking for a
window as large as the parent window permits.

char *title

Points to a single-byte or multibyte string for the title of a
window. When creating W_NO_BORDER windows, this can be set
to NULL.

int menu_rid

Specifies a resource ID for a menubar resource as described in
your XRC file. This can be set to zero only if the
WSF_NO_MENUBAR flag is set in the win_flags parameter, or the
window being created is a child window.

WINDOW parent_win

Specifies the container in which the window is created. If you
are creating a top-level window, set this to TASK_WIN or
SCREEN_WIN. If you are creating a child window, then set this to
an existing XVT window. This parameter cannot specify a
dialog, control, pixmap, or print window.

long win_flags

Can contain an OR’d combination of WSF_* flags. These flags
control the window’s style and decoration. Certain flags are not
valid for W_PLAIN, W_DBL, and W_NO_BORDER. For example, if
WSF_ICONIZED is one of the flags, it should not be combined
with WSF_MAXIMIZED, WSF_INVISIBLE, or WSF_DISABLED, but it
should be combined with WSF_ICONIZABLE. For valid
combinations of WSF_* flags, see Window/Dialog/Control
Creation Function Parameters.

EVENT_MASK mask

Specifies which events should be sent to the window handler.
This is an OR’d combination of any of the EM_* constants. You
usually set this to EM_ALL indicating that all events should be
sent to the window (no restriction). In some conditions, you can
restrict the events sent to the window. For more details, see the
"Event Masking" section of the "Events" chapter in the XVT
Portability Toolkit Guide.

EVENT_HANDLER eh

The event handler function; it receives all of the events for the
window.

long app_data

Contains any application data you wish to attach to the window
when it is created. Normally, it is a pointer to a data structure
cast into a long.

long win_flags

The flag WSF_DEFER_MODAL is only valid for W_MODAL.

Description

This function creates a top-level or child XVT window.

Return Value

A WINDOW if successful; NULL_WIN if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are not met:

• If wtype is W_MODAL, the parent_win parameter must be
TASK_WIN, SCREEN_WIN, W_MODAL, WD_MODAL, WD_MODELESS,
W_DOC, W_PLAIN, or W_DBL.

• parent_win must be a valid window

• If parent_win is TASK_WIN or SCREEN_WIN (implying a top-
level window), then the wtype parameter must be W_DOC,
W_PLAIN, W_DBL or W_MODAL

• If parent_win is not TASK_WIN or SCREEN_WIN (implying a
child window), then the wtype parameter must be W_PLAIN,
W_NO_BORDER, or W_MODAL

• eh must be a vaild pointer to a window event handler

• rct_p must either be XVT_MAX_WINDOW or a valid RCT pointer

• If you are creating a top-level window and WSF_NO_MENUBAR
is not set, then menu_rid must be a valid menu resource ID;
otherwise, menu_rid can be set to zero

• If WSF_ICONIZED is one of the flags in the win_flags
parameter, then it cannot be combined with WSF_MAXIMIZED,
WSF_INVISIBLE, or WSF_DISABLED; for other specifications of
appropriate combinations of WSF_* flags, see Window/
Dialog/Control Creation Function Parameters

• You must not call this function during an E_UPDATE event

See Also

EM_* Constants
E_UPDATE
EVENT_HANDLER
EVENT_MASK
NULL_WIN
RCT
SCREEN_WIN
TASK_WIN
W_*, WC_*, WD_*, Values for WIN_TYPE
WIN_TYPE
WINDOW
WSF_* Options Flags
XVT_MAX_WINDOW_RECT
xvt_vobj_get_data
xvt_vobj_set_data
xvt_win_create_def
xvt_win_process_modal
Window/Dialog/Control Creation Function Parameters

The "Creating Windows" section of the "Windows" chapter in the
XVT Portability Toolkit Guide

Example

This code creates a plain window that is initially invisible, and then
later displayed with xvt_vobj_set_visible:

WINDOW window;
RCT rct;
short width, height;
...
xvt_rect_set(&rct, 50, 50, 50 + width, 50 + height);
window = xvt_win_create(W_PLAIN, &rct, "New Window",

 0, TASK_WIN, WSF_NO_MENUBAR|WSF_INVISIBLE,
EM_UPDATE|EM_CLOSE, window_eh, 0L);

 ...
/* show window after it is initialized */
xvt_vobj_set_visible(window, TRUE);

xvt_win_create_def
 Create a Window with Controls from an Array of Data Structures

Summary

WINDOW xvt_win_create_def(WIN_DEF *win_def_p,
 WINDOW parent_win, EVENT_MASK mask,
EVENT_HANDLER eh, long app_data)

WIN_DEF *win_def_p

Points to an array of data structures. The first element in the
array defines the window itself. Subsequent elements of the
array define the controls or text edit objects contained within the
window. The last element of the array is a terminator whose
wtype field is set to W_NONE.

WINDOW parent_win

Specifies the container in which the window is to be created. If
you are creating a top-level window (types W_DOC, W_MODAL, or
W_PLAIN) this parameter must be set to a TASK_WIN or a
SCREEN_WIN. If you are creating a child window (types W_PALIN
or W_NO_BORDER), then set this parameter to an existing XVT
window. This parameter cannot specify a dialog, control,
pixmap, or print window.

EVENT_MASK mask

Specifies which events are sent to the window event handler.
This is an OR’d combination of any of the EM_* constants. You
usually set this to EM_ALL indicating that all events would be
sent to the window. For more details, see the "Event Masking"
section of the "Events" chapter in the XVT Portability Toolkit
Guide.

EVENT_HANDLER eh

The event handler function; it receives all of the events for the
window.

long app_data

Contains any application data you wish to attach to the window
when it is created. Normally, it is a pointer to a data structure
cast into a long.

long win_flags

The flag WSF_DEFER_MODAL is only valid for W_MODAL.

Description

This function creates a window and its controls based on a
description contained in an array of WIN_DEF data structures.
When filling in the WIN_DEF structures that define the window, keep
in mind the following:

• win_def_p[0].wtype should be set to W_DOC, W_DBL,
W_MODAL, W_NO_BORDER, or W_PLAIN, to indicate the type of
window you want to create. The type of window you choose
depends on the border style you prefer and on whether the
window is a top-level or child window. If you want to create
a top-level window, you must set wtype member to W_DOC,
W_DBL, W_PLAIN, or W_MODAL. If you want to create a child
window, you must set the wtype member to W_PLAIN or
W_NO_BORDER.

• win_def_p[0].rct should be set to a rectangle specifying the
window’s client area in its parent’s coordinate system.

• win_def_p[0].text should point to a string containing the
title of the window. If the window is of type W_NO_BORDER,
win_def_p[0].text can be set to NULL.

• win_def_p[0].units should be set to U_PIXELS, U_CHARS, or
U_SEMICHARS to indicate which type of coordinate system
XVT will use to place the window.

• win_def_p->ctlcolors contains the array of
XVT_COLOR_COMPONENT structures that define the colors of the
controls in a window. If it is NULL, the controls in the window
will use the default application control colors. The last
element of the XVT_COLOR_COMPONENT array must have an
XVT_COLOR_TYPE of XVT_COLOR_NULL to indicate the end of
the array.

• win_def_p[0].v.win.menu_rid or
win_def_p[0].v.win.menu_p should be set for any top-level
window being created that does not have the WSF_NO_MENUBAR
flag set. If win_def_p[0].menu_rid is set (non-zero), then it
must be a resource ID for a menubar resource as described in
your XRC file. If win_def_p[0].menu_p is set (non-NULL),
then it must point to a valid array of MENU_ITEMs. The format
of this array is the same as if you were making a call to
xvt_menu_set_tree.

• win_def_p[0].v.win.flags can contain an OR’d
combination of WSF_*. These flags control the window’s style
and decoration. Certain flags are not valid for W_PLAIN,
W_DBL, and W_NO_BORDER. For valid combinations of WFS_*
flags, see Window/Dialog/Control Creation Function
Parameters.

• win_def_p[0].v.win.ctl_font_id is the XVT_FNTID that
defines the font used in all the controls in the window.

• win_def_p[1...n] (where n is the number of controls or text
edit objects to be created in the window) should be filled with
valid descriptions for either a control or a text edit object. A
valid description for a control is one that would be correct if
passed to xvt_ctl_create_def. A valid description for a text
edit object is one that would be correct if passed to
xvt_tx_create_def.

• win_def_p[n+1].wtype should be set to W_NONE indicating
the end of the array.

Return Value

A WINDOW if successful; NULL_WIN if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are not met:

• win_def_p must point to a valid array of WIN_DEF structures.

• win_def_p[0].wtype must be one of W_DOC, W_DBL,
W_NO_BORDER, W_MODAL, or W_PLAIN. W_DOC and W_DBL are
allowed only for top-level windows. W_NO_BORDER is only
valid for child windows.

• win_def_p[i].ctlcolors must be either NULL or a valid
array of XVT_COLOR_COMPONENT structures.

• win_def_p[0].v.win.ctl_font_id must be either
NULL_FNTID or a valid logical font.

• win_def_p_[i].v.ctl.font_id must be either NULL_FNTID
or a valid logical font.

• win_def_p[0].text must point to a valid string if you are
creating a top-level window. If you are creating a child
window of type W_NO_BORDER, this field can be NULL.

• win_def_p[0].units must be one of U_PIXELS, U_CHARS, or
U_SEMICHARS.

• win_def_p[0].v.win.flags must contain valid flags for the
window to be created. If WSF_ICONIZED is one of the flags in
the win_flags parameter, then it cannot be combined with
WSF_MAXIMIZED, WSF_INVISIBLE, or WSF_DISABLED.
However, if WSF_ICONIZED is one of the flags,
WSF_ICONIZABLE must also be used. For other specifications
of appropriate combinations of WSF_* flags, see Window/
Dialog/Control Creation Function Parameters.

• All top-level windows being created that do not have the
WSF_NO_MENUBAR flag set must have a valid menu
specification. A valid menu specification means that exactly
one of the fields win_def_p[0].v.win.menu_rid or
win_def_p[0].v.win.menu_p is set to a valid menu
specification. If win_def_p[0].v.win.menu_rid is set, then
it must be a resource ID for a menubar resource as described
in your XRC file. If win_def_p[0].v.win.menu_p is set, then
it must point to a valid array of MENU_ITEMs.

• win_def_p[1...n] (where n is the number of controls or text
edit objects to be created in the window) must be filled with
valid descriptions for either a control or a text edit object. A
valid description for a control is one that would be correct if
passed to xvt_ctl_create_def. A valid description for a text
edit object is one that would be correct if passed to
xvt_tx_create_def.

• win_def_p[n+1] must have its wtype field set to W_NONE to
signal termination of the array.

See Also

EVENT_HANDLER
EVENT_MASK
MENU_ITEM
NULL_WIN
U_* Values for UNIT_TYPE
W_*, WC_*, WD_*, Values for WIN_TYPE
WIN_DEF
WINDOW
WSF_* Options Flags
XVT_COLOR_COMPONENT
XVT_COLOR_*
XVT_COLOR_TYPE
XVT_FNTID
xvt_ctl_create_def
xvt_menu_set_tree
xvt_tx_create
xvt_vobj_get_data
xvt_vobj_set_data
xvt_win_create
xvt_win_create_res
xvt_win_process_modal
Window/Dialog/Control Creation Function Parameters

The "Event Masking" section of the "Events" chapter in the XVT
Portability Toolkit Guide

xvt_win_create_res
 Create a Window from a Resource File

Summary

WINDOW xvt_win_create_res(int rid, WINDOW parent_win,
 EVENT_MASK mask, EVENT_HANDLER eh, long app_data)

int rid

Resource ID corresponding to a window statement in your XRC
resource file. The window is created as if this resource were
loaded via xvt_res_get_win_def, and then instantiated via
xvt_win_create_def.

WINDOW parent_win

Specifies the container in which the new window is to be
created. It can be TASK_WIN, SCREEN_WIN, or any XVT window
you have previously created. It cannot be a dialog, control,
pixmap, or print window.

EVENT_MASK mask

Specifies which events should be sent to your window’s event
handler. Normally, you would set this to EM_ALL. To restrict the
events set to the handler to a subset of the possible events, set
mask to an OR’d combination of the EM_* constants.

EVENT_HANDLER eh

Event handler function; it receives all of the events for the
window.

long app_data

Can be used to attach arbitrary application data to your window.
This is normally set to a pointer to a data structure containing
the information for your window, cast into a long.

Description

This function creates a window based on an XRC window
definition.

Return Value

A WINDOW if successful; NULL_WIN if unsuccessful (on error).

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are not met:

• parent_win must be a valid XVT window. It cannot be a print
window, dialog, or control.

• eh must be set to a valid function pointer.

• rid specifies a window resource in the XRC file. All of the
parameter checking and validity conditions that apply to
xvt_win_create_def also apply to the window resource as
specified in XRC. Note that xrc does not necessarily catch all
parameter validity problems.

Note: rid must be a valid window resource specified in the XRC file or by
some non-portable means.

See Also

EM_* Constants
EVENT_HANDLER
EVENT_MASK
NULL_WIN
SCREEN_WIN
TASK_WIN
WINDOW
xvt_ctl_create_def
xvt_res_get_win_def
xvt_tx_create_def
xvt_vobj_get_data
xvt_vobj_set_data
xvt_win_create
xvt_win_create_def

The "Creating Windows" section of the "Windows" chapter in the
XVT Portability Toolkit Guide

xvt_win_dispatch_event
 Send an Event to a Window

Summary

long xvt_win_dispatch_event(WINDOW win, EVENT *event_p)

WINDOW win

Window or dialog to which an event is being sent.

EVENT *event_p

Event to be sent.

Description

This function allows you to send events to win’s event handler. Note
that the event is not queued on the native system’s event queue. The
most common use for xvt_win_dispatch_event is sending E_USER
events to your application’s event handlers.

Return Value

The return value is that of the event handler invoked by this call. In
this way, an event handler can return values to your application. If
the event handler for win has been masked for the event type of
event_p, this function returns -1.

Parameter Validity and Error Conditions

XVT issues an error if:

• The specified window is not a valid XVT WINDOW as created
by xvt_win_create_*, xvt_dlg_create_*, or TASK_WIN

• The event structure’s type field is not set to a valid event type

• The window parameter is SCREEN_WIN

• The window does not have an event handler

See Also

E_USER
EVENT
WINDOW

xvt_win_enum_wins
 List Windows and Controls

Summary

BOOLEAN xvt_win_enum_wins (WINDOW parent_win,
 XVT_ENUM_CHILDREN func, long data,
unsigned long reserved)

WINDOW parent_win

Parent window whose children will be enumerated.

XVT_ENUM_CHILDREN func

Address of function to be called for each child.

long data

Application-defined data to pass to callback function.

unsigned long reserved

Reserved for future use.

Description

This function enumerates (i.e., invokes an application-supplied
callback function) the child windows and controls (excluding text
edits) contained in the specified parent window. It passes the WINDOW
ID of each child window or control, in creation order, to an
application-defined callback function. It continues until the last
child window and control is enumerated or until the callback
function returns FALSE.

This function does not enumerate a child window or control that is
destroyed during a call to this function before the child window or
control are enumerated. Also any child window or control created in
the parent_win will not be enumerated. These measures ensure that
xvt_win_enum_wins is reliable even when the application causes
odd side effects.

Return Value

TRUE if successful; FALSE otherwise.

Parameter Validity and Error Conditions

XVT issues an error if:

• parent_win is invalid

• reserved is not NULL

See Also

WINDOW
XVT_ENUM_CHILDREN
xvt_win_list_wins

xvt_win_get_ctl
 Retrieve Control Window Based on ID

Summary

WINDOW xvt_win_get_ctl(WINDOW parent_win, int cid)WINDOW
parent_win

Window for the container.

int cid

Control ID for the control.

Description

This function returns the WINDOW for a control given its parent
WINDOW and control ID. This function can only be used on controls
that were given a unique ID at creation time.

An alternative to calling xvt_win_get_ctl is to store the WINDOW
returned by xvt_ctl_create or xvt_ctl_create_def.

Return Value

The WINDOW of the control if successful, or NULL_WIN if no such
control exists.

Parameter Validity and Error Conditions

XVT issues an error if parent_win is not of wtype W_* or WD_*, or
is a screen or print window.

Implementation Note

On XVT/Win32, parent_win can be TASK_WIN if you have
previously set the attribute ATTR_WIN_PM_DRAW_TWIN.

See Also

NULL_WIN
SCREEN_WIN
TASK_WIN
WINDOW
W_*, WC_*, WD_*, Values for WIN_TYPE
xvt_ctl_create
xvt_ctl_create_def

Example

This code gets pointers to windows using xvt_win_get_ctl:

WINDOW xdWindow;
WINDOW family_lbox;
WINDOW size_lbox;
WINDOW style_lbox;
...
family_lbox = xvt_win_get_ctl(xdWindow, FAMILY_LBOX);
size_lbox = xvt_win_get_ctl(xdWindow, SIZE_LBOX);
style_lbox = xvt_win_get_ctl(xdWindow, STYLE_LBOX);

xvt_win_get_ctl_color_component
Gets the Control Color for a Color Type From a Single Control

Summary

COLOR xvt_win_get_ctl_color_component(WINDOW win,
XVT_COLOR_TYPE ctype)

WINDOW win

WINDOW ID of a window or dialog.

XVT_COLOR_TYPE ctype

Control component to get the color for.

Description

This function gets the control color for a specific control component
from the defined container control colors. The control color returned
reflects the latest container-level control color setting. This color is
either the control color set in the WIN_DEF structure during the
window's creation, or the control colors set by xvt_win_set_ctl_colors
or xvt_win_set_ctl_color_component.

Return Value

INVALID_COLOR if no color is set for the requested component of this
window or if an error occurs, otherwise the COLOR value of the
control component.

Parameter and Validity Conditions

XVT issues an error if win is not a valid WINDOW or ctype is not a
valid XVT_COLOR_TYPE.

See Also

WIN_DEF
XVT_COLOR_TYPE
XVT_COLOR_COMPONENT
xvt_ctl_set_colors
xvt_ctl_set_color_component
xvt_ctl_unset_color_component
xvt_ctl_get_colors
xvt_win_set_ctl_colors
xvt_win_set_ctl_color_component
xvt_win_unset_ctl_color_component
xvt_win_get_ctl_colors
ATTR_APP_CTL_COLORS
COLOR

xvt_win_get_ctl_colors
 Get Default Container Control Colors

Summary

XVT_COLOR_COMPONENT *xvt_win_get_ctl_colors(WINDOW win)

WINDOW win

WINDOW ID of window or dialog.

Description

This function provides the application with a copy of the defined
container control colors. The control colors returned reflect the latest
container-level control colors setting. These colors can either be the
container control colors set in the WIN_DEF structure during the
window’s creation, or the container-level control colors set by
xvt_win_set_ctl_colors. The returned colors are those that render
controls in the container for which no control-specific colors have
been defined.

Return Value

A pointer to an array of XVT_COLOR_COMPONENT structures; NULL if an
error occurs or if no colora have been set. The application owns this
array and must destroy it when finished with it.

Parameter Validity and Error Conditions

XVT issues an error if:

• win is not valid

• win is not type W_DOC, W_PLAIN, W_DBL, W_NO_BORDER,
W_MODAL, WD_MODAL, or WD_MODELSS

See Also

COLOR
COLOR_*, COLOR_INVALID Constants
NULL
WIN_DEF
WINDOW
XVT_COLOR_*
XVT_COLOR_COMPONENT
xvt_ctl_get_colors
xvt_win_set_ctl_colors

Example

XVT_COLOR_COMPONENT* colors;
COLOR bkgnd = COLOR_BLACK;
int = icolors = xvt_win_get_ctl_colors(win);
if(NULL == colors) return;
for(i=0; colors[i].type! = XVT_COLOR_NULL {

 if(colors[i].type ==
 XVT_COLOR_BACKGROUND) {

 bkgnd = colors[i].color;
break;

 }
 }
xvt_mem_free(colors);

xvt_win_get_ctl_font
 Get Logical Font of Controls

Summary

XVT_FNTID xvt_win_get_ctl_font(WINDOW win)

WINDOW win

WINDOW ID of window or dialog.

Description

This function returns a copy of the logical font used by all of the
controls in a container for which no individual control fonts have
been established. The application must delete the logical font when
finished with it.

The logical font returned reflects the latest container level control
font setting. This font can either be the container control font set in
the WIN_DEF structure during the window’s creation, or a container
level control font set by xvt_win_set_ctl_font.

Return Value

A copy of the logical font used to render all of the controls in the
container for which no individual control fonts have been
established; NULL_FNTID if an error occurs or if no font was set. The
application owns this logical font and must destroy it when finished
with it.

Parameter Validity and Error Conditions

XVT issues an error if:

• win is not valid

• win must be of type W_DOC, W_PLAIN, W_NO_BORDER, W_MODAL,
WD_MODAL, or WD_MODELSS

See Also

XVT_FNTID
NULL_FNTID
WIN_DEF
WINDOW
xvt_ctl_get_font
xvt_win_set_ctl_font

xvt_win_get_cursor
 Get the Cursor Shape

Summary

CURSOR xvt_win_get_cursor(WINDOW win)

WINDOW win

Window whose cursor shape is being inquired.

Description

This function gets the CURSOR that identifies the symbol used to
locate the mouse pointer or cursor. Recall that every XVT regular
window has a cursor shape associated with it, and XVT
automatically changes the shape of the cursor as the user moves it
from window to window. Therefore, this function returns the cursor
shape associated with a particular window. You can set the standard
XVT cursor with a call to xvt_win_set_cursor. For a list of the
standard XVT cursors, see CURSOR_* Options.

The main reason for calling xvt_win_get_cursor is to save the
CURSOR for later restoration with xvt_win_set_cursor. The value
returned will be the value last set by a call to xvt_win_set_cursor.
If no previous call to xvt_win_set_cursor for that window has been
made, then the CURSOR_ARROW cursor is returned.

Return Value

The current CURSOR associated with win if successful; CURSOR_ARROW
if no previous call to xvt_win_set_cursor was made.

Parameter Validity and Error Conditions

XVT issues an error if win is not a valid WINDOW of type W_*. Dialogs,
controls, pixmaps, and print windows are not valid values for win.

See Also

CURSOR
CURSOR_* Options
W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_win_set_cursor
xvt_win_trap_pointer

Example

See the example for xvt_win_trap_pointer.

xvt_win_get_cxo
 Retrieve a CXO

Summary

XVT_CXO xvt_win_get_cxo(WINDOW win, char * class_name,
long cxo_id)

WINDOW win,

Window whose CXO of class name and id are to be retrieved.

char * class_name,

The class name of the CXO to be found.

long cxo_id

The ID of the CXO of class name to be found. This value can be
zero.

Description

This function retrieves a CXO from a container’s CXO list using a
class name and, if supplied, a cxo_id. When created using
xvt_cxo_create, CXO’s minimally need a class name so that they
can be retrieved. If more than one CXO of a class can be contained
in a window, then id values are also needed. If no unique ID’s are
used with xvt_win_get_cxo, then the first CXO of class_name will
be returned.

Return Value

A valid XVT_CXO; NULL if unsuccessful or on error.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are not met:

• win must be valid.

• The class_name must be valid.

See Also

WINDOW
XVT_CXO
xvt_cxo_create

Example

See example for xvt_cxo_destroy.

xvt_win_get_event_mask
 Get Event Mask for Window

Summary

EVENT_MASK xvt_win_get_event_mask(WINDOW win)

WINDOW win

Window, dialog, or task window whose event mask is to be
gotten.

Description

This function returns the EVENT_MASK for a window, dialog, or task
window. Controls and screen windows are not allowed. Recall that
the EVENT_MASK specifies the events the event handler for a window
can receive, and is set by ORing together the EM_* constants, and
then calling xvt_win_set_event_mask or the appropriate WINDOW
creation function.

Return Value

The EVENT_MASK for the WINDOW.

Parameter Validity And Error Conditions

XVT issues an error if win is not a valid window or dialog of type
W_* or WD_*. win cannot be a screen window, control, pixmap, or
print window.

See Also

EM_* Constants
EVENT_MASK
W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_timer_destroy
xvt_win_set_event_mask

Example

See the example for xvt_timer_destroy.

xvt_win_get_handler
 Retrieve Event Handling Function for Window

Summary

EVENT_HANDLER xvt_win_get_handler(WINDOW win)

WINDOW win

Window, dialog, or task window whose event handler is to be
gotten.

Description

This function gets the current event handler for a window, dialog, or
task window. The following are typical uses for
xvt_win_get_handler:

• You can determine a WINDOW’s "class" by comparing the value
returned by xvt_win_get_handler with the known event
handlers used by your application

• You can temporarily save the current event handler for a
window or dialog and restore it later with a call to
xvt_win_set_handler; you may want to do this if you
temporarily override the event handler for a window or dialog
and wish to put it back later

• You can save the event handler for a window or dialog,
reassign a new handler, and "preprocess" events with the new
handler before it invokes the original handler, effectively
chaining together event handlers

Return Value

The EVENT_HANDLER registered to the WINDOW.

Parameter Validity and Error Conditions

The WINDOW must be of WIN_TYPE, W_*, or WD_*. Screen windows,
controls, pixmaps, and print windows are not allowed.

See Also

XVT Events
EVENT
EVENT_HANDLER
XVT_CALLCONV*
W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
WIN_TYPE
xvt_win_set_handler

Example

This code uses xvt_win_get_handler to save a window’s event
handler so that it can be overridden by another event handler that
preprocesses the window’s events. The preprocessor event handler
then invokes the original event handler when it is finished.

/* Save the original window event handler */
EVENT_HANDLER save_eh = xvt_win_get_handler(win);
xvt_win_set_handler(win, preprocess_eh);

...

/* Preprocess window events, then invoke original event
handler */

long XVT_CALLCONV1 preprocess_eh(WINDOW win, EVENT *ep) {

switch(ep->type) {
case E_CREATE:
...
break;
case E_FOCUS
...
break;
...
}
return (*save_eh)(win, ep);

}

xvt_win_get_nav
 Retrieves the Navigation Object Associated with a Window

Summary

XVT_NAV xvt_win_get_nav(WINDOW win);

WINDOW win

The window from which to obtain the navigation object.

Description

xvt_win_get_nav returns a navigation object from the specified
window if one exists.

Return Value

A valid XVT_NAV or NULL if no navigation object is associated with
the window.

Parameter Validity and Error Conditions

XVT issues an error if your application does not meet the following
conditions for the parameter passed to xvt_win_get_nav:

• win is a valid window

• win is of type W_DOC, W_PLAIN, W_DBL, W_MODAL, or
W_NO_BORDER

See Also

W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
XVT_NAV
xvt_nav_create

xvt_win_get_tx
 Get Text Edit Object from ID

Summary

TXEDIT xvt_win_get_tx(WINDOW parent_win, int cid)WINDOW
parent_win

Window containing the text edit object to be retrieved.

int cid

Control ID of the text edit object.

Description

xvt_win_get_tx returns the text edit object whose control ID is cid,
and which is contained in parent_win.

Note: You cannot assign an ID to a text edit object via xvt_tx_create.
Instead, you must call xvt_tx_create_def. You can also call

xvt_win_create_def or xvt_win_create_res, which will in turn
call the equivalent of xvt_tx_create_def.

Return Value

The TXEDIT corresponding to cid if successful; NULL_TXEDIT if no
such text edit object exists.

Parameter Validity and Error Conditions

XVT issues an error if parent_win is not of wtype W_*. Pixmaps,
print windows, and screen windows are not valid values for
parent_win.

Implementation Note

On XVT/Win32, parent_win can be TASK_WIN if the attribute
ATTR_WIN_PM_DRAW_TWIN has been set.

See Also

NULL_TXEDIT
TASK_WIN
TXEDIT
NULL_WIN
W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_tx_create
xvt_tx_create_def
xvt_win_create_def
xvt_win_create_res
xvt_win_get_ctl

Example

This code gets pointers to a text edit object using xvt_win_get_tx:

WINDOW xdWindow;
TXEDIT tx;
...
tx = xvt_win_get_tx(xdWindow, WIN_PALETTE_TEDIT);
if (tx == NULL_TXEDIT)

 xvt_dm_post_error("Could not retrieve text edit");
 ...

xvt_win_has_menu
 Determine if the Window has a Menubar

Summary

BOOLEAN xvt_win_has_menu(WINDOW win)

Description

This function determines if a window has a menubar. A window has
a menubar if, at its creation time, the following are true:

• The call to xvt_win_create contains a menubar resource ID,
and the window flags parameter does not contain
WSF_NO_MENUBAR

• The call to xvt_win_create_def contains a WIN_DEF array
whose first (zeroth) element does not use the
WSF_NO_MENUBAR flag in the v.win.flags member, and either
a valid MENU_ITEM pointer is in v.win.menu_p or a valid
MENU_BAR resource ID is in v.win.menu_rid

• The XRC WINDOW resource used in the call to
xvt_win_create_res does not use the NO_MENUBAR flag, and
it provides a valid a MENU_BAR resource ID

Return Value

TRUE if the window has a menubar; FALSE if the window does not
have a menubar.

Parameter Validity and Error Conditions

XVT issues an error if win is not valid and of type W_DOC.

See Also

MENU_ITEM
WIN_DEF
WINDOW
WSF_* Options Flags
xvt_win_create
xvt_win_create_def
xvt_win_create_res
menu and menubar XRC Statement
window XRC Statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

xvt_win_list_cxos
 List All CXO’s Associated With a Window

Summary

SLIST xvt_win_list_cxos(WINDOW win)

WINDOW win,

Window whose list of CXO’s are to be retrieved.

Description

This function retrieves a list of all the CXO’s contained within a
window. The resulting list is returned in an SLIST with the class
name set to the string portion of the SLIST_ELT. The application is
responsible for destroying the SLIST.

Return Value

A valid SLIST; NULL if unsuccessful or if there are no CXO’s in the
window.

Parameter Validity and Error Conditions

XVT issues an error if the following condition is not met:

win must be valid.

See Also

SLIST
WINDOW

Example

This example shows how to retrieve a list of CXO’s in a window,
and retrieve a class name from the list.

SLIST slist;
SLIST_ELT elt;
char* class_name;

slist=xvt_win_list_cxos(win);
if(slist)
{

for(elt = xvt_slist_get_first(slist); elt != NULL;
xvt_slist_get_next(slist, elt))
{
xvt_slist_get(slist, elt, class_name);

/* Code to do something with class_name here */
...
}
xvt_slist_destroy(slist);

}

xvt_win_list_wins
 List Titles

Summary

SLIST xvt_win_list_wins(WINDOW parent_win,
 unsigned long reserved)

WINDOW parent_win

Parent window of children returned in list.

unsigned long reserved

Reserved for future use.

Description

This function gets an SLIST containing WINDOW IDs and the titles of
each control, window, and dialog which is parented by parent_win
(excluding text edit objects, which have no WINDOW identifier). It is
non-recursive, listing only the immediate descendants. The
descendants are listed in creation order.

The data word in the SLIST associated with each descendent is its
WINDOW object identifier. The data word may be used as an argument
to xvt_vobj_get_type to determine the decendent’s window type.

TASK_WIN and SCREEN_WIN are valid arguments to this function.
When they are used as parent_win, the top-level windows and
dialogs that are parented by them are returned.

This function is not a replacement for xvt_scr_list_wins. That
function is useful for listing all top-level windows and dialogs.

Return Value

SLIST containing titles and Window IDs if successful; NULL on error.
The application must free the returned SLIST, when no longer
needed, using xvt_slist_destroy.

Parameter Validity and Error Conditions

XVT issues an error if any of the following conditions are not met:

• reserved must be NULL

• parent_win must be a valid window

See Also

SCREEN_WIN
SLIST
TASK_WIN
WINDOW
xvt_scr_list_wins
xvt_slist_destroy
xvt_vobj_get_type
xvt_win_enum_wins

xvt_win_process_modal
Sets the Control Color for a Color Type Used by a Single Control

Summary

void xvt_win_process_modal(WINDOW win)

WINDOW win

WINDOW ID of modal deferred W_MODAL window.

Description

This function enters a modal processing loop when passed a valid
WINDOW of type W_MODAL that was created with a
WSF_DEFER_MODAL flag. The function returns when the WINDOW is
destroyed. Normally a W_MODAL window not created with
WSF_DEFER_MODAL will enter the modal state inside the
xvt_win_create* function and will only return after the window is
destroyed and modal processing is complete. The function cannot be
called twice with the same window or an error will occur. XVT
recommends that you call xvt_vobj_is_valid on the window before
calling xvt_win_process_modal as the window may have been
destroyed in the window E_CREATE event.

Parameter and Validity Conditions

XVT issues an error if win is not a modal deferred W_MODAL
WINDOW or if xvt_win_process_modal is called twice with the same
win. XVT returns if win is already closed (invalid).

See Also

WINDOW
WIN_TYPE
WSF_* Options Flags
W_*, WC_*, WD_*, Values for WIN_TYPE
xvt_win_create
xvt_win_create_def
xvt_vobj_is_valid

xvt_win_release_pointer
 Release Trapped Mouse

Summary

void xvt_win_release_pointer(void)

Description

This function releases the mouse pointer that was trapped with an
earlier call to xvt_win_trap_pointer. Calling this function allows
mouse events to be sent, once again, to all windows in the window
system.

Parameter Validity and Error Conditions

If the window is invalid, XVT issues an error.

See Also

xvt_win_trap_pointer

Example

See the example for xvt_win_trap_pointer.

xvt_win_set_caret_pos
 Reposition the Caret

Summary

void xvt_win_set_caret_pos(WINDOW win, PNT pos)

WINDOW win

Window whose caret is to be repositioned.

PNT pos

Position of caret (lower-left corner).

Description

This function repositions the caret. The caret doesn’t move
automatically when you draw text or process keyboard events; you
must position the caret yourself by calling this function.

The h and v members of the pos parameter specify respectively the
horizontal and vertical positions of the caret in the window’s client
area. If the caret size has not been set, or if the caret height has been
explicitly set to zero, the bottom of the caret is placed as pnt.v +
size of the window font descent. Otherwise, the bottom of the caret
is exactly at pnt.v. The pnt.h horizontal component identifies the
left coordinate of the caret. The caret’s height is determined by the
current logical font your application sets by calling
xvt_dwin_set_font. Therefore, you should position the caret so
that it lines up with the baseline of the text drawn next to the caret.

You can also position the caret so that the window’s current logical
font has no effect on the caret’s height or position. For details, see
xvt_win_set_caret_size. Typically, you must use
xvt_win_set_caret_size if you are using multiple logical fonts
within a single window, because, in this case, XVT cannot
accurately determine what the current size should be.

Caution: Do not call xvt_win_set_caret_pos during an update event. Doing
so interferes with the way the underlying window systems
implement carets and causes XVT to issue an error.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• You call this function during the processing of an E_UPDATE
event

• win is NULL_WIN

• win is not of type W_*

• win is a print window, screen window, pixmap, or control

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on XVT/Win32, you can set the non-portable attribute
ATTR_WIN_PM_DRAWABLE_TWIN before calling xvt_app_create. In
that case, TASK_WIN is a valid window for this function.

See Also

E_UPDATE
NULL_WIN
PNT
TASK_WIN
W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_app_create
xvt_dwin_set_font_*
xvt_win_set_caret_size
xvt_win_set_caret_visible

The "Cursors and Carets" chapter in the XVT Portability Toolkit
Guide

Example

See the example for xvt_win_set_caret_visible.

xvt_win_set_caret_size
 Set Caret’s Width and Height

Summary

void xvt_win_set_caret_size(WINDOW win, int width,
 int height)

WINDOW win

Window whose caret’s size is to be set.

int width

Width of caret.

int height

Height of caret.

Description

This function sets the size of the caret for win. The size is expressed
in pixels. win must be a regular window; it cannot be a control,
pixmap, or dialog. This function has no effect until a succeeding call
to xvt_win_set_caret_pos is made.

If width is zero, a default platform-specific caret width is used.
Otherwise the caret width is set to width.

If height is zero, the caret height changes dynamically according to
the mapped height of the window’s current logical font each time
you call xvt_win_set_caret_visible. In addition, when height is
zero, XVT increases the y-coordinate by the current physical font’s
descent value. If height is non-zero, then that value becomes the
new caret height.

If you never call xvt_win_set_caret_size for a window, the caret
assumes a height appropriate for the current logical drawing font as
set for the window. Therefore, if you use only one logical font in a
window, you don’t need to call xvt_win_set_caret_size.

However, if you use multiple logical fonts in a window, then the
caret height should match the mapped height of the logical font that
the caret is adjacent to, which may not be the same as the current
window’s logical font. In that case, you should call
xvt_win_set_caret_size.

Caution: Do not call xvt_win_set_caret_size during an update event.
Doing so interferes with the way the underlying window systems
implement carets and causes XVT to issue an error.

Return Value

None.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• You call this function during the processing of an E_UPDATE
event

• win is NULL_WIN

• win is not of type W_*

• win is a print window, screen window, pixmap, or control

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on XVT/Win32, you can set the non-portable attribute
ATTR_WIN_PM_DRAWABLE_TWIN before calling xvt_app_create. In
that case, TASK_WIN is a valid window for this function.

See Also

E_UPDATE
NULL_WIN
TASK_WIN
WINDOW
W_*, WC_*, WD_*, Values for WIN_TYPE
xvt_app_create
xvt_win_set_caret_pos
xvt_win_set_caret_visible

The "Cursors and Carets" chapter in the XVT Portability Toolkit
Guide

Example

See the example for xvt_win_set_caret_visible.

xvt_win_set_caret_visible
 Change the Position of the Caret

Summary

void xvt_win_set_caret_visible(WINDOW win,
 BOOLEAN visible)

WINDOW win

Window whose caret’s visibility is being set.

BOOLEAN visible

If TRUE, makes caret visible; if FALSE, makes caret invisible.

Description

This function changes the visibility of the "logical" caret for a
particular window. The visibility of the logical caret affects the
visibility of the "physical" caret. A physical caret is a vertical bar
(possibly blinking) that you use to indicate the location for text
insertion.

Any window that has a visible logical caret displays a physical caret
when that window has the focus. Any window that has an invisible
logical caret does not display the physical caret, even when that
window has focus.

You should call this function with visible equal to FALSE when the
window leaves text insertion mode. Calling this function with

visible equal to FALSE cancels any previous calls to this function
with visible equal to TRUE for this window.

You do not have to pair calls to this function with visibility values
of TRUE and FALSE. In other words, you can call
xvt_win_set_caret_visible(win, FALSE) or
xvt_win_set_caret_visible(win, TRUE) repeatedly without
confusing XVT.

You call xvt_win_set_caret_visible(win, TRUE) when the user
enters text entry mode for a particular window. If a particular
window is always in text entry mode, then you can call this function
with TRUE from within the E_CREATE case of the window’s event
handler. The caret isn’t shown automatically when you draw text or
process keyboard events; you make it visible by calling this
function.

XVT automatically hides the caret when a window becomes inactive
and shows it again (if its visibility is TRUE) when the window
becomes active.

Caution: Do not call xvt_win_set_caret_visible during an update event.
Doing so interferes with the way the underlying window systems
implement carets and causes XVT to issue an error.

Parameter Validity and Error Conditions

XVT issues an error if:

• win is NULL_WIN

• win is not of type W_*

• win is a print window, screen window, pixmap, or control

• This function is called during the processing of an E_UPDATE
event

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on XVT/Win32, you can set the non-portable attribute
ATTR_WIN_PM_DRAWABLE_TWIN before calling xvt_app_create. In
that case, TASK_WIN is a valid window for this function.

See Also

E_CREATE
E_UPDATE
NULL_WIN
PNT
TASK_WIN
W_*, WC_*, WD_*, Values for WIN_TYPE
WINDOW
xvt_app_create
xvt_dwin_draw_text
xvt_dwin_get_text_width
xvt_scr_beep
xvt_win_set_caret_pos
xvt_win_set_caret_size

The "Cursors and Carets" chapter in the XVT Portability Toolkit
Guide

Example

switch(ep->type)
 {
...
case E_CHAR:

 PNT pnt;
static char str[MAX_CHARS +1];
static int next = 0;if (next < MAX_CHARS) {

 next+= xvt_str_convert_wc_to_mb(&str[next],
ep->v.chr.ch);

str[next] = NULL
xvt_dwin_draw_text(edit_win, start_x,

start_y, str, -1);
pnt.v = start_y;
pnt.h = start_x +

xvt_dwin_get_text_width(edit_win, str, -1);
xvt_win_set_caret_pos(edit_win, pnt);
xvt_win_set_caret_visible(edit_win, TRUE);

 }
else {

 xvt_scr_beep();
 }

 }

xvt_win_set_ctl_color_component
Sets the Control Color for a Color Type Used by all Controls in a Window

Summary

void xvt_win_set_ctl_color_component(WINDOW win,
XVT_COLOR_TYPE ctype, COLOR color)

WINDOW win

WINDOW ID of a window or dialog.

XVT_COLOR_TYPE ctype

Control component to set the color for.

COLOR color

Color to assign.

Description

This function sets the control color for a specific control component
in all the existing and subsequently created controls contained in
win. A call to this function overrides any previous control color
setting only for the specified ctype. Excluded from this effect are
those controls for which control colors have been established
individually. All other colors used by the designated control not
specified by a call to this function are unaffected.

Parameter and Validity Conditions

XVT issues an error if win is not a valid WINDOW or ctype is not a
valid XVT_COLOR_TYPE.

See Also

WIN_DEF
XVT_COLOR_TYPE
XVT_COLOR_COMPONENT
xvt_ctl_set_colors
xvt_ctl_set_color_component
xvt_ctl_unset_color_component
xvt_ctl_get_colors
xvt_win_set_ctl_colors
xvt_win_get_ctl_colors
xvt_win_get_ctl_color_component
xvt_win_unset_ctl_color_component
ATTR_APP_CTL_COLORS

xvt_win_set_ctl_colors
 Set Control Colors

Summary

void xvt_win_set_ctl_colors(WINDOW win,
XVT_COLOR_COMPONENT* colors,
XVT_COLOR_ACTION action)

WINDOW win

WINDOW ID of window or dialog.

XVT_COLOR_COMPONENT* colors

Colors to set or unset.

XVT_COLOR_ACTION action

Either set or unset the colors.

Description

This function sets (or unsets) the control colors in all the existing and
subsequently created controls contained in win. A call to this
function overrides any previous control color settings only for the
specified XVT_COLOR_COMPONENTs in the colors array. Excluded from
this effect are those controls for which control colors have been
established individually. All colors which are not specified in a call
to this function are unaffected.

If NULL is passed as the value of the colors array, the controls in the
container which depend on the container level control colors revert
to using the application default control colors. If no application
default control colors are defined, the platform-specific default
control colors are used.

If the action parameter is XVT_COLOR_ACTION_SET, the container
control colors for the specified color components is set to the color
values in the colors parameter. If the action parameter is
XVT_COLOR_ACTION_UNSET, the container control colors for the
specified color components are inherited from the application
default control color_set.

This function does not affect the colors of the container decorations
or any other colors that appear in the container itself.

Parameter and Validity Conditions

XVT issues an error if:

• win is NULL_WIN

• win is not a valid window

• win is not of type W_PLAIN, W_DBL, W_NO_BORDER, W_MODAL,
WD_MODAL, WD_MODELESS or (for XVT/Win32) W_TASK

• This function is called during an E_UPDATE event

Implementation Note

Normally, TASK_WIN is not a valid window for this function.
However, on XVT/Win32, you can set the non-portable attribute
ATTR_WIN_PM_DRAWABLE_TWIN before calling xvt_app_create. In
that case, TASK_WIN is a valid window for this function.

See Also

ATTR_APP_CTL_COLORS
XVT_COLOR_ACTION
XVT_COLOR_COMPONENT
E_UPDATE
WINDOW
xvt_ctl_set_colors
xvt_win_get_ctl_colors

xvt_win_set_ctl_font
 Set Logical Control Font

Summary

void xvt_win_set_ctl_font(WINDOW win,
 XVT_FNTID font_id)

WINDOW win

 WINDOW ID of window or dialog.

XVT_FNTID font_id

Logical font.

Description

This function sets the logical font in all the existing and
subsequently created controls contained in win.

A call to this function overrides any previous font setting for the
contained controls, excluding those controls for which fonts have
been established individually. If NULL_FNTID is passed to this
function, the controls in the container which depend on the container
level control font revert to using the application default control font.
If no application default control font has been defined, the platform-
specific default control font is used.

This function does not affect the font of the window title, menu
items, or any other text in the container.

Parameter and Validity Conditions

XVT issues an error if any of the following conditions exist:

• win is NULL_WIN

• win is not a valid window

See Also

ATTR_APP_CTL_FONT_RID
E_UPDATE
NULL_FNTID
XVT_FNTID
WINDOW
xvt_ctl_set_font
xvt_win_get_ctl_font

xvt_win_set_cursor
 Set Window’s Cursor Shape

Summary

void xvt_win_set_cursor(WINDOW win, CURSOR cur)

WINDOW win

Window whose cursor’s shape is to be set.

CURSOR cur

Cursor to be set.

Description

This function sets the CURSOR that identifies the symbol used to
locate the mouse pointer or cursor. Recall that every XVT regular
window has a cursor shape associated with it; XVT automatically
changes the shape of the cursor as the user moves it from window to

window. This function sets the cursor shape associated with a
particular window. For a list of the standard XVT cursors, see
CURSOR_* options. You can also use a cursor that you have designed
specifically for your application.

If you specify a non-standard cursor value, then that value must be
the resource ID of a CURSOR resource that you have defined non-
portably. For details on specifying CURSOR resources, see the XVT
Platform-Specific Books.

Each window remembers its cursor shape, and XVT automatically
changes the shape as the mouse pointer is moved around the screen,
unless the mouse is trapped with a call to xvt_win_trap_pointer.
Therefore, xvt_win_set_cursor should be thought of as setting the
"tool cursor" for a particular window, rather than setting an
application-wide cursor.

Parameter Validity and Error Conditions

Dialogs, controls, pixmaps, and print windows are not valid values
for win. TASK_WIN is a valid value for win on XVT/Mac. If the
attribute ATTR_WIN_PM_DRAWABLE_TWIN was set when the application
was started, it is also valid for XVT/Win32.

Implementation Note

On XVT/XM, TASK_WIN is not a valid window for this function.

See Also

CURSOR
CURSOR_* Options
TASK_WIN
WINDOW
xvt_win_get_cursor
xvt_win_trap_pointer

The "Cursors and Carets" chapter in the XVT Portability Toolkit
Guide
The XVT Platform-Specific Books

Example

See the example for xvt_win_trap_pointer.

xvt_win_set_doc_title
 Set Document Window’s Title

Summary

void xvt_win_set_doc_title(WINDOW win, char *title)

WINDOW win

Window whose title is being set.

char *title

Title to be set.

Description

This function is similar to xvt_vobj_set_title, except that it forms
a window title that follows appropriate style guidelines for the local
platform, by prepending the application name to title. XVT
retrieves the application name from the appl_name field of the
XVT_CONFIG structure passed to xvt_app_create. Use
xvt_win_set_doc_title only for top-level windows.

If the window corresponds to a document with a title, use that title
(e.g., "Sales Chart") for the title argument to this function. If the
document is untitled, use a title of the form "Untitledn", where n is
a number greater than or equal to 1. This function pulls off the
number and uses a name for the untitled window that is appropriate
for the local system.

Parameter Validity and Error Conditions

XVT issues an error if any of the following are true:

• win is invalid; print windows, screen windows, pixmaps, and
controls are not valid values for win

• title is NULL

• This function is called during an E_UPDATE event

See Also

XVT_CONFIG
E_UPDATE
WINDOW
xvt_app_create
xvt_vobj_set_title

xvt_win_set_event_mask
 Specify Event Restrictions

Summary

void xvt_win_set_event_mask(WINDOW win,
 EVENT_MASK mask)

WINDOW win

Window, dialog, or task window for which EVENT_MASK is to be
set.

EVENT_MASK mask

Specified events that the window event handler can receive.

Description

This function sets the EVENT_MASK for a window, dialog, or task
window. Controls, pixmaps, print windows, and screen windows are
not allowed. The EVENT_MASK specifies the events the event handler
for a window can receive, and is set by ORing together the EM_*
constants. Only the events that have the corresponding EM_* values
set in the event mask are sent to the event handler for the WINDOW
(e.g., E_CHAR is the only event sent if only the EM_CHAR mask bit is
set). Most of the time, you simply set the event mask to EM_ALL,
which allows all events.

You can set an event mask either in the window/dialog creation
functions, xvt_win_create_* and xvt_dlg_create_*, or by calling
xvt_win_set_event_mask. Typically, your application would reset
the event mask by calling xvt_win_set_event_mask to screen out
events based on the current state of the WINDOW. For example, you
might want to call xvt_win_set_event_mask to screen out queued
E_TIMER events before you call xvt_timer_destroy. This
guarantees that any timer events in the event queue will not be
delivered.

Parameter Validity and Error Conditions

XVT issues an error if win is not a valid window, dialog, or
TASK_WIN. Controls, pixmaps, print windows, and SCREEN_WINs are
not allowed.

See Also

E_CHAR
EM_* Constants
E_TIMER
EVENT_MASK
SCREEN_WIN
TASK_WIN
WINDOW
xvt_dlg_create_def
xvt_dlg_create_res
xvt_timer_destroy
xvt_win_create
xvt_win_create_def
xvt_win_create_res

Example

See the example for xvt_timer_destroy.

xvt_win_set_handler
 Set Window or Dialog Event Handler

Summary

void xvt_win_set_handler(WINDOW win, EVENT_HANDLER eh)

WINDOW win

Window, dialog, or TASK_WIN whose event handler is being set.

EVENT_HANDLER eh

Event handler function.

Description

This function sets the event handler for win, which may be a regular
window, dialog, or TASK_WIN. Setting the event handler for a
window has the effect of changing the function that receives events
for that window. You can use this function to drastically alter the
behavior of a particular window. You might also use it to intercept
events for a window before invoking the handler that the window
was assigned when it was first created, effectively chaining together
event handlers.

Another use for xvt_win_set_handler is if you want to temporarily
override the event handler for a window or dialog and put it back
later. In this case, you can call xvt_win_get_handler to save the

current event handler for a window or dialog, so that you can restore
it later with a call to xvt_win_set_handler.

Parameter Validity and Error Conditions

XVT issues an error if win is not a valid window, dialog, or
TASK_WIN.

See Also

EVENT_HANDLER
TASK_WIN
WINDOW
xvt_win_get_handler

Example

See the example for xvt_win_get_handler.

xvt_win_trap_pointer
 Take Control of the Mouse

Summary

void xvt_win_trap_pointer(WINDOW win)

WINDOW win

Window to which the pointer is being trapped.

Description

This function traps all mouse events to the WINDOW specified by win.
This means that the mouse can’t be used to operate anything outside
of the client area--not the scrollbars, not the menubar, and not
anything in other windows. The user can still move the mouse
outside of the client area, but the CURSOR shape of the mouse pointer
won’t change.

All subsequent mouse events are sent to the event handler of the
window in which the mouse is trapped until the pointer is released
with a call to xvt_win_release_pointer. However, the mouse
coordinates for these events may fall outside the client area. If you
want to constrain mouse events to the client rectangle, include code
in your application to force them into the proper range.

You should always trap the mouse during dragging.

E_MOUSE_MOVE events are generated continuously while the mouse is
trapped, to help in implementing automatic scrolling.

Do not keep the mouse trapped indefinitely, as it interferes with the
user’s ability to operate other applications.

Parameter Validity and Error Conditions

If win is not a valid window, XVT issues an error.

Implementation Note

On XVT/XM, the X server performs an automatic grab of the mouse
when a mouse button is pressed. On these platforms,
xvt_win_trap_pointer can fail depending on grabs in progress
from other applications. In this case, XVT issues a warning, which
your application can watch for in its error message handler.

See Also

CURSOR
CURSOR_* Options
E_MOUSE_MOVE
WINDOW
xvt_win_release_pointer
xvt_win_get_cursor
xvt_win_set_cursor

Example

This code routine can be used to toggle "rubber banding" in a
window:

static DRAW_CTOOLS rb_ctools = {...M_XOR...};
...
void
rubber_band(WINDOW window, int on) {

 static DRAW_CTOOLS save_tools;
static CURSOR save_cursor;if (on) { /* turn rubber

band mode on */
 /* trap pointer, set cursor, set ctools */
xvt_win_trap_pointer(window);
xvt_win_get_cursor(window, &save_cursor);
xvt_win_set_cursor(window, CURSOR_CROSS);
xvt_dwin_get_draw_ctools(window,

&save_tools);
xvt_dwin_set_draw_ctools(window, &rb_ctools);

 }
else { /* turn rubber band mode off */

 /* release pointer, reset cursor & ctools */
xvt_win_release_pointer();
xvt_win_set_cursor(window, &save_cursor);
xvt_dwin_set_draw_ctools(window,

&save_ctools);
 }

 }

xvt_win_unset_ctl_color_component
Unsets the Control Color for a Color Type Used by all Controls in a Window

Summary

void xvt_win_unset_ctl_color_component(WINDOW win,
XVT_COLOR_TYPE ctype)

WINDOW win

WINDOW ID of a window or dialog.

XVT_COLOR_TYPE ctype

Control component to unset the color for.

Description

This function unsets the control color for a specific control
component in all the existing and subsequently created controls
contained in win. A call to this function overrides any previous
control color setting only for the specified ctype. Excluded from this
effect are those controls for which control colors have been
established individually. All other colors used by the designated
control not specified by a call to this function are unaffected.

The control reverts to the default colors for the application or the
native window system. The control colors for the specified color
component is either inherited the application owned colors, or the
system default.

Parameter and Validity Conditions

XVT issues an error if win is not a valid WINDOW or ctype is not a
valid XVT_COLOR_TYPE.

See Also

WIN_DEF
XVT_COLOR_TYPE
XVT_COLOR_COMPONENT
xvt_ctl_set_colors
xvt_ctl_set_color_component
xvt_ctl_unset_color_component
xvt_ctl_get_colors
xvt_win_set_ctl_colors
xvt_win_set_ctl_color_component
xvt_win_get_ctl_colors
xvt_win_get_ctl_color_component
ATTR_APP_CTL_COLORS

XRC Statements
 Universal Resource Language Statements

XRC Statement Components
Bounding Rectangle
Resource ID
Text Strings
userdata

XRC Statements
accel
button Control
checkbox Control
dialog
edit Control
font
font_map
groupbox Control
icon Control
image
listbox Control
listbutton Control
listedit Control
menu and menubar
radiobutton Control
scrollbar Control
string
text Control
textedit Object
units
window

xrc Resource Compiler Directives
#define
#include
#if, #elif, #else, and #endif
#ifdef and #ifndef
#scan
#transparent
#undef

Bounding Rectangle
 XRC Statement Component

A bounding rectangle is a sequence of four constant integer values
(or expressions that evaluate to constants). The first and second

values are the x and y coordinate, respectively, of the upper-left
corner of the rectangle. The third and fourth values are the width and
height, respectively, of the rectangle. The values can be separated by
blanks and/or commas.

Resource ID
 XRC Statement Component

Resource IDs are positive integer values. They can be specified as a
constant or an expression that evaluates to a constant. Application
should use values below 30,000.

See Also

button Control XRC statement
checkbox Control XRC statement
dialog XRC statement
edit Control XRC statement
font XRC statement
font_map XRC statement
groupbox Control XRC statement
icon Control XRC statement
image XRC statement
listbox Control XRC statement
listbutton Control XRC statement
listedit Control XRC statement
radiobutton Control XRC statement
scrollbar Control XRC statement
string XRC statement
text Control XRC statement
textedit Object XRC statement
window XRC statement

Text Strings
 XRC Statement Component

Text strings are specified inside double quotes (""). Two or more
sequential strings are concatenated to form a single string.
Backslashes inside a string escape certain characters as follows:

"\becomes "
\\ becomes \
\n becomes linefeed character
\t becomes tab character

In addition, a backslash followed by 1,2, or 3 octal digits is
converted to the equivalent 8-bit character. A backslash at the end of
a line continues the string on to the next line.

userdata
 XRC Statement Component

Summary

userdata "string 1", "string 2", ... , "string n"

Description

You can associate any number of strings with XRC menus, dialogs,
windows, images and controls. These strings become the user data
for their associated objects, and can be retrieved by the application
program using the functions xvt_res_get_menu_data,
xvt_res_get_image_data, xvt_res_get_dlg_data, and
xvt_res_get_win_data.

User data strings are each limited to 2048 characters. User data is
allowed any of the following XRC statements:

button
checkbox Control
dialog
edit
groupbox Control
icon Control
image
menu
item
listbox Control
listbutton Control
radiobutton Control
scrollbar Control
text Control

textedit Control
window

See Also

button Control XRC statement
checkbox Control XRC statement
dialog XRC statement
edit Control XRC statement
groupbox Control XRC statement
icon Control XRC statement
image XRC statement
menu and menubar XRC statement
listbox Control XRC statement
listbutton Control XRC statement
listedit Control XRC statement
radiobutton Control XRC statement
scrollbar Control XRC statement
text Control XRC statement
textedit Object XRC statement
window XRC statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

accel
 XRC Statement

Summary

accel tag symbol [modifiers]

Description

This statement specifies a keyboard equivalent for a menu item. The
tag usually appears in an item specification of a menu statement,
but it need not.

The key must be either a single ASCII character enclosed in double
quotes, or one of the following symbols. Note that these symbols are
unlike XVT virtual key codes, in that they represent actual keys on
the keyboard. Not all keyboards have all keys.

Symbol Key Symbol Key
f1 F1 kp0 0 on keypad

Some of these symbols (e.g., del, back) duplicate ASCII keys and
thus can be specified in two ways.

The optional modifiers are a sequence of the following symbols.
They can be in any order. They represent the modifier keys held
down while the key is pressed: control, shift, alt.

The modifier alt means the command (or Apple) key on the
Macintosh.

Example

The standard accelerators for XVT/Win32 can be specified like this:

accel M_EDIT_CUT DEL SHIFT
accel M_EDIT_COPY INS CONTROL
accel M_EDIT_PASTE INS SHIFT
accel M_EDIT_CLEAR DEL CONTROL
accel M_EDIT_UNDO BACK ALT
accel M_HELP_CONTENTS F1
accel M_FONT_NORMAL F5
accel M_FONT_BOLD F6
accel M_FONT_ITALIC F7
accel M_FONT_UNDER F8

These are some typical accelerators for the Mac:

accel M_FILE_OPEN "o" alt
accel M_FILE_SAVE "s" alt
accel M_FILE_QUIT "q" alt

Accelerators are more look-and-feel dependent than menus, so
conditional compilation is usually required.

See Also

menu and menubar XRC statements

...
f24 F24 kp9 9 on keypad
tab Tab ins Insert
back Backspace del Delete
return Return copy Copy
esc Escape cut Cut
mult * on keypad paste Paste
sub - on keypad
add + on keypad

button Control
 XRC Statement

Summary

button id rect "title" [options] [userdata]

Description

This statement specifies a button control with resource ID id,
bounding rectangle rect, and label text label. If the height is given as
zero, the XRC compiler automatically chooses the recommended
height for the target platform. If a tilde (~) appears in the label, the
letter that follows is a mnemonic for that control.

The options can be one or more of the following:

Option Meaning
default Default button
disabled Initially disabled
invisible or hidden Initially hidden
native_just Native text justification (the default)
left_just Left-justified text
center_just Center-justified text
right_just Right-justified text

Note: If you specify more than one of the *_just options,
results are unpredictable.

See Also

Bounding Rectangle XRC statement component
Resource ID XRC statement component
Text Strings XRC statement component
userdata XRC statement component
dialog XRC statement
window XRC statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

checkbox Control
 XRC Statement

Summary

checkbox id rect "title" [options] [userdata]

Description

This statement is the same as the button statement, except that it
specifies a check box. It can use tilde (~) mnemonics; see button
Control. The options can be one or more of the following:

Option Meaning
checked Initially checked (Mac only)
disabled Initially disabled
invisible or hidden Initially hidden
native_just Native text justification (the default)
left_just Left-justified text
center_just Center-justified text
right_just Right-justified text

Note: If you specify more than one of the *_just options, results
are unpredictable.

See Also

Bounding Rectangle XRC statement component
Resource ID XRC statement component
Text Strings XRC statement component
userdata XRC statement component
button Control XRC statement
dialog XRC statement
window XRC statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

dialog"

XRC Statement

Summary

dialog id rect ["title"] [type] [options] [userdata]

... control statements ...

Description

This statement defines a dialog box whose resource ID is given by
id. Control statements (e.g., button, listbox) follow.

The dialog box’s location and size are specified by rect, as described
in window. The location of a dialog is relative to the screen.

The title, which must be enclosed in double quotes, specifies the
dialog’s title. The type is either modal or modeless. If type is
omitted, the dialog is modal.

The options for dialogs can be one or more of:

Option Meaning
disabled Initially disabled
invisible or hidden Initially hidden

These options should only be used with modeless dialogs, since they
don’t make sense for modal dialogs.

The order of control statements following a dialog statement usually
matters. When the keyboard is used to navigate within the dialog, it
visits the controls in the order in which they appear. Also, the first
control that appears is the one that gets the initial keyboard focus. On
systems that do not use the keyboard to navigate, such as the Mac,
the first edit control that appears gets the focus.

XVT defines a number of standard dialogs. These dialogs have IDs
in the range 9050 to 9099, so these numbers should not be used for
the dialog ID.

Within a dialog statement control IDs have to follow XVT’s
numbering requirements. The Default and Cancel buttons must have
IDs equal to DLG_OK and DLG_CANCEL, respectively. Other numbers
can be chosen at will, but they must be unique within a single dialog
and they must be less than 9000.

See Also

DLG_* Control IDs
Bounding Rectangle XRC statement component
Resource ID XRC statement component
Text Strings XRC statement component
userdata XRC statement component
window XRC statement

The "Dialogs" and the "Resources and XRC" chapter in the XVT
Portability Toolkit Guide

edit Control
 XRC statement

Summary

edit id rect ["text"] [options] [userdata]

Description

This statement specifies an edit control, with the given resource ID
id, bounding rectangle rect, and initial text text. A zero height tells
the compiler to pick the default height for the target platform. The
text can be omitted, in which case the edit control will be initially
empty.

The options can be one or more of the following:

Option Meaning
disabled Initially disabled
invisible or hidden Initially hidden
native_just Native text justification (the default)
left_just Left-justified text
center_just Center-justified text
right_just Right-justified text
opt1 Use 9-point Geneva font (Mac only)
opt2 Use 9-point Monaco font (Mac only)
opt3 Multiline (Mac only)
opt4 Wordwrap (Mac only)
password Password style edit field

Note: If you specify opt1 with opt2, results are unpredictable.

See Also

Bounding Rectangle XRC statement component
Resource ID XRC statement component
Text Strings XRC statement component
userdata XRC statement component
dialog XRC statement
window XRC statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

font
 XRC Statement

Summary

font id family size [style] [map native_desc]

Description

This statement defines a logical font whose resource ID is given by
id. This logical font can specify the font for an object (currently,
only text edit objects support this). Or it can specify the mapping
from a logical font to a physical font or both.

In the font resource, family, size, and [style] contain the XVT
portable attributes (family, style, size). The family is a string in
double quotes; it can be any value. The size must be a constant
expression or the keyword any (used to specify wildcarding for
mapping purposes). You can also use the wildcard "any" for the
[style] field. If the XRC font mapper encounters a wildcard, it allows
any size or style, respectively, to be mapped to the specified native
descriptor.

[style] specifies the font styles, and can be any of the following:

• any

• printer

• user1

• blink

• scalable

• user2

• bold

• shadow

• user3

• inverse

• strikeout

• user4

• italic

• underline

• user5

• outline

The any keyword indicates wildcarding for the font style, and
therefore does not make sense with other style options. The
keywords user1 - user5 are available for user-defined styles if the
application supplies its own font mapper.

The map keyword and the string native_desc (which must be in
double quotes) indicate a mapping from the logical font to a physical
font.

Example

Here is an example of how you would define "MYFONT101" in your
XRC file:

#define MYFONT101 1
font MYFONT101 "helvetica" 12 bold italic

See Also

XVT_FONT_STYLE_MASK
xvt_res_get_font
Resource ID XRC statement component
font_map XRC statement

font_map
 XRC Statement

Summary

font_map id native_desc

Description

This statement defines a mapping from the logical font given by the
resource ID id (previously defined in the XRC file by a font
statement) to the physical font specified in the string native_desc,
which must be in double quotes.

You can use wildcards ("*") in the native_desc field. If a native
descriptor contains wildcards, the corresponding portable attributes
are used as the value of the native attribute.

Example

Here is an example of defining a native mapping for "MYFONT101" on
XVT/XM:

font_map MYFONT101 "X1101/adobe/helvetica/bold/i/\
//*/120/*/*/*/*/*/*"

Tip: You can avoid using the font_map statement altogether by
appending the native descriptor to the end of the font statement,
preceded by the keyword map, like this:

font MYFONT101 "helvetica" 12 bold italic map "X1101\
adobe/helvetica/..."

See Also

Resource ID XRC statement component
font XRC statement

The "Fonts and Text" chapter in the XVT Portability Toolkit Guide
The XVT Platform-Specific Books

groupbox Control
 XRC Statement

Summary

groupbox id rect ["label"] [options] [userdata]

Description

This statement specifies a rectangle that causes other controls within
a dialog box to appear as a set. The text string label appears at the

top of the group box. The options can be one or more of the
following:

Option Meaning
disabled Initially disabled
invisible or hidden Initially hidden
native_just Native text justification (the default)
left_just Left-justified text
center_just Center-justified text
right_just Right-justified text
opt1 Use 9-point Geneva font (Mac only)
opt2 Use 9-point Monaco font (Mac only)

Note: If you specify more than one of the *_just options, or if you specify
opt1 with opt2, results are unpredictable.

See Also

Bounding Rectangle XRC statement component
Resource ID XRC statement component
Text Strings XRC statement component
userdata XRC statement component
dialog XRC statement
window XRC statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

icon Control
 XRC Statement

Summary

icon id rect ref-id [options] [userdata]

Description

This statement specifies an icon to be placed into the specified
bounding rectangle. The program uses the id to refer to the control.
The ref-id refers to the ID of a platform-specific icon resource not
specifiable in XRC. (You can define it with native resource
statements within an XRC #transparent statement.) On some
platforms, the height and/or width of the rect is ignored, and is
taken from the definition of the icon itself.

The options can be any of the following:

Option Meaning
disabled Initially disabled
invisible or hidden Initially hidden

See Also

Bounding Rectangle XRC statement component
Resource ID XRC statement component
userdata XRC statement component
dialog XRC statement
#transparent XRC statement
window XRC statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide
The XVT Platform-Specific Books

image
 XRC Statement

Summary

image id "filename" [options] [userdata]

Description

This statement defines a portable image resource whose resource ID
is given by id. The filename is a string in double quotes.

Tip: To get an image from a resource file:

Call xvt_res_get_image.

Currently the only available option is reference, which indicates
that only the filename is stored in the resource file. This file is
searched for at runtime only if a reference is made to this image
resource.

If the reference option is not used, the entire image file is copied
into the resource file. xrc searches for this file in the same way as
files specified in the #include or #scan directives.

xrc does no validity checking on this file and assumes it is in MS-
Windows BMP format.

See Also

xvt_res_get_image
Resource ID XRC statement component
userdata XRC statement component
#include preprocessor directive
#scan preprocessor directive

listbox Control
 XRC Statement

Summary

listbox id rect [options] [userdata]

Description

This statement specifies a list box, with given ID and rectangle. The
rectangle must include space for the scrollbar. The options can be
one or more of the following:

Option Meaning
disabled Initially disabled
invisible or hidden Initially hidden
readonly Read only; nothing can be selected
multiple Multiple items can be selected
opt1 Use 9-point Geneva font (Mac only)
opt2 Use 9-point Monaco font (Mac only)

Note: If you specify opt1 with opt2, results are unpredictable.
If no option is chosen, the list box allows one selection at a
time.

Implementation Note

On some XVT-supported platforms, you may encounter native (not
XVT-imposed) memory limitations that apply to individual list
boxes. For example, the number of items that you can add to a list
box is determined by the combined size of the items and the memory
available on the global heap.

See Also

Bounding Rectangle XRC statement component
Resource ID XRC statement component
userdata XRC statement component
dialog XRC statement
window XRC statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

listbutton Control
 XRC Statement

Summary

listbutton id rect [options] [userdata]

Description

This statement specifies a list button control, with the given ID and
bounding rectangle. The bounding rectangle is the size of the control
when the list is displayed. The options can be one or more of the
following:

Option Meaning
invisible or hidden Initially invisible
disabled Initially disabled
native_just Native text justification (the default)
center_just Center-justified text
right_just Right-justified text

Note: If you specify more than one of the *_just options, results
are unpredictable.

Implementation Note

On some XVT-supported platforms, you may encounter native (not
XVT-imposed) memory limitations that apply to individual list
button controls. For example, the number of items that you can add
to a list button control is determined by the combined size of the
items and the memory available on the global heap.

See Also

Bounding Rectangle XRC statement component
Resource ID XRC statement component
userdata XRC statement component
dialog XRC statement
window XRC statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

listedit Control
 XRC Statement

Summary

listedit id rect [options] [userdata]

Description

This statement specifies a list edit control, with the given ID and
bounding rectangle. The bounding rectangle is the size of the control
when the list is displayed. The options can be one or more of the
following:

Option Meaning
invisible or hidden Initially invisible
disabled Initially disabled
native_just Native text justification (the default)
left_just Left-justified text
center_just Center-justified text
right_just Right-justified text

Note: If you specify more than one of the *_just options,
results are unpredictable.

Implementation Note

On some XVT-supported platforms, you may encounter native (not
XVT-imposed) memory limitations that apply to individual list edit
controls. For example, the number of items that you can add to a list
edit control is determined by the combined size of the items and the
memory available on the global heap.

See Also

Bounding Rectangle XRC statement component
Resource ID XRC statement component
userdata XRC statement component
dialog XRC statement
window XRC statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

menu and menubar
 XRC Statement

Summary

menu menu_tag ["title"] [options] [userdata]

submenu menu_tag "title" [options]
item menu_tag "title" [options] [userdata]
item menu_tag "title" [options] [userdata]
...
separator
...
item menu_tag label [options] [userdata]
...

menubar menu_tag

Description

The menubar statement defines the contents of a menubar and all of
its submenus. There may be multiple menubar statements, each
defining a different menubar, but at least one menubar is required.

The menu statement defines a menu consisting of a list of submenus,
separators, and menu items. The submenu statement refers to another
menu statement which defines the appearance of the submenu. For
portability, a menu statement referenced by a menubar statement
should only contain submenu statements, not items or separators.

Each menu_tag must be a constant expression. In practice, a
#defined symbol is usually coded. User-defined menu tags must be
in the range 1 to 32000; tags above 32000 are reserved by XVT for
internal use.

A label must be a string enclosed in double quotes. If a tilde (~)
appears in a label, the letter following it is the mnemonic for that
menu or item; the tilde itself does not appear on the screen. On the
screen menu, the mnemonic may be indicated to the user via some
other means, such as underlining.

As indicated, the label is required for the submenu and item
statements. It is optional for the menu statement, and is provided for
compatibility with previous releases of XVT. If a submenu statement
refers to a menu statement having a label, the label appearing on the
menu statement is ignored.

These are the options for the menu and submenu statements:

Option Meaning
disabled Item is disabled (enabled is the default)

These are the options for the item statement:

Option Meaning
disabled Item is initially disabled
checkable Item can be checked, but isn’t necessarily checked
checked Item is initially checked (implies checkable)

XVT defines platform-specific versions of certain standard menus.
These are referred to by the following XRC macros:

DEFAULT_FILE_MENU Platform-specific default file menu
DEFAULT_FONT_MENU Platform-specific default font menu
DEFAULT_EDIT_MENU Platform-specific default edit menu
DEFAULT_HELP_MENU Platform-specific default help menu

For example, the following XRC fragment defines a menubar
containing the standard File and Edit menus; it also contains the
standard Font/Style menus, which may expand to zero, one, or two
submenus:

MENUBAR 1000 MENU 1000
DEFAULT_FILE_MENU
DEFAULT_EDIT_MENU
DEFAULT_FONT_MENU

You can use these macros in place of submenu statements in a
menubar. The result is the inclusion of the appropriate menu for each
platform. This allows you to include or exclude the standard menus
as desired.

If you wish to replace (as opposed to exclude) a standard menu, use
one or more of the following statements in your XRC file, before

including xrc.h (or define them on the xrc command line as shown
in "Resources and XRC" of the XVT Portability Toolkit Guide.

#define NO_STD_FILE_MENU
#define NO_STD_EDIT_MENU
#define NO_STD_FONT_MENU
#define NO_STD_HELP_MENU

These suppress the corresponding menu statements in xrc.h,
allowing you to redefine the standard menus.

See Also

accel XRC statement

The "Menus" chapter in the XVT Portability Toolkit Guide

radiobutton Control
 XRC Statement

Summary

radiobutton id rect "title" [options] [userdata]

Description

This statement is the same as the checkbox statement, except that it
specifies a radio button. It can use tilde (~) mnemonics; see button
Control. The options can be one or more of the following:

Option Meaning
checked Initially checked (Mac only)
disabled Initially disabled
invisible or hidden Initially hidden
group First or last in its group
native_just Native text justification (the default)
left_just Left-justified text
center_just Center-justified text
right_just Right-justified text

Note: If you specify more than one of the *_just options, the
results are unpredictable.

The first and last radio buttons of a group that are meant to operate
together must have the group option, and the radio group must be
defined with consecutive radiobutton statments. These grouped
radio buttons cannot be separated by radio buttons that are not part
of the group, or by any other type of control. This does not make the

radio buttons behave as a group, but affects keyboard navigation on
platforms that support it.

See Also

Bounding Rectangle XRC statement component
Resource ID XRC statement component
Text Strings XRC statement component
userdata XRC statement component
dialog XRC statement
window XRC statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

scrollbar Control
 XRC Statement

Summary

scrollbar id rect [options] [userdata]

Description

This statement specifies a vertical or horizontal scrollbar, with the
given ID and bounding rectangle. To specify a vertical scrollbar,
make the width less than the height; for a horizontal scrollbar, make
the height less than the width.

The options can be any of the following:

Option Meaning
disabled Initially disabled
invisible or hidden Initially hidden

See Also

Bounding Rectangle XRC statement component
Resource ID XRC statement component
userdata XRC statement component
dialog XRC statement
window XRC statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

string
 XRC Statement

Summary

string id "string"

Description

This statement specifies a string resource whose resource ID is id.
Strings should be numbered less than 30000. The string itself must
be in double quotes. Note that a backslash () can be used to continue
it onto the next line.

Implementation Note

For the XVT/Mac only, if consecutive string statements appear
with consecutive ids, xrc generates a STR# resource instead of
multiple STR resources. This means that the strings can be retrieved
only via xvt_res_get_str_list, not by xvt_res_get_str.
Because xvt_res_get_str_list works for strings with consecutive
ids on platforms other than the Macintosh (i.e., those without STR#
resources), it is the portable routine to call for such strings.

See Also

Resource ID XRC statement component
Text Strings XRC statement component

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

text Control
 XRC Statement

Summary

text id rect ["title"] [options] [userdata]

Description

This statement specifies a static text control, with the given ID,
bounding rectangle, and initial text. A zero height tells the compiler
to pick the default. The text can be omitted, in which case the static

control is initially blank. The text can be set or changed by the
application using xvt_vobj_set_title.

The options can be one or more of the following:

Option Meaning
disabled Initially disabled
invisible or hidden Initially hidden
native_just Native text justification (the default)
left_just Left-justified text
center_just Center-justified text
right_just Right-justified text
opt1 Use 9-point Geneva font (Mac only)
opt2 Use 9-point Monaco font (Mac only)

Note: If you specify more than one of the *_just options, or if
you specify opt1 with opt2, results are unpredictable.

See Also

Bounding Rectangle XRC statement component
Resource ID XRC statement component
Text Strings XRC statement component
userdata XRC statement component
dialog XRC statement
window XRC statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

textedit Object
 XRC statement

Summary

textedit id rect ["title"] [options] [userdata]

Description

This statement specifies a text edit object with resource ID id,
bounding rectangle rect, and optional initial text text. A text edit
object can only be a control in a window, not in a dialog.

The options may be one or more of the following:

autohscroll
autovscroll
border
disabled
enableclear
invidible
nocut
nocopy
onepar
nomenu
nopaste
overtype
readonly
wrap

limit integer
margin integer
font <fid>

If you specify the optional font option, fid must reference a font
resource defined previously in the XRC file.

See Also

xvt_tx_create
Bounding Rectangle XRC statement component
Resource ID XRC statement component
Text Strings XRC statement component
userdata XRC statement component
dialog XRC statement
window XRC statement

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

units
 XRC Statement

Summary

units unit

This optional statement, which can appear multiple times, generates
no resources but merely specifies what units are used in subsequent
dialog or window statements. units can be one of the following:

pixels

Units are device pixels (the default).

chars

Units are characters, in the system font.

semichars

Units are quarter characters horizontally and eighth characters
vertically in the system font.

For those platforms whose resource managers don’t naturally work
in chars or semichars, the XRC compiler assumes that characters are
6 pixels wide and 13 pixels high. These numbers are used whenever
xrc has to translate between char/semichars and pixel units.

Implementation Note

If you design a dialog box in terms of pixels with XVT/Mac, it will
convert nicely when moved to XVT/Win32.

Coordinates are always relative to an origin at the upper-left.

See Also

xrc

window
 XRC Statement

Summary

window id rect ["title"] [type] [options] [menu_id]
[userdata]

...control statements...

Description

This statement defines a window whose resource ID is given by id.
Control statements (e.g., button, listbox) follow.

The window’s client area size and location are specified by rect,
which is a sequence of four constant expressions. The first two
specify the x- and y-coordinates relative to the window’s parent.The
next two are the width and height of the rectangle. Thus, if the units
are pixels, a window 200 pixels wide by 100 high, with its upper left
corner at (50, 50) is specified as:

50 50 200 100

An integer in a rect can be followed by a comma if desired. This is
essential if the next coordinate is negative:

50, -50, 200, 100

Without the comma, the negative sign would be interpreted as a
subtraction operator.

The title, which must be enclosed in double quotes, specifies the
window’s title. The type specifies an XVT window type, which is
one of these:

• doc

• dbl_border

• plain

• no_border

• modal

If no type is given, the default is doc. If the window type does not
support a title, then title is ignored.

options specifies the window style flags, which can be one or more
of these:

• size

• iconizable

• close

• iconized

• hscroll

• sizeonly

• vscroll

• maximized

• invisible or hidden

• no_menubar

• disabled

• place_exact

The menu_id refers to an XRC menubar tag, and it should be given
if no_menubar was not used. Menubars are not supported for modal
windows.

See Also

WSF_* Options Flags
Bounding Rectangle XRC statement component
Resource ID XRC statement component
Text Strings XRC statement component
menu and menubar XRC statements

The "Resources and XRC" chapter in the XVT Portability Toolkit
Guide

define
xrc Resource Compiler Preprocessor Directive

Summary

#define identifier substitution-text

-OR-

#defineidentifier (identifier-list)
substitution text

Description

The #define directive defines symbols or macros with arguments.
In the first form, this directive causes all subsequent appearances of
the identifier in non-preprocessor lines to be replaced by the
substitution text. The identifier is replaced only if it appears as a
token; it is not replaced if it appears in a comment, a string, or as part
of a larger token.

In the second form, there must be no space between the identifier
and the first parenthesis. Subsequent occurrences of the identifier,
followed by optional white space, followed by an open parenthesis
((), followed by a sequence of comma-separated tokens, followed
by a closed parenthesis ()) constitute a call of the macro. The usual
C rules apply for replacement of the identifiers in the identifier-
list by the token sequences in the call.

Only parts of some preprocessor lines are subject to token
replacement before processing, as follows:

Lines Replacement
#include The part following the token include
#define None

Whenever a token is replaced, the substitution text is re-scanned for
further replacements. But, upon re-scanning, an identifier that was
previously replaced isn’t replaced again--it is left as is.

White space (tabs or spaces) must separate the identifier and the
substitution text. This white space and any that follows the
substitution text is not considered to be part of the substitution text.

If there is no substitution text, the identifier is effectively removed
when it appears, but it is still considered to be defined and it has the
value 1 when tested with the #if directive. Undefined identifiers
have a value of 0 in #if and #elif directives.

A #defined identifier can’t be redefined to anything other than its
original definition. If its definition has to be changed, it must first be
undefined with an #undef directive.

See Also

#undef preprocessor directive
#ifdef and #ifndef preprocessor directives
xrc

#include
 xrc Resource Compiler Preprocessor Directive

Summary

The #include directive has one of these forms:

#include <path-spec>

-OR-

#include "path-spec"

#undef None
#if The part following the token if
#ifdef None
#ifndef None
#elif The part following the token elif
#else None
#endif None

Description

This directive tells the compiler to treat the contents of the named
file as if they appeared literally at the point of the #include
directive. #include directives can nest to a depth of 32.

If the path-spec contains directories (e.g., ../incl/rsrc.inc), it is taken
as specified. If not and if it is surrounded by angled brackets, it is
looked for in the standard places. If path-spec is surrounded by
quotation marks, the compiler looks for it first in the directory
containing the file containing the #include directive, and then in the
standard places.

The "standard places" are the directories specified by ëi arguments
on the command line (in the order in which they are listed), then the
directories specified by the include list (see below), and then (on
UNIX only) the directory /usr/include.

Implementation Note

For the xrc line compiler, the "include list" can be specified by the
value of the INCLUDE environment variable. That value must be a
semicolon-separated list of directories. If a pathname contains
backslashes, they are taken literally. They do not have to be doubled
as they might if they appeared elsewhere in string constants.

See Also

#scan preprocessor directive
xrc

#if, #elif, #else, and #endif
 xrc Resource Compiler Preprocessor Directives

Summary

#if const-expr

... text ...

#elif const-expr

... text ...

#elif const-expr

... text ...

#else

... text ...

#endif

Description

These directives control the compilation of portions of a source file.
The #elif and #else clauses are optional. If present, they can nest
to a depth of 50.

If a const-expr evaluates to a zero value, it is considered to be false.
Otherwise, it is true. When encountering an #if...endif
construction (possibly including #elif and #else) clauses, the
compiler looks for the first const-expr that’s true and compiles the
text following it, ignoring the other text blocks. If none is true and
there is an #else clause, the text following it is compiled. If there is
no #else clause, no text is compiled.

When preprocessor directives appear in a conditional #if block that
is skipped, xrc ignores the directives. Preprocessor directives are
processed when they appear in a conditional #if block that is
compiled.

For each const-expr, before any token replacement occurs, a scan is
made for the operator defined, which must have an identifier as an
argument:

defined(identifier)

Each use of defined is replaced by a 1 if the identifier is defined
(even as the empty string), and by 0 otherwise.

After all defined operators are processed, defined tokens are
replaced by their substitution text, as discussed in the #defined
directive. After all replacements, the result must be a constant
expression.

The expression is then evaluated (according to the rules of C) using
integer arithmetic, and the result is taken as false if it is zero and true
otherwise.

See Also

xrc

#ifdef and #ifndef
 xrc Resource Compiler Preprocessor Directives

Summary

#ifdef identifier

#ifndef identifier

Description

The first directive is exactly equivalent to

#if defined(identifier)

The second is equivalent to

#if !defined(identifier)

Both must be followed by an #endif directive. #elif and #else
directives can intervene, along with text to be optionally compiled.

See Also

#if, #elif, #else, and #endif preprocessor directives
#define preprocessor directive
xrc

#scan
 xrc Resource Compiler Preprocessor Directive

Summary

#scan "path-spec"

Description

The #scan directive is identical to the #include directive, except
that all included text is ignored. Preprocessor directives are fully
processed, however, and definitions for symbols and macros are
retained. Thus, you should use #scan, instead of #include, for
header files such as xvt.h, since the C code (e.g., typedefs)
contained there is meaningless to xrc and would generate a syntax
error.

#include directives contained within a file that is #scanned are
treated as though they were #scan directives.

As an example, here are the first few lines of the standard xrc header
xrc.h:

#define NO_INCLUDES
#scan "xvt.h"
#include "xrc_plat.h" */

The file xvt.h is used only for its symbols and macros, so it is
#scanned. On the other hand, xrc_plat.h contains XRC statements,
so it is #included. The file xrc.h itself must be #included, because
it contains XRC directives. These, of course, should not be ignored.
The symbol NO_INCLUDE is used internally by xvt.h to suppress the
inclusion (or even scanning) of standard C headers (e.g., stdio.h).

See Also

#include preprocessor directive
xrc

#transparent
 xrc Resource Compiler Preprocessor Directive

Summary

#transparent sentinel [literal] [no_include]
... arbitrary lines of text ...
sentinel

Description

This statement causes all lines following it to be copied to the output
resource script until the sentinel is detected at the beginning of a line.
The intervening lines are scanned for preprocessor directives and
identifier substitutions are made unless the keyword literal is
specified.

If ino_include is specified, all #include and #scan directives in the
intervening lines are ignored; the referenced files are not included or
scanned.

Note: #transparent is a statement in the XRC language, on the
same level as the menu and dialog statements. It can’t be
used for an individual control within a dialog or window
statement, or for an item within a menu statement.

Not all platforms allow #transparent. Some produce binary
resource data directly, without going through a native resource-
script compiler. In these cases, the transparent text is ignored and
doesn’t appear in xrc’s output.

As xrc doesn’t parse the text output by #transparent statements, it
can’t check it for correctness. If you make a mistake, you will
probably get an error message from the window system’s native
resource compiler that processes the xrc output. In most cases these
messages are extremely difficult to understand, and the offending
input statement is hard to locate. Therefore, it’s best to code in XRC
to the extent possible, reserving #transparent statements for what
is inexpressible in XRC.

See Also

#include preprocessor directive
#scan preprocessor directive
xrc

#undef
 xrc Resource Compiler Preprocessor Directive

Summary

#undef identifier

Description

The #undef directive removes the definition of an identifier. It’s
okay to #undefine an identifier that isn’t defined.

See Also

#define preprocessor directive
xrc

Help File Statements
Help File Source Statements
BODYSTANZA
BROWSE
Comments
FONT

HEADER, VERSION, APPNAME
HTOPIC and BTOPIC

helpc Help File Compiler Preprocessor Directives
#define
#if, #elif, #else, and #endif
#ifdef and #ifndef
#include
#scan

Formatting Commands
Bitmap (\P)
Font Change (\F)
Hanging Indentation (I)
Horizontal Line (\V)
Hot Button (\B)
Hyperlink (\L)
Margin (\M)
No Word Wrap (\N)
Paragraph (\A)
Reserved (\S)
Word Wrap (\W)

Predefined Help Topic Information
Predefined Help IDs
Predefined Help Topics

Comments
 Help File Source Statement

Description

Comments can appear any where in the source file. A comment is
denoted by a single quote (’) at the beginning of the line, like this:

’ This is a comment.

If you need to place a quote at the beginning of a line as part of the
displayed help text, place a backslash before it, like this:<indented
normal’these’ quote marks will appear in the help text.

See Also

helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

BODYSTANZA
 Help File Source Section

Summary

BODYSTANZA<
help topics><help topics>

The help text (the text that your application’s user reads).

Description

The BODYSTANZA statement marks the end of the header section and
the start of the help text.

The help text follows the header in your help source file. The help
text is divided into help topics. Each topic describes one concept or
process, and is displayed in its entirety in a topic window or pop-up
window. You can freely insert comments and preprocessor
statements within help topic text.

See Also

HTOPIC and BTOPIC help file source statements
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

BROWSE
 Help File Source Section

Summary

BROWSE <sequence name><sequence name>

The name of the browse sequence.

Description

Browse sequence definitions declare the names of all browse
sequences used within the help source file. The names must be
composed only of upper- or lowercase alphanumeric characters
(without spaces or other punctuation). The names are used later in

the file to connect related help topics into separate browse
sequences.

Example

BROWSE Main
BROWSE Controls

See Also

HTOPIC and BTOPIC help file source statements
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

FONT
 Help File Source Statement

Summary

FONT <code> <code>

A single character that refers to this font specification. This
character is used in font change formatting commands (see Font
Change (\F)).

A portable or native font descriptor. A font descriptor has the
following form:

"[plat-name:]<family>[,<size>[,style-flag]]" where:

plat-name is one of the following (use only with platform-
specific family):

WIN01Use with XVT/Win32 when linking with the native help
viewer
NT_01Use for XVT/Win32 when linking with the XVT Portable
Help Viewer
X1101

family is one of the following:
FIXED
TIMES
HELVETICA
*COURIER

SYSTEM
platform-specific (must specify a platform-name)

style-flag is one of the following:
BOLD
ITALIC
*UNDERLINE
*OUTLINE
*SHADOW
*INVERSE
*BLINK
*STRIKEOUT

Note: * Only the portable help compiler and the portable help
viewer will attempt to map these font descriptors.

Description

Font specification statements associate single characters, called font
codes, with a particular font, size, and style. In the body of your help
text, these codes determine how text appears in the help viewer.

Example

Here are some sample font specifications:

FONT0 "TIMES,14"
FONTA "HELVETICA,12"
FONTB "TIMES,12,Italic"

See Also

helpc

The "Hypertext Online Help" and the "Fonts and Text" chapter in
the XVT Portability Toolkit Guide
The XVT Platform-Specific Books

HEADER, VERSION, APPNAME
 Help File Source Statements

Summary

HEADER
VERSION <version number>
APPNAME "application name"
(font specifications)
(browse sequence definitions)

Description

Your help source file must contain a header section that precedes all
other commands in the file (except comments and other
preprocessor commands). VERSION denotes the version of the
markup language used in this source file.

For XVT R4 help source files, always use a version number of 300.
APPNAME contains the complete name of your application, enclosed
in double quotation marks (""). If the name of your application has
no blank characters, you can omit the quotation marks. The font
specification and browse sequence definition sections enclosed in
parentheses are optional, but the other lines are mandatory.

Example

APPNAME "My New Database"
APPNAME NewDatabase

At runtime, the application name from the APPNAME statement
appears in the help viewer windows.

See Also

BROWSE help file source statement
FONT help file source statement
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

HTOPIC and BTOPIC
 Help File Source Statements

Summary

Help topics and glossary topics share a common format. The first
line (HTOPIC or BTOPIC) is mandatory; the second line (BROWSE)
optional.

The help topic is formatted as follows:

HTOPIC <topic ID> <topic title> [keywords]
[BROWSE <sequence name>:<sequence number>]

The glossary topic is formatted as follows:

BTOPIC <topic ID> <topic title> [keywords]
[BROWSE <sequence name>:<sequence number>]

<topic ID>

An integer or defined constant that uniquely identifies this
topic. For convenience, use #define statements in your
application’s header file to define symbolic names for the topic
ID numbers.

<topic title>

The title of the help topic. This title appears in the topic window
of the help viewer. The title must be enclosed in quotation
marks, unless it contains no space characters.

[keywords]

Zero or more words that appear in the list of searchable
keywords in the help viewer’s Search dialog. The keywords are
separated by spaces. Each must be enclosed in quotation marks,
unless it contains no space characters. This field is optional.

The BROWSE line indicates the browse sequence to which the help
topic belongs, along with its location within the sequence. It
contains the following fields:

<sequence name>

The name of the browse sequence. This name must be one of the
browse sequence names defined in the file header.

<sequence number>

An integer that indicates the placement of the help topic within
the browse sequence. Higher-numbered topics appear later in
the browse sequence. The sequence numbers are not required to
be consecutive. Browse sequence numbers are sorted lexically
as ASCII strings, not numerically (so 100 sorts before 20 or 99).

Description

These format statements create help topics (HTOPIC) or glossary
topics (BTOPIC).

Tip: For your sequence numbers, use multiples of five or ten. This allows
you to insert new topics (with sequence numbers that fall between
multiples of five or ten) within a sequence without renumbering the
old topics. XVT recommends using 5-digit numbers (e.g., 20000).

Note: Browse sequences are available in the Win32 native help viewer.
They are also available on all other platforms through the portable
help viewer. If you use the Win32 native viewer, you cannot use
topics defined with BTOPIC in calls to xvt_help_display_topic.

See Also

BODYSTANZA help file source statement
BROWSE help file source statement
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

#define
 helpc Help File Preprocessor Directive

Summary

#define identifier "string"

Description

This preprocessor directive assigns the string to the identifier. Use
this command for substitutions within the help file. For example:

#define companyName "XVT Software Inc."

The help compiler expands identifiers when it creates the compiled
help file.

Summary

#define identifier integer

Description

Assigns the integer to the identifier. Use this command to create
mnemonic names for topic identifiers. For example:

#define searchDialog 200
#define searchHelp 200
#define moreSearchHelp 201

See Also

helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

#if, #elif, #else, and #endif
 helpc Help File Preprocessor Directives

Summary

#if expression
#else
#elif <expression>
#endif

Description

If expression is nonzero, include the following text, up to the next
#endif or #else statement:

#else

If the preceding #if, #ifdef, or #ifndef statement is not true,
include the following text, up to the next endif statement:

#elif <expression>

If the preceding #if, #ifdef, #ifndef, or #elif statement is not true
and <expression> is nonzero, include the following text, up to the
next #elif or #endif statement.

#endif

End a block of conditional text, started with an #if, #ifdef,
#ifndef, #else, or #elif statement.

See Also

#ifdef and #ifndef preprocessor directive
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

#ifdef and #ifndef
 helpc Help File Compiler Preprocessor Directives

Summary

#ifdef identifier#ifndef identifier

Description

If the identifier is defined, either in a #define statement or on the
help compiler command line, include the following text, up to the
next #endif or #else statement.

#ifdef identifier

If the identifier is not defined, include the following text, up to the
next #endif or #else statement.

#ifndef identifier

See Also

#if, #elif, #else, and #endif preprocessor directives

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

#include
 helpc Help File Compiler Preprocessor Directive

Summary

#include "file"

Description

This preprocessor directive includes another file in the compilation.
Use this command to include header files with topic identifier
definitions.

Caution: The helpc preprocessor is not intended to be ANSI or K&R
compliant. Specifically, it can generate fatal errors when processing
the standard C preprocessor keyword "defined," or file inclusions
of the type #include <filename>. To avoid encountering these
limitations, do not #include or #scan xvt.h, or any other header
files that contain the above mentioned preprocessor constructs.

Since the predefined help topic IDs are in xvt_help.h, it is not
necessary to #include or #scan xvt.h, only xvt_help.h.

You should limit the complexity of the header files you include in
your help source. XVT recommends a header that contains only
macro definitions of the topic identifiers. To conditionally compile
your help source, use the #ifdef and #ifndef constructs in
conjunction with the -D helpc option.

See Also

#scan preprocessor directive
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

#scan
 helpc Help File Compiler Preprocessor Directive

Summary

#scan "file"

Description

This preprocessor directive scans a file and processes its
preprocessor commands. It does not scan or process any other text
from the file.

Caution: The helpc preprocessor is not intended to be ANSI or K&R
compliant. Specifically, it can generate fatal errors when processing
the standard C preprocessor keyword "defined," or file inclusions
of the type #include <filename>. To avoid encountering these
limitations, do not #include or #scan xvt.h, or any other header
files that contain the above mentioned preprocessor constructs.
Since the predefined help topic IDs are in xvt_help.h, it is not
necessary to #include or #scan xvt.h, only xvt_help.h.

You should limit the complexity of the header files you include in
your help source. XVT recommends a header that contains only
macro definitions of the topic identifiers. To conditionally compile
your help source, use the #ifdef and #ifndef constructs in
conjunction with the -D helpc option.

See Also

#include preprocessor directive
helpc

The"Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Bitmap (P)
 Help File Format Code

Summary

\P<pathname>\P

Description

This format code inserts a bitmap into the compiled help file. The
<pathname> is the name of the bitmap file and must include path
information (if the bitmap is not in the same directory as the source
file). The file must be in the MS-Windows BMP format and have a
.bmp suffix. You must convert images from your native platform
format to the BMP format. You can use the XVT Portable Bitmap
function calls, or use image translators.

Note: When the help source file is compiled, the bitmap’s filename must
conform to the conventions of the operating system in use. If you are
moving your help source file between platforms during
development, it is most convenient if you keep all of your bitmap
files in the same directory as the source file, since no path
information will be needed in the bitmap file names. At runtime, the
bitmaps are included in the compiled help file, so the path
information is no longer relevant.

See Also

HTOPIC and BTOPIC help file source statements
helpc

The "Hypertext Online Help" and the "Portable Images" chapter in
the XVT Portability Toolkit Guide

Font Change (F)
 Help File Format Code

Summary

\F

Description

This format code changes the help text font. The is one
of the font codes defined in the font specification statements in the
help file header. It is a single character. The font code "0" is the
default font if no font change is specified.

Example

The following is a sample font change specification. It specifies that
the word "Glossary" is to be displayed using the font identified as
code "c"; then, after "Glossary" is displayed, the font changes back
to font code "0."

fcGlossaryf0

See Also

FONT help file source statement
HTOPIC and BTOPIC help file source statements
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Hanging Indentation (I)
 Help File Format Code

Summary

I<indentation>.<hanging_text><tab><paragraph
text><indentation>

The distance between the left margin and the indented text, in
pixels.

<hanging text>

The text that is not indented (i.e., set to the left margin).

<tab>

A tab character separates the hanging text from the indented
text.

<paragraph text>

The indented text.

Description

This format code creates a paragraph with hanging indentation. It is
useful for bullet lists and other similar items.

See Also

FONT help file source statement
HTOPIC and BTOPIC help file source statements
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Horizontal Line (V)
 Help File Format Statement

Summary

V<width>

Description

This format code draws a horizontal line in the topic window. The
line extends from the left margin to the right edge of the topic
window. The <width> specifies the thickness of the line, in pixels.

See Also

FONT help file source statement
HTOPIC and BTOPIC help file source statements
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Hot Button (B)
 Help File Format Code

Summary

B<topic ID>[:string]B<topic ID>

Identifies which glossary topic to display.

[:string]

The text for the glossary topic.

Description

This format code creates a hot button (hot link). When the user
clicks the hot button, a glossary topic is displayed. The <topic ID>
can only be a glossary topic (i.e., a BTOPIC); it cannot be an HTOPIC.
The string is separated from the topic identifier by a colon (:). If
string is omitted, the title of the help topic is used for the button text.

See Also

FONT help file source statement
HTOPIC and BTOPIC help file source statements
Hyperlink (\L) help file format code
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Example

 BB_RECTANGLE:rectangle B

Hyperlink (L)
 Help File Format Code

Summary

L<topic ID>[:string]L<

topic ID>

Identifies which help topic to display in the topic window when
the user clicks the hypertext link.

string

The text for the link.

Description

This format code creates a hypertext link. The string is separated
from the topic identifier by a colon (:). If string is omitted, the title
of the help topic is used for the link text.

See Also

Hot Button (\B) help file format code
HTOPIC and BTOPIC help file source statements
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Example

<fcL H_FONT_DIALOG:font dialog L

Margin (M)
 Help File Format Code

Summary

M<margin width>.

Description

This format code sets the left margin. The <margin width> is
specified in pixels. You can omit the trailing period (.) if this
statement appears on a line by itself.

See Also

HTOPIC and BTOPIC help file source statements
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

No Word Wrap (N)
 Help File Format Code

Summary

N

Description

This format code turns off word-wrap mode. Subsequent lines of
text break only where broken in the help source file. Lines longer
than the width of the help topic window are truncated.

See Also

HTOPIC and BTOPIC help file source statements
Word Wrap (\W) help file format code
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Paragraph (A)
 Help File Format Code

Summary

A

Description

This format code creates a line break when it is within a line. When
it is in a line by itself, it causes a paragraph break (inserts a vertical
space one and a half lines high).

See Also

HTOPIC and BTOPIC help file source statements
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Reserved (S) Format Code
 Help File Format Code

Summary

S

Description

This command is reserved and is currently not supported. You
should not use this command in your help source.

Word Wrap (W)
 Help File Format Code

Summary

W

Description

This format code turns on word-wrap mode. Subsequent text fills the
width of the help topic window, wrapping as needed, ignoring line
breaks in the help source file.

See Also

HTOPIC and BTOPIC help file source statements
No Word Wrap (\N) help file format code
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Predefined Help IDs
 Reserved Topic Identifiers

Description

The following symbols are reserved topic identifiers, which
correspond to the items on the predefined Help menu:

Topic ID Corresponding Item
XVT_TPC_HELPONHELP Information about the help system
XVT_TPC_KEYBOARD Information about special keys
XVT_TPC_INDEX Help index
XVT_TPC_CONTENTS Help table of contents
XVT_TPC_TUTORIAL Application tutorial information
XVT_TPC_ONVERSION Application version information
XVT_TPC_GLOSSARY Glossary of terms

The xvt_help.h file defines these reserved topic identifiers. It may
also contain additional identifiers that are not listed here.

If you use the standard Help menu, you must provide help text for
each of these topics. You can either write the text yourself, or use
pre-written text for some of the topics.

Note: Since the topics XVT_TPC_INDEX, XVT_TPC_CONTENTS, and
XVT_TPC_TUTORIAL are necessarily dependent on your application,
XVT provides no pre-written text for them.

The following symbols are reserved topic identifiers, which
correspond to predefined XVT dialogs:

Topic ID Corresponding Dialog
XVT_TPC_FILE_OPEN xvt_dm_post_file_open
XVT_TPC_FILE_SAVE xvt_dm_post_file_save
XVT_TPC_ASK xvt_dm_post_ask
XVT_TPC_NOTE xvt_dm_post_note
XVT_TPC_ERROR xvt_dm_post_error
XVT_TPC_WARNING xvt_dm_post_warning
XVT_TPC_STRING_PROMPT xvt_dm_post_string_prompt
XVT_TPC_FONT_SEL xvt_dm_post_font_sel
XVT_TPC_PAGE_SETUP xvt_dm_post_page_setup
XVT_TPC_MESSAGE xvt_dm_post_message

When the user requests help while an XVT predefined dialog is
active, XVT sends an E_HELP event with the corresponding topic ID
to the task event handler. The tid member of the help event structure
is set to one of the predefined IDs above. If the help file contains a
topic pertaining to that ID, the help viewer displays it.

See Also

Predefined Help Topics
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Predefined Help Topics
 Help Topic Text

XVT provides help topic text for several of the predefined help IDs,
including XVT_TPC_HELPONHELP, XVT_TPC_KEYBOARD, and others.
The file xvt_help.csh contains these topics.

You can include this file in your help source file to provide default
help information for the reserved topic symbols. However, the
predefined help topic text in the xvt_help.csh header is incomplete,
so you will most likely want to override these topics in your own
help source file.

Tip: To include all of the XVT-provided topics in xvt_help.csh, add this
line to the end of your help source file:

#include "xvt_help.csh"

Tip: To include some, but not all, of the topics in xvt_help.csh:

1. Provide your own help topic text for the topics you wish to
customize, in your help source file.

2. At the bottom of your help source file, undefine all reserved
topic identifiers whose XVT-provided topic text you want
to omit, and redefine them as -1. The compiler skips any
help topics that have a topic identifier of -1.

3. Add this line to the end of your help source file:

#include "xvt_help.csh"

Note: If your code includes the file xvt_help.csh, you must place the
"#scan "xvt_help.h"" statement in the order shown in the
following example.

The xvt_help.h file defines the topic identifiers referenced by
xvt_help.csh.

Example

Suppose you want to provide custom help text for the
XVT_TPC_KEYBOARD topic, but use the XVT-provided text for all
other reserved topics. Your help source file would contain the
following text:

HTOPIC XVT_TPC_KEYBOARD "Special Keyboard Commands"
’ your help text
…
’ at the end of the file:
#scan "xvt_help.h"
#undef XVT_TPC_KEYBOARD
#define XVT_TPC_KEYBOARD -1
#include "xvt_help.csh"

See Also

Predefined Help IDs
helpc

The "Hypertext Online Help" chapter in the XVT Portability Toolkit
Guide

Tools
xrc
errscan
helpc
maptabc

xrc
 XVT resource compiler

Summary

As this figure shows, you can manually code the resources into a text
file in XRC, or you can develop the resources with XVT-Design (a
utility product that interactively produces XRC).

The xrc compiler produces a text file that must be compiled by the
platform-specific resource compiler on most platforms. This is the
xrc command line format:

xrc -r resource_type [options] xrc_file

Running xrc with no arguments produces a usage line and a list of
resource types and options.

Command Line Options

-f filename

Specifies the name of an options file. Command line options
are read from this file as if they were given on the command line
in place of the -f option. Options in the file can be given on
separate lines, on one line separated by blanks, or on any
combination of the two.

-d symbol

Define a symbol. This option has the same effect at the #define
preprocessor statement. (See Preprocessor Symbol Definition
below.)

-d symbol=text

Define a symbol with substitution text. This option has the same
effect at the #define preprocessor statement. (See Preprocessor
Symbol Definition below.)

-h

Help (displays extended option list).

-i path

Add directory to include search path.

-k

Keep partial resource file (after error has occurred).

-m char_width x char_height

Character to pixel conversion (default: 6 x 13). This option is
useful only for converting from XRC to a native resource
language (e.g., Motif’s UIL). (See Units Conversion below.)

-nb

Do not output binary-encoded resources.

-np

Allow non-portable constructs. (See Non-portable Contructs
below.)

-o filename

Specify output name (and path), but not extension.

-s[n]

Controls the level of diagnostic output according to n, an
optional digit of 0-4. If you don’t use the -s option, output
defaults to level 2. If you use the -s option without a digit,
output defaults to level 1. The optional n digit specifies the
diagnostic output like this:

0 - No output
1 - Errors only
2 - Normal (errors, warnings, and status indicators)
3 - Verbose (same as 2 plus additional information)
4 - Trace/debug (same as 3 plus debug information).

input_filename

The first argument that is not identified as an option will be
assumed to be the XRC file you want to compile. It must end
with a .xrc extension. xrc allows the filename to be in lower- or
uppercase; however, the host operating system may be case-
sensitive.

Resource types

-r rcnt

MS-Windows compatible RC (XVT/Win32)

-r mtf12

Motif 2.x-compatible UIL (XVT/XM).

-r rez

Macintosh Rez (XVT/Mac).

-r dpr

XVT-Design project file.

Preprocessor Symbol Definition

The -d command line option lets you define a symbol, with or
without substitution text, similar to most C/C++ compilers.

Tip: To define a symbol:

On the xrc command line, type -d followed by the symbol name (the
white space between the -d and the symbol name is optional). For
example:

-d NO_STD_FILE_MENU

defines the symbol NO_STD_FILE_MENU (removing the standard XVT
file menu).

Note: The symbol NO_STD_ABOUT_BOX can be used if no XVT About box is
to be displayed.

Tip: To define a symbol with substitution text:

On the xrc command line, type -d followed by the symbol name,
then an equal sign (=), and finally the substitution text. There must
be no white space before or after the equal sign or within the
substitution text. For example:

-d LIBDIR=w32_ptkmy_lib

causes all subsequent appearances of LIBDIR in preprocessed lines
to be replaced by w32_ptkmy_lib. LIBDIR is replaced only if it
appears as a token; it is not replaced if it appears in a comment, a
string, or as part of a larger token.

Note: The LIBDIR macro is used to specify the pathname for XVT-
supplied platform-specific resources, such as bitmaps, icons,
pointers, and cursors. By default, XVT supplies a pathname, which
you can override if you have located these resources in another
directory.

Units Conversion

For those platforms that do not naturally work in chars or semichars,
the -m command line option lets you specify the character cell width
and height. xrc uses these numbers whenever it translates between
chars or semichars and pixel units.

Use the -m option to change the character cell dimensions either to
facilitate a better layout on a particular platform or to ensure
portability among other platforms. The format of this command line
option is as follows:

-m char_cell_widthXchar_cell_height
char_cell_width

The width of the character cell in pixels. It must be a positive
integer.

X

Separates the width from the height. It must be typed literally
and can be upper- or lowercase.

char_cell_height

The height of the character cell in pixels. It must be a positive
integer.

Default Character Cell Dimensions

If you do not specify the ëm option, the xrc compiler uses these
character cell dimensions: 6 pixels wide and 13 pixels high.

The 6 x 13 character cell size is a compromise value to allow
portability among the XVT/Mac and XVT/Win32 products.

Non-portable Constructs

If you use non-portable constructs in the XRC file, xrc can generate
error messages about them. Currently, the only construct to which
this applies is the use of menu items on a menubar. To suppress these
error messages, use the ënp XRC command line option.

See Also

NO_STD_*_MENU Values
XRC Statements

For more information on executing xrc on your platform and to learn
how to build xrc, see the XVT Platform-Specific Books.

Example

Here is a sample xrc command line using the units conversion
option:

xrc -r rcnt -m 9x16 -iinclude dlg.xrc

In this example, xrc generates resources for Win32 with a character
cell width of 9 pixels and a character cell height of 16 pixels.

errscan
 XVT Error Code Scan Tool

Summary

XVT supplies an errscan tool, which can examine your application
code and perform the following operations:

• Find all instances of error signaling (xvt_errmsg_sig and
xvt_errmsg_sig_if calls)

• Find all predefined error messages (defined with
xvt_errmsg_def_* macros)

• Generate the error message text file ERRCODES.TXT

• Generate the error codes definition file xvt_perr.h

As a result, you don’t have to manually collect and maintain a list of
error codes and associated messages.

The errscan tool uses the message suffix and number supplied by
each xvt_errmsg_sig or xvt_errmsg_def_* macro to build an error
code #define. Consequently, the suffix and number must be unique
within a given message category.

The errscan tool warns you of any duplication and/or syntax errors.
However, its syntax checking is not as sophisticated as a compiler’s.
In particular, errscan does not use the cpp pre-processor, and it
makes several assumptions about the error signaling call.

You can build errscan either as a command line utility or as an
interactive application. XVT provides errscan both as a source file
and an executable, in the directories ptk/toolsrc/errscan/errscan.c
and ptk/bin/errscan.

Note: Source customers can also run errscan on XVT source code.

Command Line Options

errscan is executed as a command line utility. (This is the default
for all XVT-supported platforms except XVT/Mac.) The command
line has the following form:

errscan [-f filename] [-o filename] [-h filename]
input_filename ...
-f filename

Specifies an option file containing filenames, one per line, or
options. filename cannot contain multibyte characters.

-o filename

Specifies the output message text file (the default is
ERRCODES.TXT). filename cannot contain multibyte
characters.

-h filename

Specifies the output header file (the default is xvt_perr.h).

input_filenames

List of filenames to scan for error messages.

See Also

xvt_errmsg_sig
xvt_errmsg_sig_if

For more information on executing errscan on your platform and to
learn how to build errscan, see the XVT Platform-Specific Books.

helpc
Help Compiler

Summary

XVT’s help compiler, helpc, compiles your help source files into a
compact, binary format or into a native help source text file. The
portable binary file format allows the help system to rapidly access
your help text while your application executes. If you use
compatible character code sets, the compiled help file is portable
across all XVT platforms; you can use one file on each platform
without separate recompilation.

The help compiler operates in essentially the same manner, and uses
the same command-line options, on all XVT platforms.

Command Line Options

Tip: To run the help compiler, use the following command-line format:

helpc [-o filename] [-v level] [-P]
 [-f {xvt | win}] [-i include_directory]
[-d symbol] input_filename ...

The options have the following effects:

-o filename

Use filename to name the binary output file. If this option is not
used, the output file has the same name as the source file, with
the extension .csc.

-v level

Set the verbosity level for the compiler’s diagnostic messages.
level is an integer from 0 (no diagnostic messages) to 5 (verbose
diagnostic output).

-P

Preprocess the source file: perform macro expansion and
conditional compilation only (see Using the Preprocessor
Option).

-f {xvt | win}

Choose the output file format:

xvtXVT help system (portable) format
winWin32 native help viewer format

If this option is not specified, the XVT help system format is
used.

-i include_directory

Specify an additional directory to search for #include files and
bitmap files. include_directory is the pathname of the
directory. This option can be used more than once, to specify
multiple directories.

-d symbol

Define a symbol. This option has the same effect as the #define
preprocessor statement.

-d symbol=text

Define a symbol with substitution text. This option has the same
effect as the #define preprocessor statement.

input_filename

The name of the help source file. No restrictions are placed on
this file name, except that the default (and suggested) extension
is .csh.

Using the Preprocessor Option

The -P preprocessing option instructs the helpc compiler to process
a help source file and generate a source file instead of a compiled
help file. The source file has the macros replaced and the #include
files included. It is still in text format, not in binary.

With this option, you can use symbolic names for the topic and
resource identifiers in the topic association file, rather than using
plain integers. You can include your header files that define
symbolic names for help topic and resource ID numbers, and use
these names to construct your association file.

Manifest Constants

The help compiler always predefines the following symbols before
compiling the help source:

__helpc__

Defined when the compiler is running. When the compiler was
built, this symbol was set to the value of XVT_HELP_VERSION.
You can conditionally compile your header files based on the
existence of this symbol.

HELP_FMT_XVT
HELP_FMT_WIN

One of these is defined by the compiler based on the value of
the -f command line option. This allows you to conditionally
compile your help source based on the format of the output that
the help compiler is generating. These symbols are defined as
follows:

Symbol Defined -f Option Description
HELP_FMT_XVT XVT XVT portable help file format
HELP_FMT_WIN WIN Win32 file format

GUI Application

If you are a source customer, you can build helpc as a GUI
application (helpca.exe on XVT/Win32, helpc.app on XVT/Mac
and helpc_app on XVT/XM). (XVT provides a built GUI helpc
executable with XVT/Mac.) Each time the user initiates a scan from
the menu, the GUI version of helpc attempts to read the default
options file, helpc.opt (located in the startup directory). The default
options file can contain any of the options available in the command
line version.

Implementation Note

Help source files are constrained by the following limitations:

• The text for each topic must be no more than 64K bytes

• Individual bitmaps must be no more than 32K bytes in size

• Bitmaps can be black and white, 16-color or 256-color

• Bitmaps must be in Win32 BMP format, and should have a
resolution of 96 dots per inch

• The total size of the help source file must be no more than
99,999,999 bytes

• Each topic can have no more than 16 keywords

• Tokens in the help file must be no more than 256 bytes each
(a token is delimited by white space or punctuation)

The Win32 native help viewer (Winhelp) cannot display 256-color
bitmaps. 256-color bitmaps are restricted in size by the 32KB limit
mentioned above. For example, a 200- by 175-pixel, 256-color
bitmap exceeds the 32KB limit, and thus cannot be used in a help
file.

See Also

Help File Statements

For more information on executing helpc on your platform and to
learn how to build helpc, see the XVT Platform-Specific Books.

Example

This code conditionally compiles a topic for the native MS-
Windows help viewer:

#ifdef HELP_FMT_WIN
HTOPIC NativeWinHelpTopic "Native Topic"
This topic will only be compiled for the native

 MS-Windows help viewer.
 #endif

maptabc
XVT Character Codeset Map Table Compiler

Summary

XVT supplies a map-table compiler maptabc, which reads a source
file containing a description of a codeset mapping into Unicode, and
generates a binary version of the mapping table. The binary codeset
table (.bct) file is used by the function xvt_str_create_codeset_map,
which in turn creates an XVT_CODESET_MAP object. The object
defines a mapping of characters from one codeset to another—either
across platforms or on the same platform.

The codeset map-table source file has the following format:

1. '#' begins a comment that continues to the end of the line.

2. A mapping line consists of three tab- or space-separated
columns.

Column one is the character code of the local codeset specified in
hex (NxNN or NxNNNN). Column two is the character code of the
Unicode codeset specified in hex (NxNNNN or
NxNNNN+NxNNNN). Column three is the Unicode name (follows
a comment symbol, '#').

The character 0x00 is always forced to map to 0x0000 in Unicode.
By default, the control characters 0x01–0x19 are mapped to the
characters 0x0001–0x0019, respectively, in Unicode, unless
overridden by the map source file.

The .bct files for the basic codesets (for languages that XVT
provides translations to) are provided by XVT in the ...bin/
codemaps directory.

These files are provided:

8859-1.bct ISO Latin-1 codeset mapping to
Unicode

cp1250.bct MS-Windows code page 1250
mapping to Unicode

cp1252.bct MS-Windows code page 1252
mapping to Unicode

MJapan.bct Mac-Japanese codeset mapping to
Unicode

MRoman.bct Mac-Roman codeset mapping to
Unicode

sjis.bct Japanese Shift-JIS codeset
mapping to Unicode

Command Line Options

maptabc is executed as a command line utility. (This is the default or
all XVT-supported platforms except XVT/Mac.) The command line
has the following form:

maptabc [-o filename] input_filename

-o filename

Specifies the binary output mapping file (the default is to
change the input_filename extension to .bct).

input_filename

 Text file specifying a codeset mapping to Unicode.

GUI Application

You can build maptabc as a GUI application (maptabca.exe on
XVT/Win32, maptabc.app on XVT/Mac and maptabc_app on
XVT/XM).

(XVT provides a built GUI maptabc.app executable with XVT/
Mac.)

In the GUI application, select the input text file to compile by
selecting "Open..." from the "File" menu. Select the file to compile
from the Open File dialog. The default output file name is
automatically set when the input file is selected. However, you can
change the output binary file name by selecting "Save As..." from

the "File" menu. Enter the file name in the Save File dialog. To
compile the file select "Compile" from the "Compile" menu.

The compiler will show a status window displaying the current file
being processed and the number of lines currently processed. When
the compile is complete, a dialog box appears displaying the number
of characters found in the codeset mapping table.

You can reset the input file (and output file) and compile as many
files as you need to.

See Also

XVT_CODESET_MAP
xvt_str_create_codeset_map
xvt_str_destroy_codeset_map
xvt_str_translate_codeset

For more information on executing maptabc on your platform and to
learn how to build maptabc, see the XVT Platform-Specific Books.

Unicode is a trademark of Unicode Inc. (The Unicode Consortium)
Further information on the Unicode Standard, The Unicode
Consortium, and various codeset-to-Unicode mappings can be
found on the Unicode public file server:

ftp://unicode.org/pub/

Window/Dialog/Control Creation Function
Parameters

 WIN_TYPE vs. WSF_* and CTL_FLAG_* Options

Top-Level Windows for all Platforms
Child Windows for all Platforms
Window Controls for all Platforms
Task Window Variants for XVT/Win32only

Top Level Windows - All Platforms
WSF_* option flags versus WIN_TYPE for xvt_win_create
where: parent_win == SCREEN_WIN or TASK_WIN. Top level
windows cannot be W_NO_BORDER.

Note: With native look-and-feel on XVT/Win32, only DOC style
windows can be created with a parent of MDI TASK_WIN. If you
attempt to create a plain or a double window with a parent of an MDI
TASK_WIN, XVT issues an error.

Child Windows - All Platforms
WSF_* option flags versus WIN_TYPE for xvt_win_create where:
parent_win == XVT top_level or child window.

Window Controls - All Platforms
CTL_FLAGS versus WIN_TYPE for xvt_ctl_create,
xvt_ctl_create_def.

1 XVT/Mac only.

2 The value of CTL_FLAG_NATIVE_JUST is numerically equal to
zero, so toolkits cannot check whether this flag is set or not, and
assume this as the default.

3 Text alignment is for the push button text only, and only if the
platform can support this natively.

4 Text-related controls support text justifications only when the
platform supports this natively; otherwise, they are ignored and
native justification is used.

Task Window Variants - XVT/Win32 Only
xvt_vobj_set_attr(...,ATTR_WIN_PM_TWIN_STARTUP_STY
LE,...) prior to xvt_app_create: with WSF_* option flags
versus the following TASK_WIN types:

Note: MDI is available on XVT/Win32 only.

Index

PTK REFERENCE
INDEX
A
A_* Values for ACCESS_CMD, 172
about boxes

displaying, 323
standard removal constant, 199

accel, 968
accelerators, XRC statements, 968
ACCESS_CMD, 172
alignment of popup windows, 166
allocating

global memory blocks, 505
memory blocks, 598
zeroed memory blocks, 602

appending characters to multibyte strings, 779
appending multibyte strings, 778
application data

getting for fonts, 459
getting from a window’s font, 381
setting for fonts, 478

application functions, 255
applications

associating data with window, 908
creating, 256
destroying, 258
drop-launching, 263
generating events, 93
getting data, 894
invoking key hook interface, 32
multibyte-capable, 32
quit event, 83
terminating, 255
terminating on fatal errors, 330

application-supplied function prototype, 151
APPNAME, 1001
arbitrary data pointers, 106
arbitrary data type, 135
arcs, drawing, 350
arguments

establishing references to unused, 253
ASK_RESPONSE, 207
asking questions

of user, 324
RESP_* values, 207

attributes
changing for text edit objects, 880
display capabilities, 231
file constants, 235
font constants, 233
getting file, 491
getting for text edit objects, 862
getting values for windows, 891
portable, 5
setting file, 503
setting for visible objects, 906
text edit constants, 216

ATTR_APP_CTL_COLORS, 6
ATTR_APP_CTL_FONT_RID, 7
ATTR_APPL_NAME_RID, 8
ATTR_BACK_COLOR, 9
ATTR_COLLATE_HOOK, 10
ATTR_CTL_BUTTON_HEIGHT, 11
ATTR_CTL_CHECK_BOX_HEIGHT, 11
ATTR_CTL_EDIT_TEXT_HEIGHT, 12
ATTR_CTL_HORZ_SBAR_HEIGHT, 12

XVT Portability Toolkit Reference
ATTR_CTL_RADIOBUTTON_HEIGHT, 13
ATTR_CTL_STATIC_TEXT_HEIGHT, 13
ATTR_CTL_VERT_SBAR_WIDTH, 14
ATTR_DBLFRAME_HEIGHT, 15
ATTR_DBLFRAME_WIDTH, 16
ATTR_DEBUG_FILENAME, 16
ATTR_DEFAULT_PALETTE_TYPE, 17
ATTR_DISPLAY_TYPE, 18
ATTR_DOC_STAGGER_HORZ, 18
ATTR_DOC_STAGGER_VERT, 19
ATTR_DOCFRAME_HEIGHT, 19
ATTR_ERRMSG_FILENAME, 20
ATTR_ERRMSG_HANDLER, 21
ATTR_EVENT_HOOK, 22
ATTR_FONT_CACHE_SIZE, 22
ATTR_FONT_DIALOG, 23
ATTR_FONT_MAPPER, 24
ATTR_FRAME_HEIGHT, 25
ATTR_FRAME_WIDTH, 26
ATTR_HAVE_MOUSE, 26
ATTR_HELP_CONTEXT, 27
ATTR_HELP_HOOK, 27
ATTR_ICON_HEIGHT, 28
ATTR_ICON_WIDTH, 29
ATTR_KEY_HOOK, 29
ATTR_MEMORY_MANAGER, 30
ATTR_MENU_HEIGHT, 31
ATTR_MULTIBYTE_AWARE, 32
ATTR_NATIVE_GRAPHIC_CONTEXT, 33
ATTR_NATIVE_WINDOW, 33
ATTR_NUM_TIMERS, 34
ATTR_PRINTER_HEIGHT, 34
ATTR_PRINTER_HRES, 35
ATTR_PRINTER_VRES, 36
ATTR_PRINTER_WIDTH, 36
ATTR_PROPAGATE_NAV_CHARS, 37
ATTR_R40_TXEDIT_BEHAVIOR, 42
ATTR_RESOURCE_FILENAME, 41
ATTR_SCREEN_HEIGHT, 43
ATTR_SCREEN_HRES, 44
ATTR_SCREEN_VRES, 44
ATTR_SCREEN_WIDTH, 45
ATTR_SCREEN_WINDOW, 46
ATTR_SUPPRESS_UPDATE_CHECK, 46
ATTR_TASK_WINDOW, 47

ATTR_TASKWIN_TITLE_RID, 47
ATTR_TITLE_HEIGHT, 48
ATTR_XVT_CONFIG, 49

B
background

color, 9
setting color, 403

beep, setting, 750
bell, setting, 750
Bitmap (P), 1008
bitmaps

inserting in help file, 1008
BMP data

creating image from, 550, 553, 556
BMP file

writing to I/O stream, 571
BMP files

creating image from, 548, 551, 555
BODYSTANZA, 999
BOOLEAN, 100
border thickness

horizontal, 19
vertical, 20

bounding rectangles, XRC statement component,
965

BROWSE, 999
brushes

color tool, 101
pattern styles, 206
setting colors, 404
setting standard, 420
standard constant, 215

BTOPIC, 1002
button control, 970
buttons

height, 11
hot button help format, 1010
radio

height, 13
XRC statements, 984

XRC statement, 970

C
cache size for fonts, 22

Index
callback function
application-supplied, 142
getting, 896
invoking, 928
setting, 911
text edit scroll, 125

carets
changing position of, 949
repositioning in windows, 945
setting dimensions of, 947

case-insensitive string comparisons, 776
casting a pointer to long, 254
CB_* Values for CB_FORMAT, 173
CB_FORMAT, 173
CBRUSH, 101

drawing mode, 192
char value

maximum unsigned, 219
CHAR_MAX, 174
characters

changing limit for text edits, 881
codeset mapping descriptors, 135
getting limit for text edit objects, 863
getting number in text edit line, 867
maximum unsigned value, 219
maximum value, 174
number in text edits, 128
position in text edits, 128
wide type, 169

check boxes
checking, 292
height, 11
XRC statements, 971

checkbox control, 971
checking

CXO validity, 311
first multibyte character

for uppercase, 808
first multibyte character for

a space, 808
lowercase, 807

for alphabetic multibyte characters, 804
for alphanumeric multibyte characters, 803
for decimal multibyte characters, 805
for multibyte character invariants, 806

if first string character is a hexadecimal digit,
809

if strings are equal, 806
child windows

creation function parameters, 1031
enumerating, 142

class name
maximum length, 211

clearing
list controls, 583
text edit objects, 856

clicking
mouse down events, 79

client area
restraining mouse to, 960

client rectangles, 892
clipboard

allocating memory for data, 267
closing, 268
format, 173
freeing memory for data, 268
functions, 267
getting data from, 269
opening for access, 272
putting data on, 273
testing format of data, 271

clipping, 405
clipping rectangles

getting, 376
setting, 405

close-window events, 59
closing print manager, 697
codeset map

compiler, 1028
creation, 788
translating, 817

COLOR, 102
color look-up table

setting colors, 565
color selection dialog, 326
COLOR_* Constants, 175
COLOR_INVALID, 175
colors

adding from images to palettes, 648
adding to palettes, 647

XVT Portability Toolkit Reference
background, 9
brush tool, 101
clearing window with, 346
constants, 226
control, 6
control components type, 138
creating, 241
determining display capabilities

general, 18
specific, 231

drawing tool sets, 108
drawing tools, 102
format type for images, 240
getting

blue component, 227
color components in window or dialog,

930
component, 284
default drawing tools, 260
drawing tools, 377
for control container, 931
for controls, 285
from palettes, 652
green component, 228
match tolerance for palettes, 654
number from palettes, 653
number of in image, 542
pixel value in images, 543
red component, 228
table for images, 538

look-up table size, 226
palette object, 161
palette type, 244
pen tool, 105
portable image object, 164
predefined, 175
setting

action, 137
background, 403
brush tool, 404
color component, 293
color type, 944
components in window, 952
drawing tools, 408
for controls in windows, 953

foreground, 418
in controls, 294
match tolerance for palettes, 656
number in images, 566
pen tool, 407
pixel color value for image, 567
table for images, 565

types, for images, 246
unsetting color components

for all controls, 962
for single controls, 298

value type for controls, 137
comparing multibyte strings, 774

case-insensitive, 776
ignoring case, 775
using n characters, 777
using numeric values, 776

compilers, resource, 1019
complex string pattern facility, 657
configuration of pointers, 49
constants

color, 226
maximum class name length, 211
NULL, 200
values for CXO insertion, 230
XVT, 171

container extension objects
See CXOs, 299

context
See online help, 27

control
colors, 6
functions, 276
get text, 290
getting index of first selection in lists, 591
getting selected items in lists, 590

CONTROL_INFO, 104
controller

font mapping, 468
controls

adding strings and SLISTs to lists, 581
associating help topic with, 526
button height, 11
check boxes, 11
checking radio buttons, 276

Index
clearing lists, 583
color components of, 138
color setting action for, 137
color value type, 137
counting items in lists, 584
counting selected items in lists, 584
creating, 278
creating from data structures, 280
creation function parameters, 1031
definition type, 131
deleting items in lists, 593
determining state of, 291
edit height, 12
enumerating, 928
event information, 104
flags, 176
forcing to front, 756
function parameters, 1032
getting

all items in lists, 585
color component, 930
color type, 284
colors, 285
container colors for, 931
first selected item in, 589
font for, 933
IDs, 287
IDs and titles for, 943
indexed item in lists, 587
list of from navigation object, 623
logical font for, 286
window from ID, 929

grouping, XRC statement, 976
ID’s, 181
inserting in navigation order, 618
list buttons, 980
list edit, 981
menubar, 31
operation event, 63
radio button height, 13
radio button, XRC statement, 984
removing from navigations object, 623
resume updating of lists, 594
scrollbar components, 207
scrollbar height, 12

scrollbar width, 14
selecting text in edit, 297
setting

checks in check boxes, 292
color component, 293
colors, 953
colors in, 294
fonts for, 954
logical fonts in, 296
selection state of items in lists, 595

static text, 13
suspend updating of lists, 597
testing if list item is selected, 592
unsetting color components, 298
window type, 221
See Also visible objects, 889

Conventions Used in This Reference, 3
converting characters of multibyte strings to wide

characters, 779
converting multibyte string characters

to lowercase, 781
to uppercase, 782
to wide characters, 780

converting multibyte strings
to double-precision floating point values, 812
to long integer values, 813
to unsigned long integer values, 814

converting wide character strings to multibyte,
785

converting wide characters
to lowercase wide, 784
to multibyte, 783
to uppercase wide, 784

coordinates
determing intersection of rectangles, 716
determining if inside rectangle area, 715
getting

for next printing band, 703
rectangle height, 713
rectangle position, 714
rectangle width, 714

of rectangles, 124
offsetting rectangles, 718
point data type, 122
setting

XVT Portability Toolkit Reference
for rectangles, 719
rectangle height, 720
rectangle position, 721
rectangle width, 722
rectangles to empty, 720

translating, 915
unit type, 218

copying
bytes from one multibyte string to another,

787
characters from one multibyte string into

another, 786
fonts, 454
one multibyte string into another, 786

copying images, 535
counting

bytes
in characters of multibyte strings, 801
in multibyte character strings, 799
in multibyte strings, 798

characters in multibyte strings, 799
elements in SLISTs, 763
items in list control, 584
selected items in list control, 584

CPEN, 105
drawing mode, 192
fastest width, 234
See also pens, 234

creating
applications, 256
container extension objects, 301
CXO’s, 301
navigation objects, 620
palettes, 649
patterns, 657
pixmaps, 670
print records, 699
print windows, 700
SLISTs, 764

creation events for windows and dialogs, 64
creation flags

getting current state, 895
CTL_FLAG_* options, 176
CTL_FLAGS, 1032
xrc, 1019

#define preprocessor directive, 991
#elif preprocessor directive, 993
#else preprocessor directive, 993
#endif preprocessor directive, 993
#if preprocessor directive, 993
#ifdef preprocessor directive, 995
#ifndef preprocessor directive, 995
#include preprocessor directive, 992
#scan preprocessor directive, 995
#transparent preprocessor directive, 996
#undef preprocessor directive, 997
getting image user-data string, 731
getting menu user-data string, 733
getting window control data strings, 737
Resource Compiler Directives, 965

current directory
changing, 501
getting, 490

CURSOR, 106
CURSOR_* options, 179
cursors

changing to waiting shape, 755
gettting shape for windows, 934
hiding temporarily, 752
releasing in windows, 945
setting shapes, 955
shapes, 179
trapping in windows, 960
types, 106
values for shapes, 179

CXO
calling next, 299
data type, 140
event handler, 140
events, 66
functions, 299
messages, 230

CXOs
changing event handlers, 312
checking validity, 311
creation of, 301
destroying, 303
getting associated window, 310
getting class names, 307
retrieving, 935

Index
retrieving lists in window, 942
setting event masks, 313
setting state data, 311

D
data

arbitrary, 135
copying and repeating, 601
creating I/O stream for reading, 577
getting

application, 894
from clipboard, 269
from SLISTs, 766
user data for images, 731

getting from SLISTs, 768
pointers to arbitrary, 106
putting on clipboard, 273
setting application for windows, 908
setting font, 444
testing format on clipboard, 271
user strings, 727
user, XRC statement, 967
writing to I/O stream object, 578

data structures
creating

controls from, 280
dialogs from, 316
text edit objects from, 859
windows from, 921

data types, XVT, 97
DATA_PTR, 106
debugging

appending to output file, 315
conditional, 314

dumping SLISTs to files, 765
output files, 16

debugging functions, 314
default

color drawing tools, 260
control font, 7
getting

directory, 489
palette, 650

icon height, 28
icon width, 29

palette object type, 17
printer

height, 34
horizontal resolution, 35
vertical resolution, 36
width, 36

DEFAULT_*_MENU Values, 180
#define

xrc preprocessor directive, 991
helpc preprocessor directive, 1004

deleting
files, 499
item in list box, 593
text edit object paragraphs, 874

description of complex string pattern, 162, 163
deserializing fonts, 456
destroying

applications, 258
CXOs, 303
encapsulated picture, 667
fonts, 458
navigation objects, 622
palettes, 651
patterns, 662
pixmaps, 673
text edit objects, 861
windows and dialogs, 67

dialogs
asking questions, 324
associating help topic with, 526
changing focus events, 68
color selection, 326
control

event information for, 104
events, 63
IDs, 181

creating
from a resource definition, 321
from data stuctures, 316

creation
event, 64
function parameters, 1031

definition type, 131
destruction event, 67
directory selection, 328

XVT Portability Toolkit Reference
dispalying
alert note, 338
page setup, 339

displaying
about boxes, 323
emergency messages, 338
fatal errors, 330
font selection, 336
standard file, 331
text-response, 341
warning, 343
with error icon, 329

flags, 182
font selection, 23
forcing to front, 756
functions, 316
getting

event handler for, 937
event mask for, 936
IDs and titles for, 943
user data strings, 727

grouping controls in, 976
loading definitions from resource files, 729
managment functions, 323
prompting for filename, 333
resizing events, 85
result of user interaction, 187
setting

event handler, 959
event mask, 958
font selection, 608

tools selection, 327
units, XRC statement, 988
XRC statements, 972
window type, 221
See Also visible objects, 889

DIR_TYPE, 181
directories

changing current, 501
converting string paths to, 488
converting to string form, 486
file type, 181
getting current, 490
getting default, 489
restoring, 500

saving, 500
setting startup, 502

DIRECTORY, 107
directory selection dialog, 328
directory, maximum length of name, 212
dispatching CXO messages, 305
display capabilities, 18
display values, 231
displaying menubar changes, 617
DLG_* control IDs, 181
DLG_FLAG_* options, 182
document windows

border thickness, 19
cascading, 18

documents
setting titles in windows, 957

double-border windows, 15
double-click events, 77
DRAW_CTOOLS, 108
DRAW_MODE, 192
drawable windows functions, 345
drawing

arcs, 350
color tool sets, 108
fonts in windows, 411
getting color tools, 377
icons, 352
images, 354
lines, 105

point-to-point, 356
with arrows, 348

mode, 192
ovals, 357
patterns, 206
pen styles, 205
pie sections of ovals, 361
pixmaps, 363
polygons, 365
polylines, 367
rectangles, 368
rectangles with rounded corners, 370
setting mode, 410
text strings, 373
tools, 102

drawing tool constants, 229

Index
drawing tools
getting color, 377
getting default, 260
setting colors, 408
standard, 215

drop-launching applications, 263
duplicating images, 535
duplicating multibyte strings, 790

E
E_CHAR, 53
E_CLOSE, 59
E_COMMAND, 61
E_CONTROL, 63
E_CREATE, 64
E_CXO, 66
E_DESTROY, 67
E_FOCUS, 68
E_FONT, 70

getting XVT_FNTID from, 442
setting XVT_FNTID in, 444

E_HELP, 74
E_HSCROLL, 75
E_MOUSE_DBL, 77
E_MOUSE_DOWN, 79
E_MOUSE_MOVE, 81
E_MOUSE_UP, 82
E_QUIT, 83
E_SIZE, 85
E_TIMER, 87
E_UPDATE, 88

illegal calls during, 88
E_USER, 93
E_VSCROLL, 94
edit control, 973
edit controls

displaying in dialogs, 341
height, 12
selecting text in, 297
XRC statements, 973

#elif
xrc preprocessor directive, 993
helpc preprocessor directive, 1005

#else
xrc preprocessor directive, 993

helpc preprocessor directive, 1005
EM_* constants, 184
encapsulated pictures, 122

clipboard format, 173
creating, 666
destroying, 667
getting pointers to, 668
unlocking, 669

#endif
xrc preprocessor directive, 993
helpc preprocessor directive, 1005

end-of-line sequence, 185
EOL_* values for EOL_FORMAT, 185
EOL_FORMAT, 185
EOL_SEQ, 185
ERR_APP, 429
ERRCODES.TXT, 430
error handling facility, 429
errors

comparing identifier components, 428
displaying alert box with icon, 329
errscan scanning tool, 1023
establishing temporary handlers, 436
getting information, 431
getting message file, 433
handlers, 21
identifier components, 426
message

filenames, 20
handlers, 144
identifier type, 142
identifiers, 425
object, 143

message identifiers, 425
predefined messages, 429
removing temporary handlers, 435
severity codes, 210
signaling, 437
signaling conditionally, 438

with message, 441
signaling with predefined message, 440
timer, 247

errscan, 1023
filename attribute, 20
predefined messages for, 429

XVT Portability Toolkit Reference
escape codes, 232
platform-specific action, 259
portable

XVT_ESC_GET_PRINTER_INFO,
232

EVENT, 111
event access functions, 442
event handler

CXO, 140
getting CXO, 308
getting for dialogs and windows, 937

event mask
constants, 184
getting for CXOs, 309
getting for dialogs and windows, 936
setting for windows, 958

EVENT_HANDLER, 113
EVENT_MASK, 114
EVENT_TYPE, 52
events, 51

application-generated, 93
checking for virtual keys, 443
close-window, 59
control information, 104
control operation, 63
CXO, 66
dependent information, 111
font-selection-dialog, 70
getting

data from font events, 442
handler for dialogs and windows, 937
the EVENT_MASK, 936

handler prototype, 113
handling native keystroke, 29
help-request, 74
horizontal scrollbar, 75
illegal calls during updates, 88
keyboard-character, 53
masking, 114

constants, 184
menu-command, 61
mouse

double-click, 77
down, 79
move, 81

up, 82
native handler, 22
passing to handlers for help, 522
passing to online help, 27
processing pending, 265
prototype, 111
quit application, 83
resizing windows, 85
restricting, 114
sending to windows, 927
setting font data, 444
setting handler, 959
specifying mask, 958
suppressing updating check, 46
timer, 87

objects, 818
updating windows, 422
values of types, 52
vertical scrollbar, 94
window and dialog

creation, 64
destruction, 67
focus change, 68

F
FALSE, 186
far, 99
file system

changing current directory, 501
constructing pathnames, 485
converting directories to strings, 486
converting strings to directories, 488
deleting files in, 499
getting

current directory, 490
default directory, 489
file attributes, 491

listing filenames, 493
parsing multibyte strings, 495
restoring directories in, 500
saving files in, 500
setting file attributes, 503
setting startup directory, 502

FILE_SPEC, 115
filename

Index
maximum length, 212
specifying portable type, 115

files
attribute constants, 235
closing help, 513
counting, 263
creating I/O streams for reading from, 575
creating I/O streams for writing data to, 576
debugging output, 16
displaying save dialog for, 333
dumping SLISTs to debug, 765
error message names, 20
getting

attributes, 491
error message, 433
next, 262

help
APPNAME statement, 1001
BODYSTANZA statements, 999
BROWSE statement, 999
BTOPIC statement, 1002
compiler (See Also helpc), 1025
font changing format, 1008
FONT statement, 1000
HEADER statement, 1001
horizontal line format, 1010
hot button format, 1010
HTOPIC statement, 1002
hyperlinks format, 1011
indent format, 1009
information handle, 152
inserting bitmaps, 1008
margin format, 1012
no word wrap format, 1012
paragraph format, 1013
reserved formats, 1013
source comments, 998
statements, 997
VERSION statement, 1001
word wrap format, 1014

indicating processed state, 266
maximum length of names, 212
opening help, 520
opening with standard dialog, 331
pathname to resource, 41

reading images from, 547
resource, 723
setting attributes, 503
system functions, 485
system macros, 237
types for directories, 181
writing debug information to, 315

conditional, 314
finding first character in multibyte strings, 793
finding last character in multibyte strings, 794
FL_* values for FL_STATUS, 187
FL_STATUS, 187
flags

getting creation, 895
focus

getting top-level window with, 750
getting window with, 751

FONT, 1000
font

ascent, 385
descent, 385
leading, 385
XRC Statement, 974

Font Change (F), 1008
font menu identifier, 187
font_map, 975
FONT_MENU_TAG, 187
Font/Style menu, 608
Font/Style menus, 603
fonts

application-supplied mapper, 24
ascent, 462
attribute constants, 233
attribute mask type, 147
cache size, 22
changing in help file, 1008
copying, 454
creating, 455
default, 7
descent, 462
deserializing, 456
destroying, 458
determining

font ID validity, 472
if scalable, 471

XVT Portability Toolkit Reference
mapped state, 470
native descriptor validity, 469
printer mapping, 470

dialog selection function prototype, 147
displaying selection dialog, 336
drawing in windows, 411
functions, 453
getting

all families, 445
application data, 459
application data for windows, 381
family, 460
family for window, 382
family sizes, 447
family styles, 449
for controls, 933
for single control, 286
from resources, 730
ID in events, 442
logical, 379
mapped family, 461
mapped family for window, 384
mapped size, 465
mapped size for window, 390
mapped style, 467
mapped style for window, 392
metrics, 462
metrics for window, 385
native descriptor, 463
native descriptor for window, 387
size, 465
size for family and style, 451
size for window, 389
style, 466
style for family and size, 450
style for window, 391
width of string, 394
windows, 468

identifing object type, 146
leading, 462
mapper function prototype, 148
mapper functions, 445
mapping, 473

controller, 468
XRC statement, 975

menu
events, 70
identifier, 187
tags, 198

native descriptor, 480
NULL ID, 201
predefined families, 234
printer, 470
selection dialog, 23
serializing, 476
setting

application data, 478
application data for windows, 413
data, 444
descriptor for windows, 415
family, 479
family for windows, 414
font/style menu or dialogs, 608
for controls in windows, 954
in controls, 296
in text edit objects, 857
size, 482
size for windows, 416
style, 483
style for windows, 417

specifying in help files, 1000
style constants, 239
unmapping, 484
XRC statements, 974
using default mapper, 474
valid, 472

foreground colors, 418
formats

processing strings, 815
freeing

global memory block, 506
SLIST storage, 765

freeing memory blocks, 599
functions

application, 255
clipboard, 267
complex string patterns, 657
control, 276
creation parameters, 1031
CXO, 299

Index
debugging facility, 314
dialog, 316
dialog managment, 323
drawable windows, 345
error handling, 429
error message, 425
event access, 442
file system, 485
font mapper, 445
fonts, 453
gettting resource file, 727
global memory, 504
help, 511
I/O stream object, 575
image read, 546
images, 533
linkage convention, 225
list, 580
memory allocation, 598
menu, 603
miscellaneous, 252
navigation object, 618
notebook, 625, 675
palette, 647
picture, 665
pixmap, 669
printing, 697
rectangle, 713
resource management, 723
screen, 750
scrollbar, 742
SLIST, 759
string operation, 773
text edit object, 853
text setting, 879
timer, 818
visible object, 889
window, 917
XVT, 251

G
getting

CXO event masks, 309
CXO windows, 310
format callback function, 896

GHANDLE, 116
global heap, 505
global memory blocks

freeing, 506
getting size of, 507
handles, 116
locking, 508
reallocating, 509
unlocking, 510

global memory functions, 504
global-pointer keyword, 99
gotolink ../dspref.htm, 1
gotolink HT_XVT_CODESET_MAP, 789,

817, 1030
gotolink HT_XVT_FORMAT_HANDLER, 162
gotolink HT_xvt_image_destroy, 536
gotolink HT_XVT_PATTERN, 152
gotolink HT_xvt_pattern_create, 152, 162,

659, 662, 664, 665
gotolink HT_xvt_pattern_destroy, 152, 162
gotolink HT_xvt_pattern_format_string, 152,

162, 659, 662, 664, 665
gotolink HT_xvt_pattern_match, 152, 162,

659, 662, 664, 665
gotolink HT_xvt_str_create_codeset_map, 135,

789, 817, 1030
gotolink HT_xvt_str_destroy_codeset_map, 135,

789, 817, 1030
gotolink HT_xvt_str_translate_codeset, 135,

789, 1030
gotolink HT_xvt_vobj_get_formatter, 152, 162,

912
gotolink HT_xvt_vobj_set_formatter, 152, 162
gotolink HT_xvt_win_get_ctl_color_component,

952, 963
gotolink HT_xvt_win_set_ctl_color_component,

931, 963
gotolink

HT_xvt_win_unset_ctl_color_compone
nt, 931, 952

gotolink HT_xvtvobjisvalid, 945
gotolink HT_xvtwincreate, 945
gotolink HT_xvtwincreatedef, 945
gotolink ptkappa.fm

HT_ChildWindowsAll, 1031

XVT Portability Toolkit Reference
HT_TaskWindowVaria, 1031
HT_TopLevelWindows, 1031
HT_WindowControls, 1031
HT_WindowDialogContr, 1, 179, 222,

224, 280, 283, 319, 320,
321, 919, 920, 923, 924,
925

gotolink ptkref1.fm
HT_xvt_dwin_get_font, 345, 378, 379,

382, 383, 384, 385, 387,
388, 391, 392, 393, 412,
414, 415, 416, 417, 418,
456, 458, 463, 474

HT_xvt_dwin_get_font_family, 345, 379,
415, 460

HT_xvt_dwin_get_font_metrics, 345, 379,
463

HT_xvt_dwin_set_font, 345, 380, 387,
389, 390, 395, 409, 474

HT_xvt_dwin_set_font_app_data, 345,
382, 411, 479

HT_xvt_dwin_set_font_family, 345, 383,
385, 411, 480

HT_xvt_dwin_set_font_native_desc, 345,
388, 411, 481

HT_xvt_dwin_set_font_size, 345, 389,
391, 411, 482

HT_xvt_dwin_set_font_style, 150, 345,
392, 393, 411, 483

HT_xvtdwin, 134, 165, 251, 672
HT_xvtdwinclear, 9, 103, 345, 400, 404
HT_xvtdwinclosepict, 122, 345, 400,

667
HT_xvtdwindrawaline, 123, 345, 357,

373, 422
HT_xvtdwindrawarc, 125, 345, 358,

362
HT_xvtdwindrawicon, 29, 345, 355,

364, 419
HT_xvtdwindrawimage, 125, 155, 345,

353, 364, 534, 539, 541,
567, 570, 731

HT_xvtdwindrawline, 123, 345, 350,
357, 366, 368, 370, 373

HT_xvtdwindrawoval, 102, 125, 345,

352, 358, 372, 405
HT_xvtdwindrawpict, 122, 125, 345
HT_xvtdwindrawpie, 102, 125, 345,

352
HT_xvtdwindrawpmap, 125, 345, 353,

355, 541
HT_xvtdwindrawpolygo, 102, 123, 345,

368, 370, 372
HT_xvtdwindrawpolyli, 123, 345, 366,

370, 373
HT_xvtdwindrawrect, 102, 125, 345,

358, 366, 368, 372
HT_xvtdwindrawroundr, 102, 125, 345,

370
HT_xvtdwindrawsetpos, 123, 345, 350,

357
HT_xvtdwindrawtext, 71, 345, 387, 395,

419, 421, 474, 951
HT_xvtdwingetclip_1, 125, 345, 407
HT_xvtdwingetdrawcto, 102, 105, 109,

261, 345, 347, 409
HT_xvtdwingetfont, 146, 380
HT_xvtdwingetfont_5, 345, 379, 415,

462
HT_xvtdwingetfontapp, 345, 379, 413,

459
HT_xvtdwingetfontnat, 345, 379, 416,

464
HT_xvtdwingetfontsiz, 345, 379, 417,

465
HT_xvtdwingetfontsiz_1, 345, 379, 417,

466
HT_xvtdwingetfontsty, 150, 345, 379,

418, 467
HT_xvtdwingetfontsty_1, 150, 345, 379,

418, 468
HT_xvtdwingettextwid, 345, 387, 951
HT_xvtdwininvalidate, 86, 91, 125, 345,

423
HT_xvtdwinisupdatene, 91, 125, 345,

704
HT_xvtdwinopenpict, 125, 345, 348,

360
HT_xvtdwinscrollrect, 91, 125, 345, 423
HT_xvtdwinsetbackcol, 103, 345, 419

Index
HT_xvtdwinsetcbrush, 102, 103, 105,
345, 358, 362, 421

HT_xvtdwinsetclip, 125, 345, 347, 377
HT_xvtdwinsetcpen, 103, 105, 345, 422
HT_xvtdwinsetdrawcto, 102, 103, 105,

109, 194, 261, 345, 378,
404, 405, 408, 411, 419,
421, 422

HT_xvtdwinsetdrawmod, 194, 345, 364
HT_xvtdwinsetfont, 146, 380, 387, 395,

730, 947
HT_xvtdwinsetforecol, 103, 345, 404
HT_xvtdwinsetstdcbru, 215, 345, 366
HT_xvtdwinsetstdcpen, 215, 346, 352,

358, 362, 366, 368
HT_xvtdwinupdate, 91, 346, 397, 402

gotolink ptkref1IX.fm
firstpage, 1

gotolink ptkref2.fm
HT_xvterrid, 251
HT_xvterridcreate_2, 143, 425, 427,

428, 431
HT_xvterridget_1, 143, 144, 425, 426,

428
HT_xvterridis, 143, 425, 426, 427
HT_xvterrmsg, 21, 251
HT_xvterrmsgdef, 426, 427, 428, 429,

438, 440
HT_xvterrmsgget, 134, 145, 429, 434
HT_xvterrmsggettext, 429
HT_xvterrmsgpophandl, 144, 145, 429,

433, 438, 439, 440, 441
HT_xvterrmsgpushhand, 22, 144, 145,

427, 428, 429, 433, 435,
437, 438, 439, 440, 441

HT_xvterrmsgsig, 144, 145, 210, 426,
427, 428, 429, 433, 435,
437, 439, 440, 441, 1024

HT_xvterrmsgsigif, 429, 438, 440, 441,
1024

HT_xvterrmsgsigstd, 145, 210, 429,
438, 439, 441

HT_xvterrmsgsigstd_2, 429, 438, 439,
440

HT_xvtevent, 251

HT_xvteventgetfont, 113, 146, 442
HT_xvteventisvirtual, 57, 442
HT_xvteventsetfont, 113, 146, 442, 443
HT_xvtfmap, 251
HT_xvtfmapgetfamilie_1, 445, 448, 450,

451, 453
HT_xvtfmapgetfamilys, 124, 445, 446,

450, 451, 453
HT_xvtfmapgetfamilys_1, 124, 150, 445,

446, 448, 451, 453
HT_xvtfmapgetfamilys_2, 124, 150, 445,

446, 448, 450, 451, 453
HT_xvtfmapgetfamilys_3, 124, 150, 445,

446, 448, 450
HT_xvtfont, 146, 233, 235, 251, 283,

321
HT_xvtfontcopy, 147, 453, 456, 458,

859
HT_xvtfontcreate, 453, 454, 457, 458,

468, 472, 474, 730, 859
HT_xvtfontdeserializ, 453, 477
HT_xvtfontdestroy, 287, 380, 453, 454,

456, 726, 730
HT_xvtfontgetappdata, 382, 453, 479,

895
HT_xvtfontgetfamil_2, 385, 453, 460,

480
HT_xvtfontgetfamily, 383, 453, 462,

480
HT_xvtfontgetmetrics, 387, 453, 885
HT_xvtfontgetnatived, 388, 453, 481
HT_xvtfontgetsize, 389, 453, 466, 482
HT_xvtfontgetsizemap, 391, 453, 465,

482
HT_xvtfontgetstyle, 150, 392, 453, 468,

483
HT_xvtfontgetstylema, 150, 393, 453,

467, 483
HT_xvtfontgetwin, 134, 453, 456, 463,

471, 474
HT_xvtfonthasvalidna, 453
HT_xvtfontismapped, 453
HT_xvtfontisprint, 453
HT_xvtfontisscalable, 453
HT_xvtfontisvalid, 453

XVT Portability Toolkit Reference
HT_xvtfontmap, 134, 337, 453, 462,
463, 464, 466, 468, 469,
470, 471, 472, 475, 484

HT_xvtfontmapusingde, 337, 453, 464,
466, 468, 469, 470, 471,
474, 481, 484, 605, 908

HT_xvtfontserialize, 453, 457
HT_xvtfontsetappdata, 413, 453, 456,

459
HT_xvtfontsetfamily, 415, 453, 456,

460, 462, 482, 483
HT_xvtfontsetnatived, 416, 453, 456,

464, 469
HT_xvtfontsetsize, 417, 453, 456, 465,

466, 483
HT_xvtfontsetstyle, 150, 418, 453, 456,

467, 468, 482
HT_xvtfontunmap, 453, 470

gotolink ptkref3.fm
help, 251
HT_xvt_image_duplicate, 533
HT_xvtfsys, 251
HT_xvtfsysbuildpathn, 263, 485, 497
HT_xvtfsysconvertdir, 108, 116, 485,

486, 488, 491, 493, 497
HT_xvtfsysconvertstr_1, 108, 116, 485,

486, 487, 497, 504
HT_xvtfsysgetdefault, 108, 329, 333,

335, 485, 491, 502, 503
HT_xvtfsysgetdir, 108, 485, 487, 489
HT_xvtfsysgetfileatt, 108, 116, 237,

263, 333, 335, 485, 491,
504

HT_xvtfsyslistfiles, 127, 181, 485, 811
HT_xvtfsysparsepathn, 212, 485, 486
HT_xvtfsysremfile, 116, 485
HT_xvtfsysrestoredir, 333, 485, 501,

502
HT_xvtfsyssavedir, 333, 485, 500, 502,

503
HT_xvtfsyssetdir, 108, 333, 335, 485,

488, 489, 491, 503
HT_xvtfsyssetdirstar, 485, 501, 502
HT_xvtfsyssetfileatt, 108, 116, 237,

333, 335, 485, 493

HT_xvtgmem, 251
HT_xvtgmemalloc, 117, 504, 507, 508,

509, 511, 669
HT_xvtgmemfree, 117, 504, 506
HT_xvtgmemgetsize, 117, 504, 506,

509
HT_xvtgmemlock, 117, 504, 506, 507,

511
HT_xvtgmemrealloc, 117, 504, 506,

507, 508, 509, 511
HT_xvtgmemunlock, 117, 504, 506,

507, 509
HT_xvthelp, 153, 248
HT_xvthelpassocall, 511, 526
HT_xvthelpbeginobjcl, 511, 517
HT_xvthelpclosehelpf, 511, 522
HT_xvthelpdisassocal, 511, 512, 525,

526
HT_xvthelpdisplaytop, 511, 524
HT_xvthelpendobjcli, 511, 513
HT_xvthelpgetflavor, 240, 511
HT_xvthelpgetmenuass, 120, 511, 519
HT_xvthelpgetwinasso, 511
HT_xvthelpopenhelpfi, 27, 28, 116, 189,

511, 513, 514, 515, 516,
517, 519, 523, 524, 525,
526

HT_xvthelpprocesseve, 27, 28, 75, 511
HT_xvthelpsearchtopi, 511
HT_xvthelpsetmenuass, 120, 511, 515,

519
HT_xvthelpsetwinasso, 511, 515, 519,

523, 525
HT_xvthtml, 251
HT_xvthtmlgeturl, 154, 528, 529, 753
HT_xvthtmlgeturlintercept, 154, 528,

531
HT_xvthtmlseturl, 154, 528, 529, 753
HT_xvthtmlseturlintercept, 154, 528, 530
HT_xvtimage, 155, 251
HT_xvtimagecreate, 155, 202, 241, 533,

537, 539, 540, 541, 542,
543, 547, 549, 550, 552,
554, 556, 557, 559, 560,
561, 562, 563, 564, 566,

Index
567, 568, 570, 571, 573,
672

HT_xvtimagedestro, 533, 534, 547, 549,
550, 552, 554, 556, 557,
559, 560, 561, 562, 563,
564, 571, 573, 627, 645,
677, 695, 731

HT_xvtimagefillrect, 103, 125, 533, 534
HT_xvtimagegetclut, 103, 226, 533,

566
HT_xvtimagegetdimens, 533, 541, 570
HT_xvtimagegetformat, 241, 533
HT_xvtimagegetfrompm, 125, 165, 533,

570
HT_xvtimagegetncolor, 533, 567
HT_xvtimagegetpixel, 103, 533, 534,

546, 566, 568
HT_xvtimagegetresolu, 533, 569
HT_xvtimagegetscanli, 533, 543, 568
HT_xvtimageread, 533, 546
HT_xvtimageread_1, 534, 547
HT_xvtimagereadbmp, 533, 546, 550,

557, 559, 561, 563
HT_xvtimagereadbmpfr, 158, 533, 546,

549, 552, 560, 562, 564,
565, 571, 575, 576, 578,
579

HT_xvtimagereadgif, 533, 546, 553,
554

HT_xvtimagereadgiffr, 533, 546
HT_xvtimagereadjpg, 533, 546, 557
HT_xvtimagereadjpgfr, 533, 546, 556
HT_xvtimagereadmac_1, 533, 546, 559,

573, 575, 576, 578, 579
HT_xvtimagereadmacpi, 158, 533, 546,

560, 573
HT_xvtimagereadxbm, 533, 546, 562,

563, 571
HT_xvtimagereadxbmfr, 158, 533, 546,

561, 564, 575, 576, 578,
579

HT_xvtimagereadxpm, 533, 546, 561,
564

HT_xvtimagereadxpmfr, 158, 533, 546,
562, 563, 575, 576, 578,

579
HT_xvtimagesetclut, 103, 226, 533,

534, 538, 567, 568
HT_xvtimagesetncolor, 226, 533, 534,

542, 566
HT_xvtimagesetpixel, 103, 533, 534,

538, 543, 546
HT_xvtimagesetresolu, 533, 544
HT_xvtimagetransfer, 125, 355, 533,

541
HT_xvtimagewritebmpt, 158, 533, 549,

550, 552, 554, 556, 557,
573, 576, 579

HT_xvtimagewritemacp, 158, 533
gotolink ptkref4.fm

HT_xvt_pattern_*, 251
HT_xvt_pattern_create, 657, 897, 912
HT_xvt_pattern_destroy, 657, 897, 912
HT_xvt_pattern_format_string, 657
HT_xvt_pattern_match, 657, 897, 912
HT_xvtiostr, 251
HT_xvtiostrcreatefre, 158, 550, 554,

557, 560, 562, 564, 575,
579, 580

HT_xvtiostrcreatefwr, 158, 571, 573,
575, 579, 580

HT_xvtiostrcreaterea, 156, 157, 158,
550, 554, 557, 560, 562,
564, 575, 576, 579, 580

HT_xvtiostrcreatewri, 156, 157, 158,
571, 573, 575, 576, 578,
579, 580

HT_xvtiostrdestroy, 158, 550, 554, 557,
560, 562, 564, 571, 573,
575

HT_xvtiostrgetcontex_1, 157, 575
HT_xvtlist, 134, 251
HT_xvtlistadd, 127, 580, 582, 583,

595, 597
HT_xvtlistclear, 580, 582, 594
HT_xvtlistcountall, 580, 588
HT_xvtlistcountsel, 580
HT_xvtlistgetall, 127, 580, 586, 588,

766
HT_xvtlistgetelt, 580, 584, 586, 592,

XVT Portability Toolkit Reference
593
HT_xvtlistgetfirstse, 580, 592
HT_xvtlistgetsel, 127, 580, 585, 590,

592, 766
HT_xvtlistgetselinde, 580, 594
HT_xvtlistissel, 580
HT_xvtlistrem, 580, 592, 595, 597
HT_xvtlistresume, 580, 582, 594, 597
HT_xvtlistsetsel, 580
HT_xvtlistsuspend, 580, 582, 594, 595
HT_xvtmem, 31, 251
HT_xvtmemalloc, 107, 506, 598, 599,

600, 601, 602, 669, 726,
728, 732, 738, 790

HT_xvtmemfree, 107, 286, 289, 598,
599, 600, 601, 602, 728,
732, 734, 738, 790

HT_xvtmemrealloc, 107, 598, 599, 601,
602

HT_xvtmemrep, 107, 598, 599, 600,
602

HT_xvtmemzalloc, 107, 119, 133, 598,
599, 600, 601

HT_xvtmenu, 134, 180, 197, 198, 251
HT_xvtmenugetfontsel, 71, 146, 456,

603, 610
HT_xvtmenugettree, 32, 62, 119, 603,

614, 615, 725, 733
HT_xvtmenupopup, 167, 603
HT_xvtmenusetfontsel, 71, 120, 146,

454, 603, 604, 611
HT_xvtmenusetitemche, 119, 120, 603,

612
HT_xvtmenusetitemena, 119, 120, 188,

199, 603, 617
HT_xvtmenusetitemtit, 120, 199, 603,

605, 612
HT_xvtmenusettree, 32, 62, 119, 600,

601, 602, 603, 605, 614,
617, 725, 733, 925

HT_xvtmenuupdate, 603, 612
HT_xvtnav, 251
HT_xvtnavaddwin, 244, 618, 621, 623,

624
HT_xvtnavcreate, 159, 618, 622, 623,

939
HT_xvtnavdestroy, 618, 621
HT_xvtnavlistwins, 618
HT_xvtnavremwin, 618, 619
HT_xvtnotebkaddpage, 625, 627, 637
HT_xvtnotebkaddtab, 625, 626, 645,

646
HT_xvtnotebkcreateface, 625, 626, 630,

632
HT_xvtnotebkcreatefacedef, 625, 626,

629, 632
HT_xvtnotebkcreatefaceres, 625, 626,

629, 630
HT_xvtnotebkenumpages, 160, 625
HT_xvtnotebkgetface, 625, 635, 638
HT_xvtnotebkgetfrontpage, 625, 634
HT_xvtnotebkgetnumpages, 625, 636
HT_xvtnotebkgetnumtabs, 625, 635
HT_xvtnotebkgetpagedata, 625, 626, 643
HT_xvtnotebkgetpagefromface, 625
HT_xvtnotebkgetpagetitle, 625, 641
HT_xvtnotebkgettabimage, 625
HT_xvtnotebkgettabtitle, 625, 639
HT_xvtnotebkrempage, 625, 642
HT_xvtnotebkremtab, 625, 641
HT_xvtnotebksetfrontpage, 625
HT_xvtnotebksetpagedata, 625, 626, 637
HT_xvtnotebksetpagetitle, 625, 639, 646
HT_xvtnotebksettabimage, 625, 640
HT_xvtnotebksettabtitle, 625, 641, 644
HT_xvtpaletaddcolors, 103, 155, 246,

647, 649, 652
HT_xvtpaletaddcolors_1, 647, 652
HT_xvtpaletcreate, 18, 124, 161, 202,

245, 647, 648, 651, 652,
653, 655, 656, 657, 899,
913

HT_xvtpaletdefault, 203, 647, 651
HT_xvtpaletdestroy, 647
HT_xvtpaletgetcolors, 103, 647
HT_xvtpaletgetncolor, 246, 647, 654
HT_xvtpaletgetsize, 246, 647, 653
HT_xvtpaletgettolera, 647
HT_xvtpaletgettype, 245, 647
HT_xvtpaletsettolera, 647, 648, 649,

Index
654, 655
HT_xvtpallet, 161, 251, 650
HT_xvtpict, 251
HT_xvtpictcreate, 122, 125, 203, 268,

270, 273, 360, 665, 667,
668, 669

HT_xvtpictdestroy, 122, 348, 665, 666
HT_xvtpictlock, 122, 270, 665, 666,

669
HT_xvtpictunlock, 122, 665, 669
HT_xvtpmap, 251
HT_xvtpmapcreate, 134, 165, 166, 204,

246, 541, 669, 673, 890,
900

HT_xvtpmapdestroy, 134, 165, 669,
672

notebook, 251
gotolink ptkref4a.fm

HT_xvtnotebkaddpage, 675, 677, 687
HT_xvtnotebkaddtab, 675, 676, 695,

696
HT_xvtnotebkcreateface, 675, 676, 680,

682
HT_xvtnotebkcreatefacedef, 675, 676,

679, 682
HT_xvtnotebkcreatefaceres, 675, 676,

679, 680
HT_xvtnotebkenumpages, 675
HT_xvtnotebkgetface, 675, 685, 688
HT_xvtnotebkgetfrontpage, 675, 684
HT_xvtnotebkgetnumpages, 675, 686
HT_xvtnotebkgetnumtabs, 675, 685
HT_xvtnotebkgetpagedata, 675, 676, 693
HT_xvtnotebkgetpagefromface, 675
HT_xvtnotebkgetpagetitle, 675, 691
HT_xvtnotebkgettabimage, 675
HT_xvtnotebkgettabtitle, 675, 689
HT_xvtnotebkrempage, 675, 692
HT_xvtnotebkremtab, 675, 691
HT_xvtnotebksetfrontpage, 675
HT_xvtnotebksetpagedata, 675, 676, 687
HT_xvtnotebksetpagetitle, 675, 689, 696
HT_xvtnotebksettabimage, 675, 690
HT_xvtnotebksettabtitle, 675, 691, 694

gotolink ptkref5.fm

HT_xvtprint, 251
HT_xvtprintclose_1, 697, 701, 706, 711
HT_xvtprintclosepage, 124, 697, 701,

704
HT_xvtprintcreate, 124, 341, 697, 700,

701, 702, 705, 708, 711
HT_xvtprintcreatewin, 124, 134, 697,

704, 711, 890
HT_xvtprintdestroy, 124, 697, 700, 705,

711
HT_xvtprintgetnextba, 125, 399, 697,

698, 701
HT_xvtprintisvalid, 124, 341, 697, 700,

701
HT_xvtprintopen, 697, 711
HT_xvtprintopenpage, 124, 697, 698,

701, 704
HT_xvtprintsetpageorient, 697, 709
HT_xvtprintsetpagesize, 163, 697, 708
HT_xvtprintstartthre, 167, 697, 698,

701, 702, 704, 707
HT_xvtrect, 125, 251
HT_xvtrectgetheight, 713, 721
HT_xvtrectgetpos, 123, 713
HT_xvtrectgetwidth, 713, 722
HT_xvtrecthaspoint, 123, 713, 717
HT_xvtrectintersect, 713, 716, 717
HT_xvtrectisempty, 713, 717, 719, 720
HT_xvtrectoffset, 713
HT_xvtrectset, 352, 358, 362, 364,

713, 717, 718
HT_xvtrectsetempty, 713, 717, 719
HT_xvtrectsetheight, 713, 722
HT_xvtrectsetpos, 123, 713, 714
HT_xvtrectsetwidth, 713, 715, 721
HT_xvtres, 251
HT_xvtresaddres, 168, 723, 740, 741
HT_xvtresfreemenutre, 119, 605, 607,

615, 723, 733
HT_xvtresfreewindef, 133, 723, 729,

739
HT_xvtresgetdlgdata, 723, 727, 732,

734
HT_xvtresgetdlgdef, 133, 183, 321,

323, 723, 726, 727, 738,

XVT Portability Toolkit Reference
739
HT_xvtresgetfont, 146, 456, 723, 727,

859, 975
HT_xvtresgetimage, 155, 723, 727, 979
HT_xvtresgetimagedat, 723, 727
HT_xvtresgetmenu, 119, 198, 605, 607,

615, 723, 725, 727
HT_xvtresgetmenudata, 723, 727, 728,

738
HT_xvtresgetstr, 723, 727, 737
HT_xvtresgetstrlist, 127, 723, 727, 735,

766
HT_xvtresgetwindata, 723, 727, 728,

732, 734
HT_xvtresgetwindef, 133, 723, 726,

727, 729, 927
HT_xvtresremoveres, 168, 723, 724,

741
HT_xvtresuseres, 168, 723, 724, 740
HT_xvtsbar, 134, 251
HT_xvtsbargetpos, 76, 95, 209, 742,

747
HT_xvtsbargetproport, 76, 95, 209, 742,

743, 748
HT_xvtsbargetrange, 76, 95, 209, 742,

749
HT_xvtsbarsetpos, 76, 95, 209, 742,

743, 744, 748, 749, 885
HT_xvtsbarsetproport, 76, 95, 209, 742,

744, 747, 749, 885
HT_xvtsbarsetrange, 76, 95, 209, 742,

743, 745, 747, 748, 885
HT_xvtscr, 251
HT_xvtscrbeep, 750, 951
HT_xvtscrgetfocustop, 134, 750
HT_xvtscrgetfocusvob, 69, 134, 750,

751, 757
HT_xvtscrhidecursor, 106, 180, 750,

756
HT_xvtscrlaunchbrowser, 750
HT_xvtscrlistwins, 127, 750, 764, 766,

769, 902, 944
HT_xvtscrsetbusycurs, 106, 180, 750,

752
HT_xvtscrsetfocusvob, 134, 750, 751,

752, 903, 906
xvtprintsetpageorient, 163

gotolink ptkref6.fm
HT_xvt_str_create_codeset_map, 773
HT_xvt_str_destroy_codeset_map, 773
HT_xvt_str_translate_codeset, 774
HT_xvtconvertmbstowc, 169, 773, 780,

785
HT_xvtconvertmbtowc, 169, 773, 781,

783, 800
HT_xvtconverttolower, 773, 782, 784
HT_xvtconverttoupper, 773, 782, 785
HT_xvtconvertwctomb, 57, 169, 773,

780, 785
HT_xvtslist, 127, 251, 495, 586, 591,

737
HT_xvtslistaddatelt, 127, 759, 762
HT_xvtslistaddatpos, 759, 760
HT_xvtslistaddsorted, 10, 759
HT_xvtslistcount, 759
HT_xvtslistcreate, 759, 760, 762, 763,

766
HT_xvtslistdebug_1, 759
HT_xvtslistdestroy, 586, 591, 754, 759,

760, 762, 764, 944
HT_xvtslistget, 127, 586, 591, 759,

768, 769, 770, 771
HT_xvtslistgetdata, 127, 759, 767, 769
HT_xvtslistgetelt, 586, 759
HT_xvtslistgetfirst, 127, 586, 591, 759,

767, 771
HT_xvtslistgetnext, 127, 586, 591, 759,

767, 770
HT_xvtslistisvalid, 759
HT_xvtslistrem, 127, 759
HT_xvtstr_1, 251
HT_xvtstrcollate, 10, 136, 773, 775,

776
HT_xvtstrcollateigno, 10, 136, 773, 774,

777
HT_xvtstrcompare, 773, 774, 777, 778,

806
HT_xvtstrcompareigno, 773, 775, 776
HT_xvtstrcomparencha, 773, 796
HT_xvtstrconcat, 773, 779

Index
HT_xvtstrconcatnchar, 773, 778
HT_xvtstrconvertwcha, 169, 773, 782,

785
HT_xvtstrconvertwcha_1, 169, 773, 784
HT_xvtstrconvertwcst, 169, 773, 781,

783
HT_xvtstrcopy, 773, 787, 788, 790
HT_xvtstrcopynchar, 773, 786, 788
HT_xvtstrcopynsize, 773, 786, 787, 797
HT_xvtstrduplicate, 773
HT_xvtstrfindchar, 773, 794, 795
HT_xvtstrfindeol, 185, 186, 773
HT_xvtstrfindfirstch, 773, 791, 794,

796
HT_xvtstrfindlastcha, 773, 794, 795
HT_xvtstrfindnotchar, 773, 791
HT_xvtstrfindsubstri, 773
HT_xvtstrfindtoken, 773
HT_xvtstrgetbytecoun, 773, 799, 800
HT_xvtstrgetcharcoun, 773, 798, 800,

801
HT_xvtstrgetcharsize, 773, 802
HT_xvtstrgetncharcou, 773, 797, 799,

801
HT_xvtstrgetncharsiz, 773, 798, 800
HT_xvtstrgetnextchar, 773, 803
HT_xvtstrgetprevchar, 773, 802
HT_xvtstrisalnum, 773, 803, 805, 807,

808, 809, 810
HT_xvtstrisalpha, 773, 803, 804, 805,

807, 808, 809, 810
HT_xvtstrisdigit, 773, 803, 804, 805,

807, 808, 809, 810
HT_xvtstrisequal, 773, 803, 804, 805,

807, 808, 809, 810
HT_xvtstrisinvariant, 774, 803, 804,

805, 807, 808, 809, 810
HT_xvtstrislower, 774, 803, 804, 805,

807, 808, 809, 810
HT_xvtstrisspace, 774, 803, 804, 805,

807, 809, 810
HT_xvtstrisupper, 774, 803, 804, 805,

807, 808, 810
HT_xvtstrisxdigit, 774, 803, 804, 805,

807, 808, 809

HT_xvtstrmatch, 495, 774, 776, 777
HT_xvtstrparsedouble, 774, 814, 815
HT_xvtstrparselong, 774, 812, 815
HT_xvtstrparseulong, 774, 812, 814
HT_xvtstrsprintf, 774
HT_xvttimer, 251
HT_xvttimercreate, 34, 88, 134, 247,

756, 818, 820
HT_xvttimerdestroy, 88, 818, 819, 936,

959
HT_xvttx, 130, 217, 251, 914
HT_xvttxaddpar, 130, 853, 856, 857,

868, 870, 875, 876, 883,
888

HT_xvttxappend, 130, 853, 854, 857,
875, 883

HT_xvttxclear, 853, 862, 876
HT_xvttxcreate, 125, 134, 146, 204,

217, 853, 861, 862, 863,
866, 874, 880, 881, 882,
925, 940, 988

HT_xvttxcreatedef, 133, 134, 204, 853,
859, 862, 863, 866, 881,
882, 895, 909, 927, 940

HT_xvttxdestroy, 853, 857, 859, 861
HT_xvttxgetattr, 217, 853, 880
HT_xvttxgetlimit, 853, 881
HT_xvttxgetline, 129, 130, 173, 853,

871
HT_xvttxgetmargin, 853, 882
HT_xvttxgetnexttx, 853
HT_xvttxgetnumchars, 128, 129, 130,

853, 864
HT_xvttxgetnumlines, 129, 853, 864,

869, 871, 885
HT_xvttxgetnumpars, 130, 853, 864,

867, 868, 869, 871, 875
HT_xvttxgetnumparslin, 129, 130, 853,

864, 867, 871
HT_xvttxgetorigin, 128, 129, 130, 853,

874, 877, 879, 885
HT_xvttxgetsel, 128, 129, 130, 853,

887
HT_xvttxgettabstop, 128, 853, 887
HT_xvttxgetview, 125, 853

XVT Portability Toolkit Reference
HT_xvttxrempar, 130, 853, 854, 856,
857, 862, 872, 883

HT_xvttxreset, 853, 880, 882, 887
HT_xvttxresume, 853, 888
HT_xvttxscrollhor, 853, 879, 885
HT_xvttxscrollvert, 853, 869, 877, 885
HT_xvttxsetattr, 217, 853, 862, 876,

879
HT_xvttxsetlimit, 853, 863, 876, 879
HT_xvttxsetmargin, 853, 866, 876, 879
HT_xvttxsetpar, 130, 853, 854, 856,

857, 875, 879
HT_xvttxsetscrollcal, 126, 853, 859,

871, 877, 879
HT_xvttxsetsel, 128, 129, 130, 853,

872, 879
HT_xvttxsettabstop, 128, 853, 859, 861,

873, 879
HT_xvttxsuspend, 853, 876

gotolink ptkref7.fm
HT_xvt_vobj_get_formatter, 659, 662,

664, 665, 889
HT_xvt_vobj_set_formatter, 659, 662,

664, 665, 889, 897
HT_xvt_win_get_ctl_color_component,

917
HT_xvt_win_process_modal, 917, 920,

925
HT_xvt_win_set_ctl_color_component,

917
HT_xvt_win_unset_ctl_color_component,

917
HT_xvtvobj, 134, 165, 251
HT_xvtvobjdestroy, 60, 68, 698, 701,

707, 889
HT_xvtvobjgetattr, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 32, 33, 34, 35, 36, 37,
41, 43, 44, 45, 46, 47, 48, 49,
136, 148, 149, 159, 257,
347, 889, 908

HT_xvtvobjgetclientr, 19, 20, 25, 26, 48,
125, 362, 672, 889, 898,
905, 916

HT_xvtvobjgetdata, 68, 280, 283, 321,
323, 672, 728, 861, 889,
890, 909, 920, 925, 927

HT_xvtvobjgetflags, 224, 889
HT_xvtvobjgetouterre, 19, 20, 25, 26,

48, 125, 672, 874, 889, 893,
900

HT_xvtvobjgetpalet, 161, 203, 650,
889, 913

HT_xvtvobjgetparent, 287, 672, 889
HT_xvtvobjgettitle, 280, 283, 529, 639,

641, 689, 691, 889, 914
HT_xvtvobjgettype, 222, 672, 754, 889,

944
HT_xvtvobjisfocusabl, 751, 752, 757,

889
HT_xvtvobjisvalid, 889
HT_xvtvobjmove, 86, 125, 243, 721,

722, 874, 889, 894, 898,
900, 916

HT_xvtvobjraise, 757, 889
HT_xvtvobjsetattr, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29,
30, 32, 33, 34, 35, 36, 37, 41,
43, 44, 45, 46, 47, 48, 49,
136, 148, 149, 159, 254,
257, 889, 892

HT_xvtvobjsetdata, 254, 280, 283, 321,
323, 672, 728, 861, 889,
895, 920, 925, 927

HT_xvtvobjsetenabled, 179, 183, 889,
915

HT_xvtvobjsetpalet, 17, 161, 650, 889,
899

HT_xvtvobjsettitle, 280, 283, 291, 889,
901, 957

HT_xvtvobjsetvisible, 179, 183, 889
HT_xvtvobjtranslatep, 19, 20, 25, 26, 48,

123, 889
HT_xvtwin, 134, 252
HT_xvtwincreate, 18, 19, 25, 26, 32, 43,

44, 45, 48, 114, 125, 184,
205, 208, 218, 222, 224,
243, 277, 292, 293, 427,

Index
890, 895, 896, 900, 902,
905, 909, 911, 915, 917,
925, 927, 941, 959

HT_xvtwincreatedef, 11, 12, 13, 14, 15,
16, 18, 19, 25, 26, 32, 43, 44,
45, 48, 64, 65, 114, 130,
133, 179, 184, 208, 217,
243, 254, 277, 280, 283,
292, 293, 321, 427, 630,
680, 739, 859, 861, 890,
895, 896, 900, 902, 905,
909, 911, 917, 920, 927,
940, 941, 959

HT_xvtwincreateres, 43, 44, 45, 64, 65,
114, 130, 179, 184, 208,
243, 254, 277, 280, 283,
292, 293, 323, 427, 739,
859, 861, 890, 895, 900,
902, 905, 909, 911, 917,
925, 940, 941, 959

HT_xvtwindispatcheve, 28, 93, 113, 306,
443, 444, 917

HT_xvtwinenumwins, 142, 754, 917,
944

HT_xvtwingetctl, 64, 277, 280, 283,
287, 321, 914, 917, 940

HT_xvtwingetctlcolor, 103, 138, 227,
285, 286, 288, 289, 294,
295, 299, 917, 931, 952,
954, 963

HT_xvtwingetctlfont, 287, 296, 456,
917, 955

HT_xvtwingetcursor, 106, 180, 752,
756, 917, 956, 961

HT_xvtwingetcxo, 304, 917
HT_xvtwingeteventmas, 114, 184, 917
HT_xvtwingethandler, 114, 917, 960
HT_xvtwingetnav, 159, 619, 621, 917
HT_xvtwingettx_1, 859, 861, 866, 917
HT_xvtwinhasmenu, 32, 917
HT_xvtwinlistcxos, 917
HT_xvtwinlistwins, 754, 917, 929
HT_xvtwinreleasepoin, 82, 917, 961
HT_xvtwinsetcaretpos, 123, 917, 949,

951

HT_xvtwinsetcaretsiz, 917, 946, 947,
951

HT_xvtwinsetcaretvis, 917, 947, 949
HT_xvtwinsetctlcolor, 7, 103, 137, 138,

227, 285, 286, 288, 289,
294, 295, 299, 917, 931,
932, 952, 963

HT_xvtwinsetctlfont, 8, 287, 296, 917,
933

HT_xvtwinsetcursor, 106, 180, 752,
756, 917, 934, 961

HT_xvtwinsetdoctitle, 140, 901, 914,
917

HT_xvtwinseteventmas, 88, 114, 184,
917, 936

HT_xvtwinsethandler, 114, 917, 938
HT_xvtwintrappointer, 82, 379, 409,

917, 934, 945, 956
gotolink ptkref8.fm

HT_accel_Statement, 965, 984
HT_Bitmap_P_Format_C, 998
HT_BODYSTANZA_Statem, 997, 1004
HT_Bounding_Rectangl, 965, 970, 971,

973, 974, 977, 978, 980,
981, 982, 985, 987, 988,
991

HT_BROWSE_Statement, 997, 1002,
1004

HT_button_Control_St, 965, 966, 968,
971, 984

HT_checkbox_Control_, 965, 966, 968
HT_Comments, 997
HT_define_Directive, 965, 995, 997
HT_define_Directive_1, 998
HT_dialog_Statement, 323, 728, 729,

965, 966, 968, 970, 971,
974, 977, 978, 980, 981,
982, 985, 987, 988

HT_edit_Control_Stat, 965, 966, 968
HT_Font_Change_F_For, 998, 1000
HT_Font_Statement, 997, 1002, 1009,

1010, 1011
HT_font_Statement, 239, 474, 475, 481,

730, 965, 966, 976
HT_fontmap_Statement, 474, 475, 481,

XVT Portability Toolkit Reference
730, 965, 966, 975
HT_groupboxControl, 965, 966, 968
HT_Hanging_Indentati, 998
HT_HEADER_VERSION_AP, 998
HT_Help_File_Format_, 1, 1027
HT_Horizontal_Line_V, 998
HT_Hot_Button_B_Form, 998, 1012
HT_HTOPIC_BTOPIC_Sta, 998, 999,

1000, 1008, 1009, 1010,
1011, 1012, 1013, 1014

HT_Hyperlink_L_Forma, 998, 1011
HT_icon_Control_Stae, 965, 966, 968
HT_if_elif_else_and_, 965, 995
HT_ifdef_and_ifndef_, 965, 992
HT_ifdef_ufndef_Dire, 998, 1005
HT_ifelifelseandendif1, 998, 1006
HT_image_Statement_1, 731, 732, 965,

966, 968
HT_include_Directive, 965, 979, 996,

997
HT_include_Directive_1, 998, 1007
HT_listbox_Control_S, 965, 966, 968
HT_listbutton_Contro, 965, 966, 968
HT_listedit_Control_, 965, 966, 968
HT_Marging_M_Format_, 998
HT_menubar_and_menu_, 197, 725,

733, 734, 941, 965, 968,
969, 991

HT_No_Word_Wrap_N_Fo, 998, 1014
HT_Paragraph_A_Forma, 998
HT_Predefined_Help_I, 998, 1016
HT_Predefined_Help_T_1, 998, 1015
HT_radiobutton_Contr, 277, 965, 966,

968
HT_Reserved_S_Format, 998
HT_Resource_ID, 965, 970, 971, 973,

974, 975, 976, 977, 978,
979, 980, 981, 982, 985,
986, 987, 988, 991

HT_scan_Directive, 965, 979, 993, 997
HT_scan_Directive_1, 998, 1007
HT_scrollbar_Control, 965, 966, 968
HT_string_Statement, 735, 965, 966
HT_text_Control_Stat, 965, 966, 968
HT_Text_String, 965, 970, 971, 973,

974, 977, 985, 986, 987,
988, 991

HT_textedit_Object_S, 965, 966, 968
HT_transparent_State, 965, 978
HT_undef_Directive, 965, 992
HT_units_Statement, 965
HT_XRC_Statements, 1, 179, 1023
HT_userdata_Statemen, 965, 970, 971,

973, 974, 977, 978, 979,
980, 981, 982, 985, 987,
988

HT_window_Statement, 738, 739, 941,
965, 966, 968, 970, 971,
972, 973, 974, 977, 978,
980, 981, 982, 985, 987,
988

HT_Word_Wrap_W_Forma, 998, 1013
gotolink ptkref9.fm

HT_xrc, 989, 992, 993, 994, 995, 996,
997, 1019

HT_errscan, 21, 1019
HT_helpc, 998, 999, 1000, 1001,

1002, 1004, 1005, 1007,
1008, 1009, 1010, 1011,
1012, 1013, 1014, 1015,
1016, 1019

HT_maptabc, 1019
HT_Tools, 1

gotolink ptkrefa.fm
HT_ATTRAPPCTLCOLORS, 5, 285,

288, 294, 295, 299, 931,
952, 954, 963

HT_ATTRAPPCTLFONTRES, 5, 287,
296, 955

HT_ATTRAPPLNAMERID, 5, 48, 140
HT_ATTRBACKCOLOR, 5, 347
HT_ATTRCOLLATEHOOK, 5, 136,

763, 774, 775
HT_ATTRCTLBUTTONHEIG, 5
HT_ATTRCTLCHECK, 5
HT_ATTRCTLHORZSBARHE, 5, 15
HT_ATTRCTLRADIOBUTTO, 5
HT_ATTRCTLSTATICTEXT, 5
HT_ATTRCTLVERTSBARWI, 5, 13
HT_ATTRDBLFRAMEHEIGH, 5, 16

Index
HT_ATTRDBLFRAMEWIDTH, 15
HT_ATTRDEBUGFILENAME, 5, 315,

316, 765
HT_ATTRDEFAULTPALETT, 5
HT_ATTRDISPLAYTYPE, 5, 141, 232,

246
HT_ATTRDOCFRAMEHEIGH, 5, 20
HT_ATTRDOCFRAMEWIDTH, 5, 19
HT_ATTRDOCSTAGGERHOR, 5, 19
HT_ATTRDOCSTAGGERVERT, 5, 18
HT_ATTRERRMSGFILENAM, 5, 22,

144, 433, 434
HT_ATTRERRMSGHANDLER, 5, 21,

145, 438, 439, 440, 441,
908

HT_ATTREVENTHOOK, 5, 28, 30, 908
HT_ATTRFONTCACHESIZE, 5
HT_ATTRFONTDIALOG, 5, 148, 337
HT_ATTRFONTMAPPER, 5, 149, 474,

475, 481
HT_ATTRFRAMEHEIGHT, 5, 26
HT_ATTRFRAMEWIDTH, 5, 25
HT_ATTRHAVEMOUSE, 5
HT_ATTRHELPCONTEXT, 5, 28, 523
HT_ATTRHELPHOOK_1, 5, 22, 27, 30,

523
HT_ATTRICONHEIGHT, 5, 29
HT_ATTRICONWIDTH, 5, 29
HT_ATTRKEYHOOK, 5, 22, 28, 32, 40,

56, 191, 244
HT_ATTRMEMORYMANAGER, 5, 159,

599, 600, 601, 602
HT_ATTRMENUHEIGHT, 5
HT_ATTRMULTIBYTEAWAR, 5, 30,

56, 244, 443
HT_ATTRNATIVEGRAPHIC, 5, 34
HT_ATTRNATIVEWINDOW, 5, 33, 134
HT_ATTRNUMTIMERS, 5
HT_ATTRPRINTERHEIGHT, 5, 35, 36,

37
HT_ATTRPRINTERHRES, 5, 35, 36, 37
HT_ATTRPRINTERVRES, 5, 35, 37
HT_ATTRPRINTERWIDTH, 5, 35, 36
HT_ATTRPROPAGATENAVC, 5, 56
HT_ATTRR40TXEDIT, 5

HT_ATTRRESOURCEFILEN, 5
HT_ATTRSCREENHEIGHT, 5, 44, 45
HT_ATTRSCREENHRES, 5, 43, 45
HT_ATTRSCREENVRES, 6, 43, 44, 45
HT_ATTRSCREENWIDTH, 6, 43, 44,

45
HT_ATTRSCREENWINDOW, 6, 47, 208
HT_ATTRSUPPRESSUPDAT, 6, 91, 423
HT_ATTRTASKWINDOW, 6, 46, 214
HT_ATTRTASKWINTITLER, 6, 9, 140
HT_ATTRTITLEHEIGHT, 6
HT_ATTRXVTCONFIG, 6, 9, 48
HT_CTLEDITTEXT, 5
HT_XVT_Portable_Attr_1, 1, 257, 891,

892, 907, 908
gotolink ptkrefb.fm

HT_ECHAR, 30, 32, 41, 51, 69, 191,
244, 443, 757, 959

HT_ECLOSE, 51, 68, 84, 259, 890
HT_ECOMMAND, 51, 60, 84, 120,

259, 607
HT_ECONTROL, 51, 76, 94, 104, 182,

208, 280, 293, 911
HT_ECREATE, 51, 68, 86, 257, 264,

895, 951
HT_ECXO, 51, 230, 300, 306, 313
HT_EDESTROY, 51, 60, 259, 702,

890, 895
HT_EFOCUS, 51, 56, 444, 757
HT_EFONT, 51, 337, 443, 604, 610,

859
HT_EHELP, 51, 248
HT_EHSCROLL, 51, 94, 208, 402
HT_EMOUSEDBL, 51, 80, 82, 83
HT_EMOUSEDOWN, 51, 78, 82, 83,

607
HT_EMOUSEMOVE, 51, 78, 80, 83,

961
HT_EMOUSEUP, 51, 78, 80, 82
HT_EQUIT, 51, 256, 259
HT_ESIZE, 51, 68, 86, 893, 898, 905
HT_ETIMER, 34, 51, 819, 820, 821,

822, 824, 959
HT_EUPDATE, 47, 51, 86, 397, 399,

402, 407, 423, 604, 617,

XVT Portability Toolkit Reference
704, 911, 913, 920, 947,
949, 951, 954, 955, 957

HT_EUSER, 51, 306, 928
HT_EVENTTYPE_1, 51, 56, 62, 64, 65,

66, 68, 69, 71, 76, 78, 80, 82,
83, 84, 86, 88, 91, 93, 94, 97,
113, 114, 115

HT_EVSCROLL, 51, 76, 208, 402
HT_XVT_Events_1, 1, 52, 112, 214,

256, 938
gotolink ptkrefc.fm

HT_ACCESSCMD, 864
HT_BOOLEAN, 97, 186, 215
HT_CBRUSH, 97, 103, 105, 109, 206,

261, 348, 350, 352, 353,
357, 358, 362, 366, 368,
370, 372, 378, 402, 405,
421

HT_COLOR, 9, 97, 102, 105, 109,
138, 176, 241, 261, 285,
288, 294, 299, 347, 404,
419, 538, 566, 568, 648,
652, 931, 932

HT_CONTROLINFO, 64, 69, 97
HT_CPEN, 97, 102, 103, 105, 109,

205, 206, 234, 261, 350,
352, 353, 357, 366, 368,
370, 372, 378, 408, 422

HT_CURSOR, 97, 180, 934, 956, 961
HT_DATAPTR, 97, 135, 145, 159,

169, 437, 546, 599, 600,
601, 602

HT_DIRECTORY, 97, 116, 329, 333,
335, 487, 488, 489, 491,
500, 501, 502, 503

HT_DRAWCTOOLS, 97, 102, 103,
105, 109, 261, 328, 347,
375, 378, 403, 404, 409,
411

HT_DRAWMODE, 109, 261, 350, 352,
353, 357, 366, 368, 370,
372, 409, 411

HT_EVENT, 22, 52, 56, 84, 93, 97,
114, 141, 191, 280, 300,
928, 938

HT_EVENTHANDLER, 52, 97, 112,
257, 321, 323, 920, 925,
927, 938, 960

HT_EVENTMASK, 52, 97, 112, 302,
310, 313, 321, 323, 920,
925, 927, 936, 959

HT_EVENTTYPE, 75
HT_far, 97, 99, 100
HT_FILESPEC, 97, 108, 212, 263,

329, 333, 335, 489, 491,
493, 495, 500, 502, 504,
522

HT_GHANDLE, 97, 506, 507, 508,
509, 511

HT_huge, 97, 99, 100
HT_MENUITEM, 62, 97, 133, 197,

198, 199, 604, 605, 606,
607, 611, 614, 615, 725,
733, 925, 941

HT_MENUTAG_5, 62, 75, 97, 119,
120, 525, 607, 611, 612,
614

HT_near, 97, 99
HT_PICTURE, 97, 203, 348, 360, 366,

372, 400, 667
HT_PNT, 78, 80, 82, 83, 97, 350, 357,

366, 368, 372, 373, 607,
714, 716, 722, 916, 947,
951

HT_PRINTRCD, 24, 97, 148, 337, 341,
446, 448, 450, 451, 453,
698, 700, 701, 702, 705,
707

HT_RCT, 91, 97, 133, 280, 352, 355,
358, 360, 362, 364, 370,
372, 377, 397, 399, 400,
402, 407, 538, 541, 570,
704, 713, 714, 715, 716,
717, 718, 719, 720, 721,
722, 859, 874, 893, 898,
905, 920

HT_SCROLLCALLBACK, 97, 885
HT_SCROLLCONTROL, 76, 94, 104
HT_SCROLLTYPE, 743, 744, 745, 748
HT_SLIST, 97, 127, 495, 582, 586,

Index
591, 621, 623, 754, 760,
762, 763, 764, 765, 766,
767, 769, 770, 771, 772,
942, 944

HT_SLISTELT, 97, 767, 768, 770,
771, 772

HT_TCNUM, 97, 128, 129, 130, 867,
872, 873, 887

HT_TCPOS, 97, 128, 129, 130, 871,
872, 887

HT_TLNUM, 97, 128, 130, 864, 867,
868, 871, 872, 887

HT_TPNUM, 97, 128, 129, 854, 856,
864, 867, 869, 870, 871,
872, 875, 883, 887

HT_TXEDIT, 97, 854, 856, 857, 859,
861, 862, 863, 864, 866,
867, 868, 869, 870, 871,
872, 873, 874, 875, 876,
877, 879, 880, 881, 882,
883, 885, 887, 888, 940

HT_UNITTYPE, 133
HT_WINDEF, 11, 12, 13, 14, 15, 16,

97, 218, 222, 283, 285, 286,
287, 288, 289, 294, 299,
321, 512, 861, 896, 925,
931, 932, 933, 941, 952,
963

HT_WINDOW, 52, 57, 60, 64, 65, 68,
69, 75, 84, 86, 88, 97, 104,
114, 130, 142, 148, 165,
205, 208, 214, 222, 224,
277, 280, 283, 286, 287,
291, 292, 293, 295, 296,
298, 302, 311, 323, 347,
348, 350, 352, 353, 355,
357, 358, 360, 362, 364,
366, 368, 370, 372, 373,
375, 377, 378, 380, 382,
383, 385, 387, 388, 389,
391, 392, 393, 395, 397,
399, 400, 402, 404, 405,
407, 408, 409, 411, 412,
413, 415, 416, 417, 418,
419, 421, 422, 423, 438,

439, 440, 441, 468, 474,
582, 583, 584, 585, 586,
588, 590, 592, 593, 594,
595, 596, 597, 604, 605,
607, 610, 611, 612, 614,
615, 617, 621, 624, 751,
752, 754, 757, 859, 861,
866, 890, 892, 893, 895,
896, 898, 899, 900, 901,
902, 903, 904, 905, 906,
908, 909, 911, 913, 914,
915, 916, 920, 925, 927,
928, 929, 930, 932, 933,
934, 935, 936, 938, 939,
940, 941, 942, 944, 945,
947, 949, 951, 954, 955,
956, 957, 959, 960, 961

HT_WINTYPE, 64, 104, 133, 278,
280, 281, 289, 321, 323,
902, 920, 938, 945

HT_XVT_FORMAT_HANDLER, 98,
659, 662, 664, 665, 897,
912

HT_XVT_PATTERN, 98, 659, 662,
664, 665, 897, 912

HT_XVT_PG_ORIENT, 98, 163, 708
HT_XVT_PG_SIZE, 98, 709
HT_XVT_PG_UNITS, 98, 163
HT_XVTBYTE, 97, 107, 157, 169,

578, 579
HT_XVTCOLLATEFUNCTIO_1, 10, 97
HT_XVTCOLORACTION, 97, 295, 954
HT_XVTCOLORCOMPONENT, 7, 97,

103, 133, 137, 138, 227,
283, 285, 286, 288, 289,
294, 295, 299, 321, 925,
931, 932, 952, 954, 963

HT_XVTCOLORTYPE, 98, 138, 227,
277, 285, 288, 294, 299,
321, 925, 931, 952, 963

HT_XVTCONFIG, 9, 48, 49, 98, 189,
257, 324, 522, 957

HT_XVTCXO, 66, 98, 141, 300, 302,
304, 306, 307, 308, 309,
310, 311, 312, 313, 935

XVT Portability Toolkit Reference
HT_XVTCXOEVENTHANDLE, 98, 302,
312

HT_XVTCXOINSERTION_1, 98
HT_XVTDataTypes, 1
HT_XVTENUMCHILDREN, 98, 929
HT_XVTERRID, 98, 426, 427, 428,

431, 434, 438, 439, 440,
441

HT_XVTERRMSG, 21, 22, 98, 145,
433, 434

HT_XVTERRMSGHANDLER, 22, 98,
427, 428, 435, 437

HT_XVTERRSEV, 438, 439, 440, 441
HT_XVTFNTID, 24, 25, 71, 98, 120,

133, 147, 148, 149, 201,
233, 239, 287, 296, 337,
378, 380, 412, 443, 454,
456, 457, 458, 459, 460,
462, 463, 464, 465, 466,
467, 468, 469, 470, 471,
472, 474, 475, 477, 479,
480, 481, 482, 483, 484,
604, 859, 925, 933, 955

HT_XVTFONTATTRMASK, 98, 150,
233, 454

HT_XVTFONTDIALOG, 24, 98
HT_XVTFONTMAPPER, 25, 98
HT_XVTFONTSTYLEMASK, 98, 239,

392, 393, 418, 450, 451,
453, 467, 468, 483, 975

HT_XVTHELPINFO, 27, 98, 512, 513,
514, 515, 516, 517, 519,
522, 523, 524, 525, 526

HT_XVTHELPTID_NULLTI, 75, 98,
516, 524, 525, 526

HT_XVTHTMLXRCINTERCEPTHANDL
ER, 98, 530, 531

HT_XVTIMAGE, 202, 226, 355, 534,
537, 538, 539, 540, 541,
542, 543, 544, 546, 547,
549, 550, 552, 554, 556,
557, 559, 560, 561, 562,
563, 564, 566, 567, 568,
569, 570, 571, 573, 649,
731

HT_XVTIMAGEATTR, 98, 534
HT_XVTIMAGEFORMAT, 534, 538,

546, 549, 552, 556
HT_XVTIOSTRCONTEXT, 98, 578,

579, 580
HT_XVTIOSTREAM, 98, 156, 157,

550, 554, 557, 560, 562,
564, 571, 573, 575, 576,
579, 580

HT_XVTIOSTRRWFUNC, 98, 578, 579
HT_XVTIOSTRSZFUNC, 98, 578, 579
HT_XVTMEM, 98
HT_XVTNAV, 98, 244, 619, 621, 622,

623, 624, 939
HT_XVTPALETTE, 98, 202, 245, 246,

648, 649, 651, 652, 653,
654, 655, 656, 899, 913

HT_XVTPALETTEATTR, 98, 650
HT_XVTPALLETTYPE, 650, 655
HT_XVTPIXMAP, 98, 204, 246, 347,

348, 350, 352, 353, 355,
357, 358, 360, 362, 364,
366, 368, 370, 372, 373,
375, 377, 378, 380, 382,
383, 385, 387, 388, 389,
391, 392, 393, 395, 397,
400, 404, 405, 407, 408,
409, 411, 412, 419, 422,
423, 474, 541, 672, 673,
893, 895, 898, 900, 915

HT_XVTPIXMAPATTR, 98, 672
HT_XVTPIXMAPFORMAT, 672
HT_XVTPOPUPALIGNMENT, 98, 607
HT_XVTPRINTFUNCTION, 98
HT_XVTUBYTE, 98, 135
HT_XVTWCHAR, 57, 98
XVT_CODESET_MAP, 97
XVTNOTEBKENUMPAGES, 98, 633
XVTRES, 98, 724, 740, 741

gotolink ptkrefd.fm
HT_AValuesforACCE, 97, 100, 171
HT_CB_Values_for_CBF, 97, 101, 171,

267, 270, 272, 274
HT_CHARMAX, 171, 189, 192, 210,

219, 220

Index
HT_COLOR_COLORINVALI, 103, 171,
242, 358, 362, 370, 372,
932

HT_CTLFLAG_Options, 171, 280, 283,
292, 293, 319, 321, 896,
911, 915

HT_CURSOR_Options, 106, 171, 756,
934, 956, 961

HT_DEFAULTMENU_Value, 171, 197,
198, 200, 604, 610

HT_DIRTYPE, 171, 495
HT_DLG_Control_IDs, 171, 324, 973
HT_DLGFLAG_Options, 171, 896, 911,

915
HT_EMCONSTANTS, 114, 171, 313,

321, 323, 920, 927, 936,
959

HT_EOL_VALUES_for_EO, 97, 110,
171, 186, 793

HT_EOLSEQ, 171, 185, 793
HT_FALSE, 100, 171, 215
HT_FL_Values_for_FLS_1, 97, 116,

171, 329, 333, 335, 502
HT_FONTMENUTAG, 120, 171, 612,

614
HT_HSF_Option_Flags, 171
HT_INTMAX, 171, 174, 192, 210,

219, 220
HT_K_Key_Codes, 56, 171
HT_LONGMAX, 171, 174, 189, 210,

219, 220
HT_M_Values_for_DRAW, 97, 109,

171, 261, 355, 370, 378,
411

HT_MAXMENUTAG, 171, 198, 612
HT_MEDIT_MFILE_MHELP, 60, 120,

171, 180, 198, 200, 259
HT_MFONT_MSTYLE, 171, 180, 197,

200
HT_NOSTDABOUTBOX, 171, 324
HT_NOSTDMENU_Values, 171, 180,

197, 198, 1023
HT_NULL, 171, 200, 932
HT_NULLConstants, 201, 202, 203,

204, 205

HT_NULLFNTID, 171, 200, 296, 321,
458, 463, 469, 610, 933,
955

HT_NULLIMAGE, 171, 200
HT_NULLPALETTE, 171, 200
HT_NULLPICTURE, 171, 200
HT_NULLPIXMAP, 171, 200
HT_NULLTXEDIT, 171, 200, 866, 940
HT_NULLWIN, 171, 200, 323, 456,

458, 701, 908, 920, 925,
927, 930, 940, 947, 949,
951

HT_PAT_Values_for_PA, 97, 102, 105,
121, 171, 358, 362, 370,
372, 405

HT_PValues_for_PENST, 97, 105, 121,
171

HT_RESP_Values_for_A, 97, 100, 171
HT_SC_Values_for_SCR, 76, 95, 97,

126, 171
HT_SCREENWIN, 46, 47, 134, 171,

214, 752, 893, 898, 900,
905, 915, 916, 920, 927,
930, 944, 959

HT_SCROLL_Values_for, 97, 126, 171,
747, 749

HT_SEV_Values_for_XV, 98, 146, 171
HT_SHRTMAX, 93, 171, 174, 189,

192, 219, 220
HT_Software_Identifi, 171
HT_SZCLASSNAME, 171, 307
HT_SZFNAME, 116, 171, 212, 487,

491, 497
HT_SZLEAFNAME, 171, 212, 497
HT_TASKWIN, 46, 47, 62, 68, 71, 82,

83, 134, 140, 171, 208, 257,
259, 350, 352, 353, 357,
358, 360, 362, 366, 368,
370, 372, 373, 375, 377,
378, 387, 395, 397, 399,
400, 402, 404, 405, 408,
409, 411, 412, 419, 421,
422, 604, 605, 610, 612,
614, 615, 617, 752, 757,
893, 898, 900, 906, 911,

XVT Portability Toolkit Reference
915, 916, 920, 927, 930,
940, 944, 947, 949, 951,
956, 959, 960

HT_TL_Constants, 171, 362, 372, 421,
422

HT_TRUE, 100, 171, 186
HT_TX_Attributes, 171, 857, 859, 860,

861, 870, 876, 880, 882
HT_U_Values_for_UNIT, 97, 131, 171,

861, 925
HT_UCHARMAX, 57, 172, 174, 189,

192, 210, 219, 220
HT_ULONGMAX, 172, 174, 189, 192,

210, 219, 220
HT_UNITMAX, 172, 174, 189, 192,

210, 219, 220
HT_USHRTMAX, 172, 174, 189, 192,

210, 219, 220, 885
HT_W_WC_WD_WO_Values, 69, 97,

133, 154, 172, 224, 280,
283, 291, 292, 293, 298,
318, 321, 323, 347, 397,
529, 530, 531, 582, 583,
584, 585, 586, 588, 590,
591, 592, 593, 594, 595,
596, 597, 621, 753, 901,
902, 906, 914, 920, 925,
930, 934, 936, 938, 939,
940, 945, 947, 949, 951

HT_WSF_Options_Flags, 13, 15, 60, 62,
71, 76, 86, 95, 172, 243,
605, 611, 612, 614, 615,
617, 896, 911, 915, 920,
925, 941, 945, 991

HT_XVT_Constants, 1
HT_XVTCALLCONV, 31, 52, 57, 113,

126, 136, 145, 148, 149,
167, 172, 702, 711, 885,
938

HT_XVTCLUTSIZE, 172
HT_XVTCOLOR, 138, 172, 925, 932
HT_XVTCOLORGETBLUE, 172, 176,

228, 242
HT_XVTCOLORGETGREEN, 172, 176,

227, 228, 242

HT_XVTCOLORGETRED, 172, 176,
227, 228, 242

HT_XVTCTOOLS, 172, 328
HT_XVTCXOMSG, 66, 172, 304, 306
HT_XVTCXOPOS_Values_, 141, 172,

302
HT_XVTDISPLAY_Values, 18, 172
HT_XVTESC, 35, 36, 37, 172, 260,

341
HT_XVTFA_Constants, 147, 172, 235,

239, 454
HT_XVTFASTWIDTH, 105, 172
HT_XVTFFN_Constants, 147, 172, 233,

239, 456
HT_XVTFILEATTR_Const, 172, 263,

491, 493
HT_XVTFILESYS_Values, 172, 249,

489, 491, 495, 497
HT_XVTFS_Constants, 150, 172, 233,

235, 392, 393, 418, 456,
467, 468, 483

HT_XVTHELP_Values_fo, 98, 152, 172,
517

HT_XVTIMAGE_Values_f, 98, 155,
172, 540, 542, 546, 549,
552, 556, 566, 567, 568,
627, 645, 677, 695

HT_XVTMAKECOLOR, 103, 172, 175,
176, 227, 228

HT_XVTMAXMBSIZE, 57, 172
HT_XVTMAXWINDOWRECT, 172,

920
HT_XVTMODKEY, 30, 32, 57, 172,

443
HT_XVTNAVINSERT, 172, 619
HT_XVTPALETTESIZE, 172
HT_XVTPALLETEValues, 17, 98, 161,

162, 172, 648, 649, 650,
651, 653, 655, 656

HT_XVTPIXMAP_Values, 98, 165, 166,
172

HT_XVTSTRINGRESBASE, 172
HT_XVTTIMERERROR, 172
HT_XVTTPCConstants, 172
HT_XVTWS_WS_Values, 172, 238,

Index
892, 908
gotolink ptkrefe.fm

HT_max, 252, 253
HT_min, 252
HT_Miscellaneous_Fun, 252
HT_NOREF, 252
HT_PTRLONG, 107, 252, 321
HT_xvt_ctl_get_color_component, 276
HT_xvt_ctl_get_native_color_component,

276
HT_xvt_ctl_set_color_component, 276
HT_xvt_ctl_unset_color_component, 276,

285, 288, 294, 299, 931,
952, 963

HT_XVT_Functions_Lis, 1
HT_xvtapp, 251
HT_xvtappallowquit, 84, 255
HT_xvtappcreate, 9, 48, 49, 65, 68, 114,

140, 214, 232, 255, 259,
263, 264, 324, 350, 352,
353, 357, 358, 360, 362,
366, 368, 370, 372, 373,
375, 378, 387, 395, 399,
400, 402, 404, 405, 408,
409, 411, 412, 419, 421,
422, 503, 757, 890, 892,
905, 947, 949, 951, 957

HT_xvtappdestroy, 84, 255, 256, 257,
264

HT_xvtappescape, 232, 255, 341
HT_xvtappgetdefaultc, 109, 255, 409
HT_xvtappgetfile, 116, 255, 264, 266
HT_xvtappgetfilescou, 255, 263, 266
HT_xvtappprocesspend, 255, 756, 818,

819
HT_xvtappsetfilepr_5, 255, 263, 264
HT_xvtcballocda_5, 267, 269, 274
HT_xvtcbclose, 267, 270, 273, 274
HT_xvtcbfreedata, 173, 267
HT_xvtcbgetdata, 173, 267, 268, 273,

666
HT_xvtcbhasformat, 173, 267, 273
HT_xvtcbopen, 267, 268, 272, 274
HT_xvtcbputdata, 122, 173, 267, 268,

269, 270, 273

HT_xvtcd, 251
HT_xvtctl, 134, 251
HT_xvtctlcheckradiob, 179, 276, 292,

293
HT_xvtctlcreate, 11, 12, 13, 14, 15, 16,

19, 20, 64, 125, 179, 222,
276, 277, 283, 287, 292,
293, 427, 890, 895, 896,
900, 902, 905, 909, 911,
930

HT_xvtctlcreatedef, 11, 12, 13, 14, 15,
18, 19, 20, 64, 133, 179,
254, 276, 277, 280, 287,
292, 293, 321, 427, 890,
895, 896, 900, 902, 905,
909, 911, 925, 927, 930

HT_xvtctlgetcolors, 103, 138, 227, 276,
285, 288, 289, 294, 295,
299, 931, 932, 952, 963

HT_xvtctlgetfont, 276, 296, 456, 933
HT_xvtctlgetid, 276
HT_xvtctlgetnativecolor, 276, 286
HT_xvtctlgettextsel, 276, 298
HT_xvtctlischecked, 276, 277, 292, 293
HT_xvtctlsetchecked, 179, 276, 277,

292
HT_xvtctlsetcolorcomponent, 285, 288,

294, 299, 931, 952, 963
HT_xvtctlsetcolors, 7, 103, 137, 138,

227, 276, 285, 286, 288,
289, 294, 299, 931, 952,
954, 963

HT_xvtctlsetfont, 8, 276, 287, 955
HT_xvtctlsettextsel, 276, 291
HT_xvtcxo, 140, 251
HT_xvtcxocallnext, 299
HT_xvtcxocreate, 66, 230, 231, 299,

300, 307, 310, 311, 312,
935

HT_xvtcxodestroy, 66, 299, 308, 311,
935

HT_xvtcxodispatchmsg, 67, 299, 310,
313

HT_xvtcxogetclassnam, 299
HT_xvtcxogetdata, 299, 304, 312

XVT Portability Toolkit Reference
HT_xvtcxogeteventhan, 299, 312, 313
HT_xvtcxogeteventmas, 299
HT_xvtcxogetwin, 299
HT_xvtcxoisvalid, 299
HT_xvtcxosetdata, 299, 308
HT_xvtcxoseteventhan, 299, 309
HT_xvtcxoseteventmas, 299, 309, 310
HT_xvtdebug, 17, 314, 316
HT_xvtdebug_1, 251
HT_xvtdebugprintf, 17, 314, 315, 765
HT_xvtdlg, 251
HT_xvtdlgcreatedef, 64, 65, 114, 133,

134, 179, 182, 183, 184,
218, 254, 277, 280, 283,
292, 293, 316, 323, 427,
729, 890, 895, 896, 900,
902, 905, 909, 911, 959

HT_xvtdlgcreateres, 64, 65, 114, 134,
179, 182, 184, 222, 254,
277, 292, 293, 316, 321,
427, 729, 890, 895, 900,
902, 905, 909, 911, 959

HT_xvtdm, 251
HT_xvtdmpostaboutbox, 139, 140, 323
HT_xvtdmpostask, 84, 207, 323, 331
HT_xvtdmpostcolorsel, 323
HT_xvtdmpostctoolssel, 323
HT_xvtdmpostdirsel, 323
HT_xvtdmposterror, 91, 323, 326, 330,

338, 339, 343, 706
HT_xvtdmpostfatalexi, 259, 323, 330,

338, 339, 343
HT_xvtdmpostfileopen, 108, 116, 187,

323, 329, 330, 335, 500,
501

HT_xvtdmpostfilesave, 108, 116, 187,
323, 329, 333

HT_xvtdmpostfontsel, 24, 71, 124, 134,
146, 323

HT_xvtdmpostmessage, 323, 330, 339
HT_xvtdmpostnote, 323, 326, 330, 338,

343
HT_xvtdmpostpagesetu, 124, 232, 260,

323, 700, 705
HT_xvtdmpoststringpr, 323, 343

HT_xvtdmpostwarning, 91, 323, 330
graphical context of windows, 33
groupbox control, 976

H
Hanging Indentation (I), 1009
HEADER, 1001
help

APPNAME file statement, 1001
associating

topics and objects, 511
with menu items, 524
with windows, dialogs or controls, 526

bitmap file format, 1008
BODYSTANZA file statement, 999
BROWSE file statement, 999
BTOPIC file statement, 1002
closing files, 513
comments in source file, 998
compiler (See Also helpc), 1025
displaying and searching topics, 523
displaying topics, 515
file information, 152
file statements, 997
font change file format, 1008
FONT file statement, 1000
getting

associated topic, 519
menu item association, 518
viewer configuration, 517

hanging indent file format, 1009
HEADER file statement, 1001
horizontal line file format, 1010
hot button file format, 1010
HSF_* option flags, 520
HTOPIC file statement, 1002
hyperlinks file format, 1011
margin file format, 1012
no word wrap file format, 1012
opening files, 520
paragraph file format, 1013
passing events to handler, 522
passing XVT events to, 27
predefined IDs, 1014
predefined topics, 1015

Index
registering context, 27
removing object associations, 514
request events, 74
reserved file formats, 1013
searching and displaying topics, 523
software version identifiers, 211
starting object-click mode, 512
stopping object-click mode, 516
system flags, 188
system macros, 248
topic identifier, 153
VERSION file statement, 1001
viewer configuration, 240
word wrap file format, 1014

help functions, 511
helpc, 1025

#define preprocessor directive, 1004
#elif preprocessor directive, 1005
#else preprocessor directive, 1005
#endif preprocessor directive, 1005
#if preprocessor directive, 1005
#ifdef preprocessor directive, 1005
#ifndef preprocessor directive, 1005
#include preprocessor directive, 1006
#scan preprocessor directive, 1007

Horizontal Line (V), 1010
horizontal scrollbar events, 75
Hot Button (B), 1010
HSF_* option flags, 188
HTML Control

client and outer rects identical, 893
focus characteristics, 903
functions, 528
getting intercept handler, 530
getting XRC of control, 528
intercept handler prototype, 153
setting intercept handler, 531
setting XRC of control, 529
title, value of, 901

HTOPIC, 1002
huge, 99
Hyperlink (L), 1011
hyperlinks, help file format, 1011

I
I/O stream

signature for read and write functions, 156
signature for stream size, 157

I/O stream object, 157
context type, 156
creating

for reading data, 577
for writing data, 578
for writing to file, 576
to read from file, 575

destroying, 579
functions, 575
getting context of, 580
writing BMP to, 571
writing image to, 572

icon control, 977
icons

drawing, 352
drawing mode for source pixels, 192
height, 28
XRC statements, 977
width, 29

IDs
dialogs, 181
predefined help, 1014

#if
xrc preprocessor directive, 993
helpc preprocessor directive, 1005

#ifdef
xrc preprocessor directive, 995
helpc preprocessor directive, 1005

#ifndef
xrc preprocessor directive, 995
helpc preprocessor directive, 1005

image, 978
images

adding colors from to palettes, 648
color

format type, 240
look-up table size, 226
object, 164
types for, 246

copying, 535
copying portions of, 569

XVT Portability Toolkit Reference
creating, 533
creating from

BMP data, 550, 553, 556
BMP file, 548, 551, 555
Mac PICT data, 559
Mac PICT file, 558
XBM data, 561
XBM file, 560
XPM data, 564
XPM file, 563

creation attribute, 155
data object, 154
destroying, 536
drawing in window or pixmap, 354
duplicating, 535
filling rectangles of, 537
functions, 533
getting

color of pixel in, 543
color table for, 538
dimensions, 539
format, 540
from resources, 730
number of colors, 542
resolution, 544
user data for, 731

mapping BMP formats, 548, 551, 555
NULL

macro, 202
palette macro, 202
pixmap macro, 203

pixmap object creation attribute, 166
pointer to scanline of, 545
read functions, 546
reading from file, 547
setting

color look-up table, 565
number of colors, 566
pixel value, 567
resolution, 568

transfering pixmaps to, 540
XRC statements, 978
writing BMP to I/O stream, 571
writing Mac PICT to I/O stream, 572

#include

xrc preprocessor directive, 992
helpc preprocessor directive, 1006

initializing
system structure, 138
XVT system, 256

initializing print manager, 706
Input/Output byte stream, 575
input/output stream object (See I/O stream object),

157
int value

maximum unsigned, 219
int variable

maximum value, 189
INT_MAX, 189
internationalization, 32
interval-elapsed event, 87

K
K_* key codes, 190
key codes

virtual, 190
keyboard

codes, 190
modifier keys, 243
navigation (See Also navigation), 37
XRC statement for accelerators, 968

keyboard-character event, 53
keys

checking for virtual, 443
modifier, 243

keystrokes
handling native events, 29

keywords
global-pointer, 99

L
lines

drawing, 105
point-to-point, 356
with arrows, 348

end-of sequence for strings, 185
finding in multi-line string, 791
getting

for text edit view rectangle, 870
from text edit objects, 863

Index
number in text edit objects, 868
number in text edit paragraph, 868

help file format for horizontal, 1010
no wrapping help file format, 1012
numbering in text edits, 129
setting pen position, 372
wrapping help file format, 1014

list boxes, XRC statements, 979
list buttons, XRC statements, 980
list edits, XRC statements, 981
listbox control, 979
listbutton control, 980
listing

window titles, 753
lists

adding strings and SLISTs to, 581
clearing, 583
counting items in, 584
counting selected items in, 584
deleting items in, 593
functions, 580
getting

all items in, 585
first selected item in, 589
index of first selection in, 591
indexed item in, 587
selected items in, 590
window IDs and titles in the form of,

943
resume updating, 594
setting selection state of items in, 595
SLIST elements, 127
SLIST type, 127
suspend updating of, 597
testing if item is selected, 592
XRC statement button, 980
XRC statements for edit controls, 981

locking encapsulated pictures, 668
long

casting pointer to, 254
maximum unsigned value, 220
maximum value, 192

LONG_MAX, 192

M
M_* values for DRAW_MODE, 192
M_EDIT_* menu tags, 196
M_FILE_* menu tags, 196
M_FONT, 198
M_HELP_* menu tags, 196
M_STYLE, 198
Macintosh PICT

writing to I/O stream, 572
Macintosh PICT data

creating image from, 559
Macintosh PICT file

creating image from, 558
map codeset translating, 817
map codesets, 1028
mapping fonts, 473
maptabc, 1028
margin (M), 1012
margins

changing in text eidt objects, 881
getting for text edit objects, 865
help file format, 1012

matching patterns against strings, 663
max, 252
MAX_MENU_TAG, 198
maximum

character value, 174
color look-up table size, 226
getting for two quantities, 252
int value, 189
length of filename, 212
multibyte charater size, 242
palette size, 246
short value, 210
unsigned

char value, 219
int value, 219
long value, 220
short value, 220

window size, 242
maximum length of class name, 211
maximum long value, 192
maximum menu tag value, 198
MDI parent task window, 1031
memory

XVT Portability Toolkit Reference
allocating
for clipboard data, 267
for duplicate string, 790

allocation functions, 598
freeing

for clipboard data, 268
picture occupied, 667
pixmap occupied, 673
SLIST storage, 765

memory blocks
allocating, 598
allocating global, 505
allocating zeroed, 602
allocation functions, 598
filling with repeated data, 601
freeing, 599
freeing global, 506
getting size of, 507
indentifying, 116
locking, 508
reallocating, 509
resizing, 600
unlocking, 510

memory management, 30
memory management structure, 158
menu, 982
MENU_ITEM, 117
MENU_TAG, 119
menubar, 982
menubars

checking for window’s, 941
height, 31
XRC statement, 982

menus
checking item, 610
command event, 61
displaying popup, 605
enabling items, 611
font/style event, 70
freeing menu item trees, 724
functions, 603
getting

definition from resource files, 732
entire tree, 604
font/style states, 603

user data for, 733
help topic identifiers, 248
item type, 117
keyboard accelerator, XRC statements, 968
maximum application tag value, 198
popup, 605
setting

entire tree, 614
font selection, 608
item text, 613

standard removal constants, 200
tag type, 119
tags, 196

for font and style, 198
updating with changes, 617
XRC constants for standard, 180
XRC statement, 982

messages
CXO, 230
displaying alert, 338
displaying emergency, 338
error identifiers, 425
using predefined error, 440

conditional, 441
messages, dispatching CXO, 305
metrics

getting font, 462
getting for font, 385

min, 253
minimum

getting for two quantities, 253
miscellaneous functions, 252
modifier keys, 243
mouse

cursor types, 106
determining system capabilities, 26
double-click events, 77
down events, 79
movement events, 81
releasing pointers, 945
trapping pointer, 960
up events, 82

moving
pen position, 372
windows, dialogs and controls, 904

Index
multibyte character
maximum size of largest, 242

multibyte strings
See strings, 774

multibyte-aware applications, 32

N
native font descriptors

getting, 463
setting, 480
validating, 469

navigating
child windows, 618
controls, 618

navigation
characters, 37
objects, 159

adding child windows or controls to,
618

creating, 620
destroying, 622
functions, 618
getting controls or child windows in,

623
getting for windows, 938
insertion flags, 244
removing controls or child windows

from, 623
text edit, 42

near, 99
newlink

HT_xvtnotebk, 675
newlink help, 511
newlink HT_accel_Statement, 968
newlink HT_ACCESSCMD, 100
newlink HT_ASKRESPONSE, 100
newlink HT_ATTRAPPCTLCOLORS, 6
newlink HT_ATTRAPPCTLFONTRES, 7
newlink HT_ATTRAPPLNAMERID, 8
newlink HT_ATTRBACKCOLOR, 9
newlink HT_ATTRCOLLATEHOOK, 10
newlink HT_ATTRCTLBUTTONHEIG, 11
newlink HT_ATTRCTLCHECK, 11
newlink HT_ATTRCTLHORZSBARHE, 12
newlink HT_ATTRCTLRADIOBUTTO, 13

newlink HT_ATTRCTLSTATICTEXT, 13
newlink HT_ATTRCTLVERTSBARWI, 14
newlink HT_ATTRDBLFRAMEHEIGH, 15
newlink HT_ATTRDBLFRAMEWIDTH, 16
newlink HT_ATTRDEBUGFILENAME, 16
newlink HT_ATTRDEFAULTPALETT, 17
newlink HT_ATTRDISPLAYTYPE, 18
newlink HT_ATTRDOCFRAMEHEIGH, 19
newlink HT_ATTRDOCFRAMEWIDTH, 20
newlink HT_ATTRDOCSTAGGERHOR, 18
newlink HT_ATTRDOCSTAGGERVERT, 19
newlink HT_ATTRERRMSGFILENAM, 20
newlink HT_ATTRERRMSGHANDLER, 21
newlink HT_ATTREVENTHOOK, 22
newlink HT_ATTRFONTCACHESIZE, 22
newlink HT_ATTRFONTDIALOG, 23
newlink HT_ATTRFONTMAPPER, 24
newlink HT_ATTRFRAMEHEIGHT, 25
newlink HT_ATTRFRAMEWIDTH, 26
newlink HT_ATTRHAVEMOUSE, 26
newlink HT_ATTRHELPCONTEXT, 27
newlink HT_ATTRHELPHOOK_1, 27
newlink HT_ATTRICONHEIGHT, 28
newlink HT_ATTRICONWIDTH, 29
newlink HT_ATTRKEYHOOK, 29
newlink HT_ATTRMEMORYMANAGER, 30
newlink HT_ATTRMENUHEIGHT, 31
newlink HT_ATTRMULTIBYTEAWAR, 32
newlink HT_ATTRNATIVEGRAPHIC, 33
newlink HT_ATTRNATIVEWINDOW, 33
newlink HT_ATTRNUMTIMERS, 34
newlink HT_ATTRPRINTERHEIGHT, 34
newlink HT_ATTRPRINTERHRES, 35
newlink HT_ATTRPRINTERVRES, 36
newlink HT_ATTRPRINTERWIDTH, 36
newlink HT_ATTRPROPAGATENAVC, 37
newlink HT_ATTRR40TXEDIT, 42
newlink HT_ATTRRESOURCEFILEN, 41
newlink HT_ATTRSCREENHEIGHT, 43
newlink HT_ATTRSCREENHRES, 44
newlink HT_ATTRSCREENVRES, 44
newlink HT_ATTRSCREENWIDTH, 45
newlink HT_ATTRSCREENWINDOW, 46
newlink HT_ATTRSUPPRESSUPDAT, 46
newlink HT_ATTRTASKWINDOW, 47

XVT Portability Toolkit Reference
newlink HT_ATTRTASKWINTITLER, 47
newlink HT_ATTRTITLEHEIGHT, 48
newlink HT_ATTRXVTCONFIG, 49
newlink HT_AValuesforACCE, 172
newlink HT_Bitmap_P_Format_C, 1008
newlink HT_BODYSTANZA_Statem, 999
newlink HT_BOOLEAN, 100
newlink HT_Bounding_Rectangl, 965
newlink HT_BROWSE_Statement, 999
newlink HT_button_Control_St, 970
newlink HT_CB_Values_for_CBF, 173
newlink HT_CBFORMAT_1, 101
newlink HT_CBRUSH, 101
newlink HT_CHARMAX, 174
newlink HT_checkbox_Control_, 971
newlink HT_ChildWindowsAll, 1031
newlink HT_COLOR, 102
newlink HT_COLOR_COLORINVALI, 175
newlink HT_Comments, 998
newlink HT_CONTROLINFO, 104
newlink HT_ConventionsUsed, 3
newlink HT_CPEN, 105
newlink HT_CTLEDITTEXT, 12
newlink HT_CTLFLAG_Options, 176
newlink HT_xrc, 1019
newlink HT_CURSOR, 106
newlink HT_CURSOR_Options, 179
newlink HT_DATAPTR, 106
newlink HT_DEFAULTMENU_Value, 180
newlink HT_define_Directive, 991
newlink HT_define_Directive_1, 1004
newlink HT_dialog_Statement, 972
newlink HT_DIRECTORY, 107
newlink HT_DIRTYPE, 181
newlink HT_DLG_Control_IDs, 181
newlink HT_DLGFLAG_Options, 182
newlink HT_DRAWCTOOLS, 108
newlink HT_DRAWMODE, 109
newlink HT_ECHAR, 53
newlink HT_ECLOSE, 59
newlink HT_ECOMMAND, 61
newlink HT_ECONTROL, 63
newlink HT_ECREATE, 64
newlink HT_ECXO, 66
newlink HT_EDESTROY, 67

newlink HT_edit_Control_Stat, 973
newlink HT_EFOCUS, 68
newlink HT_EFONT, 70
newlink HT_EHELP, 74
newlink HT_EHSCROLL, 75
newlink HT_EMCONSTANTS, 184
newlink HT_EMOUSEDBL, 77
newlink HT_EMOUSEDOWN, 79
newlink HT_EMOUSEMOVE, 81
newlink HT_EMOUSEUP, 82
newlink HT_EOL_VALUES_for_EO, 185
newlink HT_EOLFORMAT, 110
newlink HT_EOLSEQ, 185
newlink HT_EQUIT, 83
newlink HT_errscan, 1023
newlink HT_ESIZE, 85
newlink HT_ETIMER, 87
newlink HT_EUPDATE, 88
newlink HT_EUSER, 93
newlink HT_EVENT, 111
newlink HT_EVENTHANDLER, 113
newlink HT_EVENTMASK, 114
newlink HT_EVENTTYPE, 115
newlink HT_EVENTTYPE_1, 52
newlink HT_EVSCROLL, 94
newlink HT_FALSE, 186
newlink HT_far, 99
newlink HT_FILESPEC, 115
newlink HT_FL_Values_for_FLS_1, 187
newlink HT_FLSTATUS, 116
newlink HT_Font_Change_F_For, 1008
newlink HT_Font_Statement, 1000
newlink HT_font_Statement, 974
newlink HT_fontmap_Statement, 975
newlink HT_FONTMENUTAG, 187
newlink HT_GHANDLE, 116
newlink HT_groupboxControl, 976
newlink HT_Hanging_Indentati, 1009
newlink HT_HEADER_VERSION_AP, 1001
newlink HT_Help_File_Format_, 997
newlink HT_helpc, 1025
newlink HT_Horizontal_Line_V, 1010
newlink HT_Hot_Button_B_Form, 1010
newlink HT_HSF_Option_Flags, 188
newlink HT_HTOPIC_BTOPIC_Sta, 1002

Index
newlink HT_huge, 99
newlink HT_Hyperlink_L_Forma, 1011
newlink HT_icon_Control_Stae, 977
newlink HT_if_elif_else_and_, 993
newlink HT_ifdef_and_ifndef_, 995
newlink HT_ifdef_ufndef_Dire, 1005
newlink HT_ifelifelseandendif1, 1005
newlink HT_image_Statement_1, 978
newlink HT_include_Directive, 992
newlink HT_include_Directive_1, 1006
newlink HT_INTMAX, 189
newlink HT_K_Key_Codes, 190
newlink HT_listbox_Control_S, 979
newlink HT_listbutton_Contro, 980
newlink HT_listedit_Control_, 981
newlink HT_LONGMAX, 192
newlink HT_M_Values_for_DRAW, 192
newlink HT_maptabc, 1028
newlink HT_Marging_M_Format_, 1012
newlink HT_max, 252
newlink HT_MAXMENUTAG, 198
newlink HT_MEDIT_MFILE_MHELP, 196
newlink HT_menubar_and_menu_, 982
newlink HT_MENUITEM, 117
newlink HT_MENUTAG_5, 119
newlink HT_MFONT_MSTYLE, 198
newlink HT_min, 253
newlink HT_Miscellaneous_Fun, 252
newlink HT_near, 99
newlink HT_No_Word_Wrap_N_Fo, 1012
newlink HT_NOREF, 253
newlink HT_NOSTDABOUTBOX, 199
newlink HT_NOSTDMENU_Values, 200
newlink HT_NULL, 201
newlink HT_NULLConstants, 200
newlink HT_NULLFNTID, 201
newlink HT_NULLIMAGE, 202
newlink HT_NULLPALETTE, 202
newlink HT_NULLPICTURE, 203
newlink HT_NULLPIXMAP, 203
newlink HT_NULLTXEDIT, 204
newlink HT_NULLWIN, 204
newlink HT_Paragraph_A_Forma, 1013
newlink HT_PAT_Values_for_PA, 206
newlink HT_PATSTYLE, 121

newlink HT_PENSTYLE, 121
newlink HT_PICTURE, 122
newlink HT_PNT, 122
newlink HT_Predefined_Help_I, 1014
newlink HT_Predefined_Help_T_1, 1015
newlink HT_PRINTRCD, 123
newlink HT_PTRLONG, 254
newlink HT_PValues_for_PENST, 205
newlink HT_radiobutton_Contr, 984
newlink HT_RCT, 124
newlink HT_Reserved_S_Format, 1013
newlink HT_Resource_ID, 966
newlink HT_RESP_Values_for_A, 207
newlink HT_SC_Values_for_SCR, 207
newlink HT_scan_Directive, 995
newlink HT_scan_Directive_1, 1007
newlink HT_SCREENWIN, 208
newlink HT_SCROLL_Values_for, 209
newlink HT_scrollbar_Control, 985
newlink HT_SCROLLCALLBACK, 125
newlink HT_SCROLLCONTROL, 126
newlink HT_SCROLLTYPE, 126
newlink HT_SEV_Values_for_XV, 210
newlink HT_SHRTMAX, 210
newlink HT_SLIST, 127
newlink HT_SLISTELT, 127
newlink HT_Software_Identifi, 211
newlink HT_string_Statement, 986
newlink HT_SZCLASSNAME, 211
newlink HT_SZFNAME, 212
newlink HT_SZLEAFNAME, 212
newlink HT_TASKWIN, 213
newlink HT_TaskWindowVaria, 1033
newlink HT_TCNUM, 128
newlink HT_TCPOS, 128
newlink HT_text_Control_Stat, 986
newlink HT_Text_String, 966
newlink HT_textedit_Object_S, 987
newlink HT_TL_Constants, 215
newlink HT_TLNUM, 129
newlink HT_Tools, 1019
newlink HT_TopLevelWindows, 1031
newlink HT_TPNUM, 129
newlink HT_transparent_State, 996
newlink HT_TRUE, 215

XVT Portability Toolkit Reference
newlink HT_TX_Attributes, 216
newlink HT_TXEDIT, 130
newlink HT_U_Values_for_UNIT, 218
newlink HT_UCHARMAX, 219
newlink HT_ULONGMAX, 220
newlink HT_undef_Directive, 997
newlink HT_UNITMAX, 219
newlink HT_units_Statement, 988
newlink HT_UNITTYPE, 131
newlink HT_XRC_Statements, 965
newlink HT_userdata_Statemen, 967
newlink HT_USHRTMAX, 220
newlink HT_W_WC_WD_WO_Values, 221
newlink HT_WINDEF, 131
newlink HT_WINDOW, 133
newlink HT_window_Statement, 989
newlink HT_WindowControls, 1032
newlink HT_WindowDialogContr, 1031
newlink HT_WINTYPE, 133
newlink HT_Word_Wrap_W_Forma, 1014
newlink HT_WSF_Options_Flags, 222
newlink HT_XVT_Constants, 171
newlink HT_xvt_ctl_get_color_component, 284
newlink

HT_xvt_ctl_get_native_color_compone
nt, 288

newlink HT_xvt_ctl_set_color_component, 293
newlink HT_xvt_ctl_unset_color_component,

298
newlink HT_xvt_dwin_get_font, 379
newlink HT_xvt_dwin_get_font_family, 382
newlink HT_xvt_dwin_get_font_metrics, 385
newlink HT_xvt_dwin_set_font, 411
newlink HT_xvt_dwin_set_font_app_data, 413
newlink HT_xvt_dwin_set_font_family, 414
newlink HT_xvt_dwin_set_font_native_desc,

415
newlink HT_xvt_dwin_set_font_size, 416
newlink HT_xvt_dwin_set_font_style, 417
newlink HT_XVT_Events_1, 51
newlink HT_XVT_FORMAT_HANDLER, 151
newlink HT_XVT_Functions_Lis, 251
newlink HT_xvt_image_duplicate, 535
newlink HT_XVT_PATTERN, 162
newlink HT_xvt_pattern_*, 657

newlink HT_xvt_pattern_create, 657
newlink HT_xvt_pattern_destroy, 662
newlink HT_xvt_pattern_format_string, 664
newlink HT_xvt_pattern_match, 663
newlink HT_XVT_PG_ORIENT, 162
newlink HT_XVT_PG_SIZE, 163
newlink HT_XVT_PG_UNITS, 163
newlink HT_XVT_Portable_Attr_1, 5
newlink HT_xvt_str_create_codeset_map, 788
newlink HT_xvt_str_destroy_codeset_map, 789
newlink HT_xvt_str_translate_codeset, 817
newlink HT_xvt_treeview_add_child_node, 820
newlink HT_xvt_treeview_collapse_node, 821
newlink HT_xvt_treeview_create, 822
newlink HT_xvt_treeview_create_node, 825
newlink HT_xvt_treeview_destroy_node, 828
newlink HT_xvt_treeview_expand_node, 828
newlink HT_xvt_treeview_get_attributes, 829
newlink HT_xvt_treeview_get_child_node, 830
newlink HT_xvt_treeview_get_line_height, 831
newlink HT_xvt_treeview_get_node_callback,

832
newlink HT_xvt_treeview_get_node_data, 833
newlink

HT_xvt_treeview_get_node_image_col
lapsed, 834

newlink
HT_xvt_treeview_get_node_image_ex
panded, 835

newlink
HT_xvt_treeview_get_node_image_ite
m, 835

newlink
HT_xvt_treeview_get_node_num_child
ren, 836

newlink HT_xvt_treeview_get_node_string, 838
newlink HT_xvt_treeview_get_parent_node,

839
newlink HT_xvt_treeview_get_root_node, 840
newlink HT_xvt_treeview_node_selected, 841
newlink HT_xvt_treeview_remove_child_node,

842
newlink HT_xvt_treeview_resume, 843
newlink HT_xvt_treeview_set_attributes, 843
newlink HT_xvt_treeview_set_node_callback,

Index
845
newlink HT_xvt_treeview_set_node_data, 846
newlink

HT_xvt_treeview_set_node_image_col
lapsed, 847

newlink
HT_xvt_treeview_set_node_image_exp
anded, 847

newlink HT_xvt_treeview_set_node_image_item,
848

newlink HT_xvt_treeview_set_node_string, 849
newlink HT_xvt_treeview_set_node_type, 850,

851
newlink HT_xvt_treeview_update, 851
newlink HT_xvt_vobj_get_formatter, 896
newlink HT_xvt_vobj_set_formatter, 911
newlink HT_xvt_win_get_ctl_color_component,

930
newlink HT_xvt_win_process_modal, 944
newlink HT_xvt_win_set_ctl_color_component,

952
newlink

HT_xvt_win_unset_ctl_color_compone
nt, 962

newlink HT_xvtapp, 255
newlink HT_xvtappallowquit, 255
newlink HT_xvtappcreate, 256
newlink HT_xvtappdestroy, 258
newlink HT_xvtappescape, 259
newlink HT_xvtappgetdefaultc, 260
newlink HT_xvtappgetfile, 262
newlink HT_xvtappgetfilescou, 263
newlink HT_xvtappprocesspend, 265
newlink HT_xvtappsetfilepr_5, 266
newlink HT_XVTBYTE, 135
newlink HT_XVTCALLCONV, 225
newlink HT_xvtcballocda_5, 267
newlink HT_xvtcbclose, 268
newlink HT_xvtcbfreedata, 268
newlink HT_xvtcbgetdata, 269
newlink HT_xvtcbhasformat, 271
newlink HT_xvtcbopen, 272
newlink HT_xvtcbputdata, 273
newlink HT_xvtcd, 267
newlink HT_XVTCLUTSIZE, 226

newlink HT_XVTCOLLATEFUNCTIO_1, 136
newlink HT_XVTCOLOR, 226
newlink HT_XVTCOLORACTION, 137
newlink HT_XVTCOLORCOMPONENT, 137
newlink HT_XVTCOLORGETBLUE, 227
newlink HT_XVTCOLORGETGREEN, 228
newlink HT_XVTCOLORGETRED, 228
newlink HT_XVTCOLORTYPE, 138
newlink HT_XVTCONFIG, 138
newlink HT_xvtconvertmbstowc, 780
newlink HT_xvtconvertmbtowc, 779
newlink HT_xvtconverttolower, 781
newlink HT_xvtconverttoupper, 782
newlink HT_xvtconvertwctomb, 783
newlink HT_xvtctl, 276
newlink HT_xvtctlcheckradiob, 276
newlink HT_xvtctlcreate, 278
newlink HT_xvtctlcreatedef, 280
newlink HT_xvtctlgetcolors, 285
newlink HT_xvtctlgetfont, 286
newlink HT_xvtctlgetid, 287
newlink HT_xvtctlgetnativecolor, 289
newlink HT_xvtctlgettextsel, 290
newlink HT_xvtctlischecked, 291
newlink HT_xvtctlsetchecked, 292
newlink HT_xvtctlsetcolors, 294
newlink HT_xvtctlsetfont, 296
newlink HT_xvtctlsettextsel, 297
newlink HT_XVTCTOOLS, 229
newlink HT_XVTCXO, 140
newlink HT_xvtcxo, 299
newlink HT_xvtcxocallnext, 299
newlink HT_xvtcxocreate, 301
newlink HT_xvtcxodestroy, 303
newlink HT_xvtcxodispatchmsg, 305
newlink HT_XVTCXOEVENTHANDLE, 140
newlink HT_xvtcxogetclassnam, 307
newlink HT_xvtcxogetdata, 308
newlink HT_xvtcxogeteventhan, 308
newlink HT_xvtcxogeteventmas, 309
newlink HT_xvtcxogetwin, 310
newlink HT_XVTCXOINSERTION_1, 141
newlink HT_xvtcxoisvalid, 311
newlink HT_XVTCXOMSG, 230
newlink HT_XVTCXOPOS_Values_, 230

XVT Portability Toolkit Reference
newlink HT_xvtcxosetdata, 311
newlink HT_xvtcxoseteventhan, 312
newlink HT_xvtcxoseteventmas, 313
newlink HT_XVTDataTypes, 97
newlink HT_xvtdebug, 314
newlink HT_xvtdebug_1, 314
newlink HT_xvtdebugprintf, 315
newlink HT_XVTDISPLAY, 141
newlink HT_XVTDISPLAY_Values, 231
newlink HT_xvtdlg, 316
newlink HT_xvtdlgcreatedef, 316
newlink HT_xvtdlgcreateres, 321
newlink HT_xvtdm, 323
newlink HT_xvtdmpostaboutbox, 323
newlink HT_xvtdmpostask, 324
newlink HT_xvtdmpostcolorsel, 326
newlink HT_xvtdmpostctoolssel, 327
newlink HT_xvtdmpostdirsel, 328
newlink HT_xvtdmposterror, 329
newlink HT_xvtdmpostfatalexi, 330
newlink HT_xvtdmpostfileopen, 331
newlink HT_xvtdmpostfilesave, 333
newlink HT_xvtdmpostfontsel, 336
newlink HT_xvtdmpostmessage, 338
newlink HT_xvtdmpostnote, 338
newlink HT_xvtdmpostpagesetu, 339
newlink HT_xvtdmpoststringpr, 341
newlink HT_xvtdmpostwarning, 343
newlink HT_xvtdwin, 345
newlink HT_xvtdwinclear, 346
newlink HT_xvtdwinclosepict, 347
newlink HT_xvtdwindrawaline, 348
newlink HT_xvtdwindrawarc, 350
newlink HT_xvtdwindrawicon, 352
newlink HT_xvtdwindrawimage, 354
newlink HT_xvtdwindrawline, 356
newlink HT_xvtdwindrawoval, 357
newlink HT_xvtdwindrawpict, 359
newlink HT_xvtdwindrawpie, 361
newlink HT_xvtdwindrawpmap, 363
newlink HT_xvtdwindrawpolygo, 365
newlink HT_xvtdwindrawpolyli, 367
newlink HT_xvtdwindrawrect, 368
newlink HT_xvtdwindrawroundr, 370
newlink HT_xvtdwindrawsetpos, 372

newlink HT_xvtdwindrawtext, 373
newlink HT_xvtdwingetclip_1, 376
newlink HT_xvtdwingetdrawcto, 377
newlink HT_xvtdwingetfont, 379
newlink HT_xvtdwingetfont_5, 384
newlink HT_xvtdwingetfontapp, 381
newlink HT_xvtdwingetfontnat, 387
newlink HT_xvtdwingetfontsiz, 389
newlink HT_xvtdwingetfontsiz_1, 390
newlink HT_xvtdwingetfontsty, 391
newlink HT_xvtdwingetfontsty_1, 392
newlink HT_xvtdwingettextwid, 394
newlink HT_xvtdwininvalidate, 395
newlink HT_xvtdwinisupdatene, 397
newlink HT_xvtdwinopenpict, 399
newlink HT_xvtdwinscrollrect, 401
newlink HT_xvtdwinsetbackcol, 403
newlink HT_xvtdwinsetcbrush, 404
newlink HT_xvtdwinsetclip, 405
newlink HT_xvtdwinsetcpen, 407
newlink HT_xvtdwinsetdrawcto, 408
newlink HT_xvtdwinsetdrawmod, 410
newlink HT_xvtdwinsetfont, 411
newlink HT_xvtdwinsetforecol, 418
newlink HT_xvtdwinsetstdcbru, 420
newlink HT_xvtdwinsetstdcpen, 421
newlink HT_xvtdwinupdate, 422
newlink HT_XVTENUMCHILDREN, 142
newlink HT_XVTERRID, 142
newlink HT_xvterrid, 425
newlink HT_xvterridcreate_2, 425
newlink HT_xvterridget_1, 426
newlink HT_xvterridis, 428
newlink HT_XVTERRMSG, 143
newlink HT_xvterrmsg, 429
newlink HT_xvterrmsgdef, 429
newlink HT_xvterrmsgget, 431
newlink HT_xvterrmsggettext, 433
newlink HT_XVTERRMSGHANDLER, 144
newlink HT_xvterrmsgpophandl, 435
newlink HT_xvterrmsgpushhand, 436
newlink HT_xvterrmsgsig, 437
newlink HT_xvterrmsgsigif, 438
newlink HT_xvterrmsgsigstd, 440
newlink HT_xvterrmsgsigstd_2, 441

Index
newlink HT_XVTERRSEV, 146
newlink HT_XVTESC, 232
newlink HT_xvtevent, 442
newlink HT_xvteventgetfont, 442
newlink HT_xvteventisvirtual, 443
newlink HT_xvteventsetfont, 444
newlink HT_XVTFA_Constants, 233
newlink HT_XVTFASTWIDTH, 234
newlink HT_XVTFFN_Constants, 234
newlink HT_XVTFILEATTR_Const, 235
newlink HT_XVTFILESYS_Values, 237
newlink HT_xvtfmap, 445
newlink HT_xvtfmapgetfamilie_1, 445
newlink HT_xvtfmapgetfamilys, 447
newlink HT_xvtfmapgetfamilys_1, 449
newlink HT_xvtfmapgetfamilys_2, 450
newlink HT_xvtfmapgetfamilys_3, 451
newlink HT_XVTFNTID, 146
newlink HT_xvtfont, 453
newlink HT_XVTFONTATTRMASK, 147
newlink HT_xvtfontcopy, 454
newlink HT_xvtfontcreate, 455
newlink HT_xvtfontdeserializ, 456
newlink HT_xvtfontdestroy, 458
newlink HT_XVTFONTDIALOG, 147
newlink HT_xvtfontgetappdata, 459
newlink HT_xvtfontgetfamil_2, 461
newlink HT_xvtfontgetfamily, 460
newlink HT_xvtfontgetmetrics, 462
newlink HT_xvtfontgetnatived, 463
newlink HT_xvtfontgetsize, 465
newlink HT_xvtfontgetsizemap, 465
newlink HT_xvtfontgetstyle, 466
newlink HT_xvtfontgetstylema, 467
newlink HT_xvtfontgetwin, 468
newlink HT_xvtfonthasvalidna, 469
newlink HT_xvtfontismapped, 470
newlink HT_xvtfontisprint, 470
newlink HT_xvtfontisscalable, 471
newlink HT_xvtfontisvalid, 472
newlink HT_xvtfontmap, 473
newlink HT_XVTFONTMAPPER, 148
newlink HT_xvtfontmapusingde, 474
newlink HT_xvtfontserialize, 476
newlink HT_xvtfontsetappdata, 478

newlink HT_xvtfontsetfamily, 479
newlink HT_xvtfontsetnatived, 480
newlink HT_xvtfontsetsize, 482
newlink HT_xvtfontsetstyle, 483
newlink HT_XVTFONTSTYLEMASK, 149
newlink HT_xvtfontunmap, 484
newlink HT_XVTFS_Constants, 239
newlink HT_xvtfsys, 485
newlink HT_xvtfsysbuildpathn, 485
newlink HT_xvtfsysconvertdir, 486
newlink HT_xvtfsysconvertstr_1, 488
newlink HT_xvtfsysgetdefault, 489
newlink HT_xvtfsysgetdir, 490
newlink HT_xvtfsysgetfileatt, 491
newlink HT_xvtfsyslistfiles, 493
newlink HT_xvtfsysparsepathn, 495
newlink HT_xvtfsysremfile, 499
newlink HT_xvtfsysrestoredir, 500
newlink HT_xvtfsyssavedir, 500
newlink HT_xvtfsyssetdir, 501
newlink HT_xvtfsyssetdirstar, 502
newlink HT_xvtfsyssetfileatt, 503
newlink HT_xvtgmem, 504
newlink HT_xvtgmemalloc, 505
newlink HT_xvtgmemfree, 506
newlink HT_xvtgmemgetsize, 507
newlink HT_xvtgmemlock, 508
newlink HT_xvtgmemrealloc, 509
newlink HT_xvtgmemunlock, 510
newlink HT_XVTHELP_Values_fo, 240
newlink HT_xvthelpassocall, 511
newlink HT_xvthelpbeginobjcl, 512
newlink HT_xvthelpclosehelpf, 513
newlink HT_xvthelpdisassocal, 514
newlink HT_xvthelpdisplaytop, 515
newlink HT_xvthelpendobjcli, 516
newlink HT_XVTHELPFLAVOR, 152
newlink HT_xvthelpgetflavor, 517
newlink HT_xvthelpgetmenuass, 518
newlink HT_xvthelpgetwinasso, 519
newlink HT_XVTHELPINFO, 152
newlink HT_xvthelpopenhelpfi, 520
newlink HT_xvthelpprocesseve, 522
newlink HT_xvthelpsearchtopi, 523
newlink HT_xvthelpsetmenuass, 524

XVT Portability Toolkit Reference
newlink HT_xvthelpsetwinasso, 526
newlink HT_XVTHELPTID_NULLTI, 153
newlink HT_xvthtml, 528
newlink HT_xvthtmlgeturl, 528
newlink HT_xvthtmlgeturlintercept, 530
newlink HT_xvthtmlseturl, 529
newlink HT_xvthtmlseturlintercept, 531
newlink

HT_XVTHTMLXRCINTERCEPTHA
NDLER, 153

newlink HT_XVTIMAGE, 154
newlink HT_xvtimage, 533
newlink HT_XVTIMAGE_Values_f, 240
newlink HT_XVTIMAGEATTR, 155
newlink HT_xvtimagecreate, 533
newlink HT_xvtimagedestro, 536
newlink HT_xvtimagefillrect, 537
newlink HT_XVTIMAGEFORMAT, 155
newlink HT_xvtimagegetclut, 538
newlink HT_xvtimagegetdimens, 539
newlink HT_xvtimagegetformat, 540
newlink HT_xvtimagegetfrompm, 540
newlink HT_xvtimagegetncolor, 542
newlink HT_xvtimagegetpixel, 543
newlink HT_xvtimagegetresolu, 544
newlink HT_xvtimagegetscanli, 545
newlink HT_xvtimageread, 547
newlink HT_xvtimageread_1, 546
newlink HT_xvtimagereadbmp, 548
newlink HT_xvtimagereadbmpfr, 550
newlink HT_xvtimagereadgif, 551
newlink HT_xvtimagereadgiffr, 553
newlink HT_xvtimagereadjpg, 555
newlink HT_xvtimagereadjpgfr, 556
newlink HT_xvtimagereadmac_1, 559
newlink HT_xvtimagereadmacpi, 558
newlink HT_xvtimagereadxbm, 560
newlink HT_xvtimagereadxbmfr, 561
newlink HT_xvtimagereadxpm, 563
newlink HT_xvtimagereadxpmfr, 564
newlink HT_xvtimagesetclut, 565
newlink HT_xvtimagesetncolor, 566
newlink HT_xvtimagesetpixel, 567
newlink HT_xvtimagesetresolu, 568
newlink HT_xvtimagetransfer, 569

newlink HT_xvtimagewritebmpt, 571
newlink HT_xvtimagewritemacp, 572
newlink HT_xvtiostr, 575
newlink HT_XVTIOSTRCONTEXT, 156
newlink HT_xvtiostrcreatefre, 575
newlink HT_xvtiostrcreatefwr, 576
newlink HT_xvtiostrcreaterea, 577
newlink HT_xvtiostrcreatewri, 578
newlink HT_xvtiostrdestroy, 579
newlink HT_XVTIOSTREAM, 157
newlink HT_xvtiostrgetcontex_1, 580
newlink HT_XVTIOSTRRWFUNC, 156
newlink HT_XVTIOSTRSZFUNC, 157
newlink HT_xvtlist, 580
newlink HT_xvtlistadd, 581
newlink HT_xvtlistclear, 583
newlink HT_xvtlistcountall, 584
newlink HT_xvtlistcountsel, 584
newlink HT_xvtlistgetall, 585
newlink HT_xvtlistgetelt, 587
newlink HT_xvtlistgetfirstse, 589
newlink HT_xvtlistgetsel, 590
newlink HT_xvtlistgetselinde, 591
newlink HT_xvtlistissel, 592
newlink HT_xvtlistrem, 593
newlink HT_xvtlistresume, 594
newlink HT_xvtlistsetsel, 595
newlink HT_xvtlistsuspend, 597
newlink HT_XVTMAKECOLOR, 241
newlink HT_XVTMAXMBSIZE, 242
newlink HT_XVTMAXWINDOWRECT, 242
newlink HT_XVTMEM, 158
newlink HT_xvtmem, 598
newlink HT_xvtmemalloc, 598
newlink HT_xvtmemfree, 599
newlink HT_xvtmemrealloc, 600
newlink HT_xvtmemrep, 601
newlink HT_xvtmemzalloc, 602
newlink HT_xvtmenu, 603
newlink HT_xvtmenugetfontsel, 603
newlink HT_xvtmenugettree, 604
newlink HT_xvtmenupopup, 605
newlink HT_xvtmenusetfontsel, 608
newlink HT_xvtmenusetitemche, 610
newlink HT_xvtmenusetitemena, 611

Index
newlink HT_xvtmenusetitemtit, 613
newlink HT_xvtmenusettree, 614
newlink HT_xvtmenuupdate, 617
newlink HT_XVTMODKEY, 243
newlink HT_XVTNAV, 159
newlink HT_xvtnav, 618
newlink HT_xvtnavaddwin, 618
newlink HT_xvtnavcreate, 620
newlink HT_xvtnavdestroy, 622
newlink HT_XVTNAVINSERT, 244
newlink HT_xvtnavlistwins, 623
newlink HT_xvtnavremwin, 623
newlink HT_xvtnotebkaddpage, 625, 675
newlink HT_xvtnotebkaddtab, 627, 677
newlink HT_xvtnotebkcreateface, 628, 678
newlink HT_xvtnotebkcreatefacedef, 629, 679
newlink HT_xvtnotebkcreatefaceres, 631, 681
newlink HT_xvtnotebkenumpages, 632, 682
newlink HT_xvtnotebkgetface, 633, 683
newlink HT_xvtnotebkgetfrontpage, 634, 684
newlink HT_xvtnotebkgetnumpages, 635, 685
newlink HT_xvtnotebkgetnumtabs, 636, 686
newlink HT_xvtnotebkgetpagedata, 636, 686
newlink HT_xvtnotebkgetpagefromface, 637,

687
newlink HT_xvtnotebkgetpagetitle, 638, 688
newlink HT_xvtnotebkgettabimage, 639, 689
newlink HT_xvtnotebkgettabtitle, 640, 690
newlink HT_xvtnotebkrempage, 641, 691
newlink HT_xvtnotebkremtab, 642, 692
newlink HT_xvtnotebksetfrontpage, 644, 694
newlink HT_xvtnotebksetpagedata, 642, 692
newlink HT_xvtnotebksetpagetitle, 643, 693
newlink HT_xvtnotebksettabimage, 645, 695
newlink HT_xvtnotebksettabtitle, 646, 696
newlink HT_xvtpaletaddcolors, 647
newlink HT_xvtpaletaddcolors_1, 648
newlink HT_xvtpaletcreate, 649
newlink HT_xvtpaletdefault, 650
newlink HT_xvtpaletdestroy, 651
newlink HT_xvtpaletgetcolors, 652
newlink HT_xvtpaletgetncolor, 653
newlink HT_xvtpaletgetsize, 654
newlink HT_xvtpaletgettolera, 654
newlink HT_xvtpaletgettype, 655

newlink HT_xvtpaletsettolera, 656
newlink HT_XVTPALETTE, 161
newlink HT_XVTPALETTEATTR, 161
newlink HT_XVTPALETTESIZE, 246
newlink HT_xvtpallet, 647
newlink HT_XVTPALLETEValues, 244
newlink HT_XVTPALLETTYPE, 162
newlink HT_xvtpict, 665
newlink HT_xvtpictcreate, 666
newlink HT_xvtpictdestroy, 667
newlink HT_xvtpictlock, 668
newlink HT_xvtpictunlock, 669
newlink HT_XVTPIXMAP, 164
newlink HT_XVTPIXMAP_Values, 246
newlink HT_XVTPIXMAPATTR, 166
newlink HT_XVTPIXMAPFORMAT, 166
newlink HT_xvtpmap, 669
newlink HT_xvtpmapcreate, 670
newlink HT_xvtpmapdestroy, 673
newlink HT_XVTPOPUPALIGNMENT, 166
newlink HT_xvtprint, 697
newlink HT_xvtprintclose_1, 697
newlink HT_xvtprintclosepage, 698
newlink HT_xvtprintcreate, 699
newlink HT_xvtprintcreatewin, 700
newlink HT_xvtprintdestroy, 702
newlink HT_XVTPRINTFUNCTION, 167
newlink HT_xvtprintgetnextba, 703
newlink HT_xvtprintisvalid, 705
newlink HT_xvtprintopen, 706
newlink HT_xvtprintopenpage, 707
newlink HT_xvtprintsetpageorient, 708
newlink HT_xvtprintsetpagesize, 708
newlink HT_xvtprintstartthre, 709
newlink HT_xvtrect, 713
newlink HT_xvtrectgetheight, 713
newlink HT_xvtrectgetpos, 714
newlink HT_xvtrectgetwidth, 714
newlink HT_xvtrecthaspoint, 715
newlink HT_xvtrectintersect, 716
newlink HT_xvtrectisempty, 717
newlink HT_xvtrectoffset, 718
newlink HT_xvtrectset, 719
newlink HT_xvtrectsetempty, 720
newlink HT_xvtrectsetheight, 720

XVT Portability Toolkit Reference
newlink HT_xvtrectsetpos, 721
newlink HT_xvtrectsetwidth, 722
newlink HT_xvtres, 723
newlink HT_xvtresaddres, 723
newlink HT_xvtresfreemenutre, 724
newlink HT_xvtresfreewindef, 725
newlink HT_xvtresget, 727
newlink HT_xvtresgetdlgdata, 727
newlink HT_xvtresgetdlgdef, 729
newlink HT_xvtresgetfont, 730
newlink HT_xvtresgetimage, 730
newlink HT_xvtresgetimagedat, 731
newlink HT_xvtresgetmenu, 732
newlink HT_xvtresgetmenudata, 733
newlink HT_xvtresgetstr, 735
newlink HT_xvtresgetstrlist, 736
newlink HT_xvtresgetwindata, 737
newlink HT_xvtresgetwindef, 739
newlink HT_xvtresremoveres, 740
newlink HT_xvtresuseres, 741
newlink HT_xvtsbar, 742
newlink HT_xvtsbargetpos, 742
newlink HT_xvtsbargetproport, 743
newlink HT_xvtsbargetrange, 744
newlink HT_xvtsbarsetpos, 746
newlink HT_xvtsbarsetproport, 747
newlink HT_xvtsbarsetrange, 748
newlink HT_xvtscr, 750
newlink HT_xvtscrbeep, 750
newlink HT_xvtscrgetfocustop, 750
newlink HT_xvtscrgetfocusvob, 751
newlink HT_xvtscrhidecursor, 752
newlink HT_xvtscrlaunchbrowser, 753
newlink HT_xvtscrlistwins, 753
newlink HT_xvtscrsetbusycurs, 755
newlink HT_xvtscrsetfocusvob, 756
newlink HT_xvtslist, 759
newlink HT_xvtslistaddatelt, 759
newlink HT_xvtslistaddatpos, 761
newlink HT_xvtslistaddsorted, 762
newlink HT_xvtslistcount, 763
newlink HT_xvtslistcreate, 764
newlink HT_xvtslistdebug_1, 765
newlink HT_xvtslistdestroy, 765
newlink HT_xvtslistget, 766

newlink HT_xvtslistgetdata, 767
newlink HT_xvtslistgetelt, 768
newlink HT_xvtslistgetfirst, 769
newlink HT_xvtslistgetnext, 770
newlink HT_xvtslistisvalid, 771
newlink HT_xvtslistrem, 772
newlink HT_xvtstr_1, 773
newlink HT_xvtstrcollate, 774
newlink HT_xvtstrcollateigno, 775
newlink HT_xvtstrcompare, 776
newlink HT_xvtstrcompareigno, 776
newlink HT_xvtstrcomparencha, 777
newlink HT_xvtstrconcat, 778
newlink HT_xvtstrconcatnchar, 779
newlink HT_xvtstrconvertwcha, 784
newlink HT_xvtstrconvertwcha_1, 784
newlink HT_xvtstrconvertwcst, 785
newlink HT_xvtstrcopy, 786
newlink HT_xvtstrcopynchar, 786
newlink HT_xvtstrcopynsize, 787
newlink HT_xvtstrduplicate, 790
newlink HT_xvtstrfindchar, 790
newlink HT_xvtstrfindeol, 791
newlink HT_xvtstrfindfirstch, 793
newlink HT_xvtstrfindlastcha, 794
newlink HT_xvtstrfindnotchar, 795
newlink HT_xvtstrfindsubstri, 796
newlink HT_xvtstrfindtoken, 796
newlink HT_xvtstrgetbytecoun, 798
newlink HT_xvtstrgetcharcoun, 799
newlink HT_xvtstrgetcharsize, 799
newlink HT_xvtstrgetncharcou, 800
newlink HT_xvtstrgetncharsiz, 801
newlink HT_xvtstrgetnextchar, 802
newlink HT_xvtstrgetprevchar, 802
newlink HT_XVTSTRINGRESBASE, 247
newlink HT_xvtstris, 803
newlink HT_xvtstrisalnum, 803
newlink HT_xvtstrisalpha, 804
newlink HT_xvtstrisdigit, 805
newlink HT_xvtstrisequal, 806
newlink HT_xvtstrisinvariant, 806
newlink HT_xvtstrislower, 807
newlink HT_xvtstrisspace, 808
newlink HT_xvtstrisupper, 808

Index
newlink HT_xvtstrisxdigit, 809
newlink HT_xvtstrmatch, 810
newlink HT_xvtstrparsedouble, 812
newlink HT_xvtstrparselong, 813
newlink HT_xvtstrparseulong, 814
newlink HT_xvtstrsprintf, 815
newlink HT_xvttimer, 818
newlink HT_xvttimercreate, 818
newlink HT_xvttimerdestroy, 819
newlink HT_XVTTIMERERROR, 247
newlink HT_XVTTPCConstants, 248
newlink HT_xvttxaddpar, 853
newlink HT_xvttxappend, 855
newlink HT_xvttxclear, 856
newlink HT_xvttxcreate, 857
newlink HT_xvttxcreatedef, 859
newlink HT_xvttxdestroy, 861
newlink HT_xvttxgetattr, 862
newlink HT_xvttxgetlimit, 863
newlink HT_xvttxgetline, 863
newlink HT_xvttxgetmargin, 865
newlink HT_xvttxgetnexttx, 866
newlink HT_xvttxgetnumchars, 867
newlink HT_xvttxgetnumlines, 868
newlink HT_xvttxgetnumpars, 869
newlink HT_xvttxgetnumparslin, 868
newlink HT_xvttxgetorigin, 870
newlink HT_xvttxgetsel, 871
newlink HT_xvttxgettabstop, 873
newlink HT_xvttxgetview, 873
newlink HT_xvttxrempar, 874
newlink HT_xvttxreset, 875
newlink HT_xvttxresume, 876
newlink HT_xvttxscrollhor, 877
newlink HT_xvttxscrollvert, 878
newlink HT_xvttxset, 879
newlink HT_xvttxsetattr, 880
newlink HT_xvttxsetlimit, 881
newlink HT_xvttxsetmargin, 881
newlink HT_xvttxsetpar, 882
newlink HT_xvttxsetscrollcal, 883
newlink HT_xvttxsetsel, 886
newlink HT_xvttxsettabstop, 887
newlink HT_xvttxsuspend, 888
newlink HT_XVTUBYTE, 169

newlink HT_xvtvobj, 889
newlink HT_xvtvobjdestroy, 889
newlink HT_xvtvobjgetattr, 891
newlink HT_xvtvobjgetclientr, 892
newlink HT_xvtvobjgetdata, 894
newlink HT_xvtvobjgetflags, 895
newlink HT_xvtvobjgetouterre, 897
newlink HT_xvtvobjgetpalet, 898
newlink HT_xvtvobjgetparent, 899
newlink HT_xvtvobjgettitle, 900
newlink HT_xvtvobjgettype, 902
newlink HT_xvtvobjisfocusabl, 903
newlink HT_xvtvobjisvalid, 903
newlink HT_xvtvobjmove, 904
newlink HT_xvtvobjraise, 905
newlink HT_xvtvobjsetattr, 906
newlink HT_xvtvobjsetdata, 908
newlink HT_xvtvobjsetenabled, 910
newlink HT_xvtvobjsetpalet, 912
newlink HT_xvtvobjsettitle, 913
newlink HT_xvtvobjsetvisible, 914
newlink HT_xvtvobjtranslatep, 915
newlink HT_XVTWCHAR, 169
newlink HT_xvtwin, 917
newlink HT_xvtwincreate, 918
newlink HT_xvtwincreatedef, 921
newlink HT_xvtwincreateres, 925
newlink HT_xvtwindispatcheve, 927
newlink HT_xvtwinenumwins, 928
newlink HT_xvtwingetctl, 929
newlink HT_xvtwingetctlcolor, 931
newlink HT_xvtwingetctlfont, 933
newlink HT_xvtwingetcursor, 934
newlink HT_xvtwingetcxo, 935
newlink HT_xvtwingeteventmas, 936
newlink HT_xvtwingethandler, 937
newlink HT_xvtwingetnav, 938
newlink HT_xvtwingettx_1, 939
newlink HT_xvtwinhasmenu, 941
newlink HT_xvtwinlistcxos, 942
newlink HT_xvtwinlistwins, 943
newlink HT_xvtwinreleasepoin, 945
newlink HT_xvtwinsetcaretpos, 945
newlink HT_xvtwinsetcaretsiz, 947
newlink HT_xvtwinsetcaretvis, 949

XVT Portability Toolkit Reference
newlink HT_xvtwinsetctlcolor, 953
newlink HT_xvtwinsetctlfont, 954
newlink HT_xvtwinsetcursor, 955
newlink HT_xvtwinsetdoctitle, 957
newlink HT_xvtwinseteventmas, 958
newlink HT_xvtwinsethandler, 959
newlink HT_xvtwintrappointer, 960
newlink HT_XVTWS_WS_Values, 249
newlink notebook, 625
newlink XVT_CODESET_MAP, 135
newlink XVTNOTEBKENUMPAGES, 159
newlink XVTRES, 168
newlink XVTTREEVIEWNODE, 168
no word wrap (N), 1012
NO_STD_*_MENU Values, 200
NO_STD_ABOUT_BOX, 199
NOREF, 253
note icon, 338
notebook

adding
page to tab, 625, 675
tabs, 627, 677

applying functions to each page, 632, 682
creating

face for page, 628, 678
face from resource file, 631, 681

functions, 625, 675
getting

face, 633, 683
front page, 634, 684
notebook from face, 637, 687
number of pages, 635, 685
number of tabs, 636, 686
page data, 636, 686
page from face, 637, 687
tab, 639, 689
Tab from face, 637, 687
tab title, 640, 690
title for tab and page, 638, 688

removing
page, 641, 691
tab, 642, 692

setting
front page, 644, 694
page data, 642, 692

page title, 643, 693
tab image, 645, 695
tab title, 646, 696

NULL
constants, 200
font ID, 201
image macro, 202
macro value, 201
palette macro, 202
picture macro, 203
pixmap macro, 203
text edit macro, 204
window macro, 204

NULL_FNTID, 201
NULL_IMAGE, 202
NULL_PALETTE, 202
NULL_PICTURE, 203
NULL_PIXMAP, 203
NULL_TID, 153
NULL_TXEDIT, 204
NULL_WIN, 204

O
object-click mode, help, 512
objects

associated with help topics, 511
getting associated help topics, 519
navigation, 938
underlying windows, 33

one-byte storage, 169
online help

See help, 27
operating systems

file system support, 237
OS/2’s multi-threading for printing, 709
output stream object (See I/O stream), 157
ovals

drawing, 357
drawing pie sections of, 361

P
P_* values for PEN_STYLE, 205
palettes

adding colors, 647
adding colors from images, 648

Index
color type, 244
creating, 649
creation attribute, 161
default object type, 17
defining maximun size, 246
destroying, 651
functions, 647
getting

color-match tolerance, 654
colors in, 652
default, 650
for visible object, 898
size of, 654
the number of colors in, 653
type, 655

manipulating colored, 161
NULL macro, 202
setting color-match tolerance, 656
setting for visible objects, 912

Paragraph (A), 1013
paragraphs

adding to text edit objects, 853
appending strings to, 855
changing in text eidt objects, 882
deleting from text edit objects, 874
getting

for text edit view rectangle, 870
number in text edit, 869
number of lines in, 868

help file format, 1013
numbering in text eidts, 129

parsing multibyte strings, 495
PAT_* values for PAT_STYLE, 206
PAT_STYLE, 206
pathname to external resource file, 41
pathnames construction, 485
patterns

complex string functions, 657
creating from strings, 657
destroying, 662
interior of shapes, 101
matching against strings, 663

multibyle, 810
string description, 162, 163
styles for drawing, 206

transforming strings, 664
PEN_STYLE, 205
pens

color, 105
fastest width, 234
moving positions, 372
pattern styles, 206
setting color, 407
setting standard, 421
standard constant, 215
styles, 205

PICT data
creating image from, 559

PICT file
creating image from, 558
writing to I/O stream, 572

PICTURE, 122
pictures

clipboard format, 173
closing after drawing, 347
creating encapsulated, 666
destroying encapsulated, 667
drawing, 359
getting pointers to, 668
locking encapsulated, 668
NULL macro, 203
objects, 665
opening for drawing, 399
referencing encapsulated, 122
unlocking, 669

pie sections of oval
drawing, 361

pixels
getting color for in images, 543
scrolling in window, 401
setting color value for image, 567

pixmap objects
functions, 669

pixmaps
color image types, 246
creating, 670
creation attribute, 166
destroying, 673
drawing, 363
drawing images in, 354

XVT Portability Toolkit Reference
NULL macro, 203
setting palettes for, 912
transfering to images, 540
See Also visible objects, 889

platform-specific
actions, 259

platform-specific actions, 232
PNT, 122
pointers

casting to long, 254
configuration, 49
cursor types, 106
determining system capabilities, 26
getting to encapsulated picture, 668
releasing trapped, 945
setting shape, 955
string collation, 10
to arbitrary data, 106
trapping in windows, 960

points
data type, 122

polygons, drawing, 365
polylines, drawing, 367
popup menus, 605
popup windows, 166
portable attributes, 5
portable images

See images, 533
predefined

error messages, 440
conditional, 441

help IDs, 1014
help topics, 1015

print manager
closing, 697

print records
checking validity, 705
creating, 699
current, 123
data type, 123
destroying, 702
freeing, 702

PRINT_RCD, 123
printing

changing the paper size, 708

checking print record validity, 705
closing manager, 697
creating records, 699
creating windows, 700
destroying print records, 702
displaying page setup, 339
finish current page, 698
function prototype, 167
functions, 697
getting next band, 703
height, 34
horizontal resolution, 35
identifying the page units, 163
initializing manager, 706
portable escape code, 232
record type, 123
setting page orientation, 162
setting page size, 163
setting the page orientation, 708
starting new pages, 707
starting OS/2’s multi-threading, 709
vertical resolution, 36
width, 36
See Also visible objects, 889

processing formats for strings, 815
processing pending events, 265
prototype for application_supplied functions, 151
PTR_LONG, 254

Q
questions

asking, 324
RESP_* values, 207

quit-application events, 83

R
radio buttons, 13

checking, 276
XRC statements, 984

radiobutton control, 984
RCT, 124
rectangle, 405
rectangles, 405

determining if empty, 717
determining intersection, 716

Index
drawing, 368
drawing with rounded corners, 370
filling in images, 537
functions, 713
getting

bounding, 897
clipping, 376
dimensions of client, 892
height, 713
position, 714
text edit view, 873
width, 714

offsetting coordinates, 718
scheduling for updating, 395
setting

coordinates, 719
height, 720
position, 721
to empty, 720
width, 722

testing for contained points, 715
type containg coordiantes of, 124
updating, 397
XRC statement component for bounding, 965

references
establishing, 253

release 4.0x behaviors, 42
reserved (S), 1013
resetting text edit objects, 875
resizing

memory blocks, 600
window event, 85

resizing controls, dialogs and windows, 904
resource

adding files, 723
pathname to files, 41
setting current, 741

resource ID
setting, 8
task windows, 47

resource ID’s, XRC statement component, 966
resources

compiler (See Also xrc), 1019
creating about boxes from, 323
creating dialogs from, 321

creating windows from, 925
freeing menu item tree, 724
freeing WIN_DEF arrays, 725
functions for getting files, 727
getting

data strings for windows, 737
definition for menus from, 732
fonts from, 730
images from, 730
strings, 735
user data for images, 731
user data for menus from, 733
user data strings from controls, 727

listing string ID’s, 736
loading dialog definitions from files, 729
loading window definitions from, 739
management functions, 723
removing from use, 740
string ID’s, 736
XRC statement for ID component, 966

RESP_* values for ASK_RESPONSE, 207
retrieving CXO lists, 942
retrieving CXO’s, 935

S
SC_* values for SCROLL_CONTROL, 207
scalable fonts, 471
#scan

xrc preprocessor directive, 995
helpc preprocessor directive, 1007

screen
height, 43
horizontal resolution, 44
suspending updating in text edits, 888
vertical resolution, 44
width, 45

screen objects
changing cursor shapes, 755
forcing to front, 756
functions, 750
getting front

top-level window, 750
getting window with focus, 751
hiding cursors, 752
launch browser, 753

XVT Portability Toolkit Reference
listing window title, 753
setting sounds, 750

screen window
attribute, 46
constant, 208

SCREEN_WIN, 208
screens

See visible objects, 889
*SCROLL values for SCROLL_TYPE, 209
scroll callback function

prototype, 125
setting for text edits, 883

SCROLL_CALLBACK, 125
SCROLL_CONTROL, 207
SCROLL_TYPE, 209
scrollbar control, 985
scrollbars

components, 207
events

horizontal, 75
vertical, 94

functions, 742
getting

range values, 744
thumb position, 742
thumb proportion, 743

height, 12
horizontal, 75
setting

range of, 748
thumb position for, 746
thumb proportion for, 747

type, 209
XRC statements, 985
vertical, 94
width, 14

scrolling
windows pixels, 401

scrolling text edit objects
horizontally, 877
vertically, 878

searching multibyte strings for characters, 790
searching multibyte strings for characters not in

set, 795
separating multibyte strings into tokens, 796

serializing fonts, 476
setting, 405

color drawing tools, 408
CXO event handlers, 312
CXO event masks, 313
CXO state data, 311
format callback function, 911

SEV_* values for XVT_ERRSEV, 210
shapes

drawing lines around, 105
patterns for interior, 101

short
maximum value, 210

short value
maximum unsigned, 220

SHRT_MAX, 210
size

getting palettes, 654
SLIST, 127

getting next element in, 770
string element, 127
type, 127

SLIST functions, 759
SLIST_ELT, 127
SLISTs

adding
at a specified position, 761
sorted to strings, 762
to list controls, 581
to strings, 759

counting elements in, 763
creating, 764
dumping to debug files, 765
freeing occupied memory, 765
getting

data associated with, 767
element, 768
first element in, 769
strings and data from, 766
window IDs and titles in the form of,

943
removing element from, 772
testing validity of, 771

sounds, setting, 750
startup directory, 502

Index
state data
getting for CXO’s, 308

static text control height, 13
storage

one-byte, 169
string, 986

codeset map translating, 817
create pattern, 657
destroying codeset maps, 789
formatting for application-supplied

functions, 151
pattern descriptor, 162, 163

string operations functions, 773
strings

adding
to list control, 581
to SLIST slots, 761
to SLISTs, 759
to sorted SLISTs, 762

appending multibyte, 778
appending n charaters to multibyte, 779
checking

case of first character, 807
for alphabetic multibyte characters, 804
for alphanumeric multibyte characters,

803
for decimal multibyte characters, 805
for multibyte character invariants, 806
if first character is a hexadecimal digit,

809
if first character is a space, 808
if first multibyte character is uppercase,

808
if two are equal, 806

collation function pointer, 10
collation function prototype, 136
comparing

case-insensitive, 776
multibyte, 774
multibyte ignoring case, 775
multibyte using n characters, 777
multibyte using numeric values, 776

complex patterns, 657
converting

characters to lowercase, 781

characters to wide characters, 779
from directory form, 486
multibyte characters to wide characters,

780
to directories, 488
to double-precision floating point val-

ues, 812
to long integer values, 813
to unsigned long integer values, 814
to uppercase characters, 782
wide character to multibyte, 785
wide characters to lowercase wide, 784
wide characters to multibyte, 783
wide characters to uppercase wide, 784

copying
bytes from one to another, 787
characters from one to another, 786
one to another, 786

counting
bytes in, 798
bytes in multibyte character, 799
bytes of characters, 801
characters in, 799
specified characters, 800

determining
if first character is a hexadecimal digit,

809
if first character is a space, 808
if first character is lowercase, 807
if first character is uppercase, 808
if two are equal, 806

drawing text, 373
duplicating multibyte, 790
end-of-line sequence, 185
finding

characters not in set, 795
first line in multibyte, 793
last character in multibyte, 794
lines in, 791
substring, 796

getting
byte count, 798
bytes in multibyte character, 799
character byte size, 801
character count for, 799

XVT Portability Toolkit Reference
count of specified characters, 800
from SLIST elements, 768
from SLISTs, 766
list of resources, 736
next character in, 802
previous character in, 802
resources, 735
user data for menus, 733
user data for windows, 737

list element type, 127
matching

against patterns, 663
patterns, 810
to pattern, 664

parsing multibyte, 495
processing formats, 815
reserved base ID, 247
searching multibyte for characters, 790
separating into tokens, 796
transforming to pattern, 664
XRC statement for text component, 966
XRC statment, 986
used in SLIST, 127
user data, 727

styles
getting font, 466
menu event, 70
menu tags, 198
patterns for drawing, 206
pens, 205
setting font, 483

submenus
tags, 196
See Also menus, 603

substrings
finding, 796

system
initializing structure, 138

SZ_CLASS_NAME, 211
SZ_FNAME, 212
SZ_LEAFNAME, 212

T
T_CNUM, 128
T_CPOS, 128

T_LNUM, 129
T_PNUM, 129
tabstop

getting for text edit objects, 873
setting for text edits, 887

task container window, 213
task window, 47
task windows

resource ID, 47
variants for XVT/Win32, 1033

TASK_WIN, 213
terminating applications, 255
terminator

found by xvt_str_find_eol, 185
testing rectangles for updating, 397
testing validity of SLIST references, 771
text

clipboard format, 173
control, XRC statement, 986
drawing strings, 373
getting width, 394
selecting in edit controls, 297
setting in menu item, 613
static controls

height, 13
text control, 986
text edit objects

adding paragraphs to, 853
adding to paragraphs, 855
attribute constants, 216
changing

attributes, 880
character limit, 881
margins of, 881
paragraphs in, 882

character number type, 128
character position type, 128
clearing, 856
creating, 857
creating from a data structures, 859
definition type, 131
deleting paragraphs, 874
destroying, 861
failure to create, 204
functions, 853

Index
getting
attributes, 862
boundries of selection, 871
character limit, 863
from ID, 939
lines from, 863
margin, 865
next, 866
number of characters in lines, 867
number of lines in, 868
number of lines in paragraphs, 868
number of paragraphs in, 869
paragraph and line at origin of view rect-

angle, 870
tabstop for, 873
view rectangle of, 873

line number type, 129
NULL macro, 204
paragraph number type, 129
resetting, 875
resuming screen updating for, 876
scroll callback function, 125
scrolling horizontally, 877
scrolling vertically, 878
setting

functions, 879
scroll callback function, 883
selection, 886
tabstop for, 887

suspending screen updating, 888
type, 130
XRC statement, 987
using release 4.0x behaviors, 42

text strings, XRC statement component, 966
textedit, 987
timer objects

functions, 818
timers

error, 247
event, 87
number of, 34
setting, 818
starting, 818
turning off, 819, 820, 821, 822, 825, 828,

829, 830, 831, 832, 833, 834, 835,

836, 837, 838, 839, 840, 841, 842,
843, 844, 845, 846, 847, 848, 849,
850, 851

titles
getting of visible objects, 900
setting document, 957
setting for visible objects, 913
windows allotted height, 48

titles of windows
listing, 753

TL_* Constants, 215
tone, setting, 750
tools, 1019

standard constants, 215
tools selection dialog, 327
tools sets

defining color drawing, 108
top-level windows

creation function parameters, 1031
#transparent

xrc preprocessor directive, 996
TRUE, 215
TX_* Attributes, 216
TXEDIT, 130

U
U_* values for UNIT_TYPE, 218
UCHAR_MAX, 219
ULONG_MAX, 220
#undef

xrc preprocessor directive, 997
UNIT_MAX, 219
UNIT_TYPE, 218
units, 988

coordinate system type, 218
XRC statements, 988

Universal Resource Language (XRC) Statements,
965

unlocking pictures, 669
unmapping fonts, 484
update events

illegal calls during, 88
updating

forcing events, 422
menus, 617

XVT Portability Toolkit Reference
rectangles, 397
rectangular area of window, 395
resuming for lists, 594
resuming for text edit objects, 876
suppressing checks, 46
suspending for lists, 597
suspending in text edits, 888

XRC
about box removal constant for, 199
compiler, 1019
font statements, 730
resource script, 727
standard menu constants, 180
standard menu removal constants, 200
submenus, 196

XRC Statements, 965
XRC statements, 965

accel, 968
bounding rectangle component, 965
button control, 970
checkbox control, 971
dialog, 972
edit control, 973
font, 974
font_map, 975
groupbox, 976
icon, 977
image, 978
listbox control, 979
listbutton control, 980
listedit control, 981
menu, 982
menubar, 982
radiobutton control, 984
resource ID component, 966
scrollbar control, 985
string, 986
text control, 986
text string component, 966
textedit, 987
units, 988
userdata, 967
window, 989

xrc_plat.h, 196
xrc.h, 196

user data
getting for menus, 733

user data strings
getting for dialogs, 727
getting for windows, 737

userdata, 967
USHRT_MAX, 220

V
values

long maximum, 192
variable

maximum value of character, 174
VERSION, 1001
versions

help identifiers, 211
vertical scrollbar event, 94
virtual keys

checking for, 443
visible objects

closing and destroying, 889
determining focusability of, 903
enabling and disabling, 910
functions, 889
getting

application data for, 894
attributes of, 891
bounding rectangles for, 897
client rectangle for, 892
creation flags for, 895
palettes for, 898
parent of, 899
titles of, 900
type of, 902

hiding and showing, 914
moving and resizing, 904
raising to top of stack, 905
setting

application data for, 908
attributes for, 906
palettes for, 912
titles, 913

showing and hiding, 914
translating coordinates between, 915

Index
W
W_*,WC_*,WD_*,values for WIN_TYPE, 221
warnings

displaying, 343
wide character type, 169
WIN_DEF, 131
WIN_TYPE, 1032

child windows, 1031
creation parameters, 1031
values for, 221

WINDOW, 133
window, 989

check handle validity, 903
window systems

determining, 249
windows, 405

application container, 208
associating help topic with, 526
border thickness

horizontal, 19
vertical, 20

cascading
horizontal, 18
vertical, 19

changing focus events, 68
checking for menubar, 941
checking if rectangle update is needed, 397
checking radio buttons in, 276
child creation function parameters, 1031
clearing with color, 346
close events, 59
closing and destroying, 889
closing picture after drawing, 347
control event information for, 104
control events, 63
control function parameters, 1032
coordinate system unit type, 218
creating

controls in, 278
from arrays, 921
from resource files, 925
maximum size, 242
new, 918
print, 700

creation

events, 64
flags, 222
function parameters, 1031

definition type, 131
descriptor type, 133
destruction event, 67
determing printer mapping for, 470
determining focusability of, 903
displaying popup menu over, 605
double-border

height, 15
width, 16

drawing
arcs in, 350
fonts in, 411
icons in, 352
image in, 354
lines in, 356
lines in (with arrows), 348
ovals in, 357
pictures in, 359
pie sections of oval in, 361
pixmaps in, 363
polygons in, 365
polylines in, 367
rectangles in, 368
rectangles with rounded corners in, 370
text in, 373

enabling and disabling, 910
enumerating child, 928
enumerating children of, 142
event handler prototype, 113
font associated with, 468
forcing to front, 756
freeing definition arrays, 725
functions, 917
functions for drawable, 345
getting

application data for, 894
application data for fonts, 381
attributes for, 891
bounding rectangle for, 897
child from navigation objects, 623
client rectangle for, 892
clipping rectangle in, 376

XVT Portability Toolkit Reference
contained control ID’s, 287
control color components for, 930
control colors for, 931
controls, 929
creation flags for, 895
cursor shape for, 934
event handler for, 937
event mask for, 936
font, 379
font family, 382
font for contained controls, 933
font metrics, 385
font native descriptor, 387
font size, 389
font style, 391
front top-level, 750
IDs and titles for, 943
mapped font family, 384
mapped font size, 390
mapped font style, 392
navigation objects for, 938
parent of, 899
text edit objects, 939
text width, 394
titles of, 900
type of, 902
user data strings for, 737
with focus, 751

graphical context, 33
hiding and showing, 914
horizontal borders, 25
horizontal scrollbars, 75
inserting child in navigation order, 618
keyboard-character events, 53
listing titles of, 753
loading definitions from resources, 739
maximum size constant, 242
MDI task parent, 1031
moving and resizing, 904
NULL macro, 204
opening pictures for drawing, 399
popup, 166
raising to top of stack, 905
releasing trapped pointers, 945
removing child from navigations object, 623

repositioning carets in, 945
resizing events, 85
resource ID of, 47
scheduling area for updating, 395
screen, 46
scrollbar components, 207
scrolling pixels, 401
sending events to, 927
setting

application data for, 908
attributes for, 906
caret position, 949
caret size for, 947
checks in check boxes, 292
color brush for, 404
color pen for, 407
colors for controls, 953
control color components for, 952
control color for, 944
cursor shape, 955
document title, 957
drawing mode for, 410
drawing pen position in, 372
event handler, 959
font application data for, 413
font descriptor for, 415
font family for, 414
font size for, 416
font style for, 417
fonts for controls, 954
foreground colors for, 418
palettes for, 912
standard brush for, 420
standard pen for, 421
the event mask, 958
titles for, 913

showing and hiding, 914
task, 47
task container, 213
task variants for XVT/Win32, 1033
title area height, 48
top-level creation function parameters, 1031
translating coordinates between, 915
trapping pointer in, 960
type, 133

Index
types, 221
underlying object, 33
units, XRC statement, 988
unsetting

control color components for, 962
update events, 88
updating, 422
XRC statement, 989
vertical borders, 26
vertical scrollbars, 94

word wrap (W), 1014
*WS Values, 249
WSF_* options flags, 222

X
XBM data

creating images from, 561
XBM file

creating image from, 560
XPM data

creating images from, 564
XPM file

creating images from, 563
xvt_app_allow_quit, 255
xvt_app_create, 256
xvt_app_destroy, 258
xvt_app_escape, 259
xvt_app_get_default_ctools, 260
xvt_app_get_file, 262
xvt_app_get_files_count, 263
xvt_app_process_pending_events, 265
xvt_app_set_file_processed, 266
XVT_BYTE, 135
XVT_CALLCONV*, 225
XVT_CALLCONV1, 225
xvt_cb_alloc_data, 267
xvt_cb_close, 268
xvt_cb_free_data, 268
xvt_cb_get_data, 269
xvt_cb_has_format, 271
xvt_cb_open, 272
xvt_cb_put_data, 273
XVT_CLUT_SIZE, 226
XVT_CODESET_MAP, 135
XVT_COLLATE_FUNCTION, 136

XVT_COLOR_*, 226
XVT_COLOR_ACTION, 137
XVT_COLOR_COMPONENT, 137
XVT_COLOR_GET_BLUE, 227
XVT_COLOR_GET_GREEN, 228
XVT_COLOR_GET_RED, 228
XVT_COLOR_TYPE, 138
XVT_CONFIG, 138

pointer, 49
xvt_ctl_check_radio_button, 276
xvt_ctl_create, 278

window controls, 1032
xvt_ctl_create_def, 280

window controls, 1032
xvt_ctl_get_color_component, 284
xvt_ctl_get_colors, 285
xvt_ctl_get_font, 286
xvt_ctl_get_id, 287
xvt_ctl_get_native_color_component, 288
xvt_ctl_get_text_sel, 290
xvt_ctl_is_checked, 291
xvt_ctl_set_checked, 292
xvt_ctl_set_color_component, 293
xvt_ctl_set_colors, 294
xvt_ctl_set_font, 296
xvt_ctl_set_text_sel, 297
xvt_ctl_unset_color_component, 298
XVT_CTOOLS_*, 229
XVT_CTOOLS_ALL, 229
XVT_CTOOLS_BACK_COLOR, 229
XVT_CTOOLS_BRUSH, 229
XVT_CTOOLS_CTOOL, 229
XVT_CTOOLS_FORE_COLOR, 229
XVT_CTOOLS_PEN, 229
XVT_CTOOLS_PEN_ALL, 229
XVT_CXO, 140
xvt_cxo_*, 299
XVT_CXO_*_MSG, 230
xvt_cxo_call_next, 299
xvt_cxo_create, 301
xvt_cxo_destroy, 303
xvt_cxo_dispatch_msg, 305
XVT_CXO_EVENT_HANDLER, 140
xvt_cxo_get_class_name, 307
xvt_cxo_get_data, 308

XVT Portability Toolkit Reference
xvt_cxo_get_event_handler, 308
xvt_cxo_get_event_mask, 309
xvt_cxo_get_win, 310
XVT_CXO_INSERTION, 141
xvt_cxo_is_valid, 311
XVT_CXO_POS_* Values for

XVT_CXO_INSERTION, 230
xvt_cxo_set_data, 311
xvt_cxo_set_event_handler, 312
xvt_cxo_set_event_mask, 313
xvt_debug, 314
xvt_debug_*, 314
xvt_debug_printf, 315
XVT_DISPLAY_* values, 231
xvt_dlg_*, 316
xvt_dlg_create_def, 316
xvt_dlg_create_res, 321
xvt_dm_*, 323
xvt_dm_post_about_box, 323
xvt_dm_post_ask, 324
xvt_dm_post_color_sel, 326
xvt_dm_post_ctools_sel, 327
xvt_dm_post_dir_sel, 328
xvt_dm_post_error, 329
xvt_dm_post_fatal_exit, 330
xvt_dm_post_file_open, 331
xvt_dm_post_file_save, 333
xvt_dm_post_font_sel, 336
xvt_dm_post_message, 338
xvt_dm_post_note, 338
xvt_dm_post_page_setup, 339
xvt_dm_post_string_prompt, 341
xvt_dm_post_warning, 343
xvt_dwin_*, 345
xvt_dwin_clear, 346
xvt_dwin_close_pict, 347
xvt_dwin_draw_aline, 348
xvt_dwin_draw_arc, 350
xvt_dwin_draw_icon, 352
xvt_dwin_draw_image, 354
xvt_dwin_draw_line, 356
xvt_dwin_draw_oval, 357
xvt_dwin_draw_pie, 361
xvt_dwin_draw_pmap, 363
xvt_dwin_draw_polygon, 365

xvt_dwin_draw_polyline, 367
xvt_dwin_draw_rect, 368
xvt_dwin_draw_roundrect, 370
xvt_dwin_draw_set_pos, 372
xvt_dwin_draw_text, 373
xvt_dwin_get_clip, 376
xvt_dwin_get_draw_ctools, 377
xvt_dwin_get_font, 379
xvt_dwin_get_font_app_data, 381
xvt_dwin_get_font_family, 382
xvt_dwin_get_font_family_mapped, 384
xvt_dwin_get_font_metrics, 385
xvt_dwin_get_font_native_desc, 387
xvt_dwin_get_font_size, 389
xvt_dwin_get_font_size_mapped, 390
xvt_dwin_get_font_style, 391
xvt_dwin_get_font_style_mapped, 392
xvt_dwin_get_font*, 379
xvt_dwin_get_text_width, 394
xvt_dwin_invalidate_rect, 395
xvt_dwin_is_update_needed, 397
xvt_dwin_open_pict, 399
xvt_dwin_scroll_rect, 401
xvt_dwin_set_back_color, 403
xvt_dwin_set_cbrush, 404
xvt_dwin_set_clip, 405
xvt_dwin_set_cpen, 407
xvt_dwin_set_draw_ctools, 408
xvt_dwin_set_draw_mode, 410
xvt_dwin_set_font, 411
xvt_dwin_set_font_*, 411
xvt_dwin_set_font_app_data, 413
xvt_dwin_set_font_family, 414
xvt_dwin_set_font_native_desc, 415
xvt_dwin_set_font_size, 416
xvt_dwin_set_font_style, 417
xvt_dwin_set_fore_color, 418
xvt_dwin_set_std_cbrush, 420
xvt_dwin_set_std_cpen, 421
xvt_dwin_update, 422
XVT_ENUM_CHILDREN, 142
xvt_env.h, 237
XVT_ERRID, 142
xvt_errid_*, 425
xvt_errid_create_*, 425

Index
xvt_errid_get_*, 426
xvt_errid_is_*, 428
XVT_ERRMSG, 143
xvt_errmsg_def_*, 429
xvt_errmsg_get_*, 431
xvt_errmsg_get_text, 433
XVT_ERRMSG_HANDLER, 144
xvt_errmsg_pop_handler, 435
xvt_errmsg_push_handler, 436
xvt_errmsg_sig, 437
xvt_errmsg_sig_if, 438
xvt_errmsg_sig_std, 440
xvt_errmsg_sig_std_if, 441
XVT_ERRSEV, 210
XVT_ESC_*, 232
XVT_ESC_GET_PRINTER_INFO, 232
xvt_event_*, 442
xvt_event_get_font, 442
xvt_event_is_virtual_key, 443
xvt_event_set_font, 444
XVT_FA_* Constants, 233
XVT_FA_* constants, 147
XVT_FAST_WIDTH, 234
XVT_FFN_* Constants, 234
XVT_FILE_ATTR_* Constants, 491
XVT_FILE_ATTR_* constants, 235
XVT_FILESYS_* Values, 237
xvt_fmap_*, 445
xvt_fmap_get_families, 445
xvt_fmap_get_family_sizes, 447
xvt_fmap_get_family_styles, 449
xvt_fmap_get_familysize_styles, 450
xvt_fmap_get_familystyle_sizes, 451
XVT_FNTID, 146

getting from E_FONT event, 442
setting data in E_FONT, 444

xvt_font_*, 453
XVT_FONT_ATTR_MASK, 147

constants used in, 233
xvt_font_copy, 454
xvt_font_create, 455
xvt_font_deserialize, 456
xvt_font_destroy, 458
XVT_FONT_DIALOG, 147
xvt_font_get_app_data, 459

xvt_font_get_family, 460
xvt_font_get_family_mapped, 461
xvt_font_get_metrics, 462
xvt_font_get_native_desc, 463
xvt_font_get_size, 465
xvt_font_get_size_mapped, 465
xvt_font_get_style, 466
xvt_font_get_style_mapped, 467
xvt_font_get_win, 468
xvt_font_has_valid_native_desc, 469
xvt_font_is_mapped, 470
xvt_font_is_print, 470
xvt_font_is_scalable, 471
xvt_font_is_valid, 472
xvt_font_map, 473
xvt_font_map_using_default, 474
XVT_FONT_MAPPER, 148
xvt_font_serialize, 476
xvt_font_set_app_data, 478
xvt_font_set_family, 479
xvt_font_set_native_desc, 480
xvt_font_set_size, 482
xvt_font_set_style, 483
XVT_FONT_STYLE_MASK, 149

constants, 239
xvt_font_unmap, 484
XVT_FORMAT_HANDLER, 151
XVT_FS_* Constants, 239
XVT_FS_* constants, 149
xvt_fsys_*, 485
xvt_fsys_build_pathname, 485
xvt_fsys_convert_dir_to_str, 486
xvt_fsys_convert_str_to_dir, 488
xvt_fsys_get_default_dir, 489
xvt_fsys_get_dir, 490
xvt_fsys_get_file_attr, 491
xvt_fsys_list_files, 493
xvt_fsys_parse_pathname, 495
xvt_fsys_rem_file, 499
xvt_fsys_restore_dir, 500
xvt_fsys_save_dir, 500
xvt_fsys_set_dir, 501
xvt_fsys_set_dir_startup, 502
xvt_fsys_set_file_attr, 503
xvt_gmem_*, 504

XVT Portability Toolkit Reference
xvt_gmem_alloc, 505
xvt_gmem_free, 506
xvt_gmem_get_size, 507
xvt_gmem_lock, 508
xvt_gmem_realloc, 509
xvt_gmem_unlock, 510
xvt_help_*, 511
XVT_HELP_* values for

XVT_HELP_FLAVOR, 240
xvt_help_assoc_all, 511
xvt_help_begin_objclick, 512
xvt_help_close_helpfile, 513
xvt_help_disassoc_all, 514
xvt_help_display_topic, 515
xvt_help_end_objclick, 516
XVT_HELP_FLAVOR, 240
xvt_help_get_flavor, 517
xvt_help_get_menu_assoc, 518
xvt_help_get_win_assoc, 519
XVT_HELP_INFO, 152
xvt_help_open_helpfile, 520
xvt_help_process_event, 522
xvt_help_search_topic, 523
xvt_help_set_menu_assoc, 524
xvt_help_set_win_assoc, 526
XVT_HELP_TID, 153
xvt_html_*, 528
xvt_html_get_url, 528, 528
xvt_html_get_url_intercept, 530
xvt_html_set_url, 529
xvt_html_set_url_intercept, 531
XVT_HTML_XRC_INTERCEPT_HANDLER,

153
XVT_IMAGE, 154
XVT_IMAGE_*, 545
xvt_image_*, 533
XVT_IMAGE_* values for

XVT_IMAGE_FORMAT, 240
XVT_IMAGE_ATTR, 155
xvt_image_create, 533
xvt_image_destroy, 536
xvt_image_duplicate, 535
xvt_image_fill_rect, 537
XVT_IMAGE_FORMAT, 240
xvt_image_get_clut, 538

xvt_image_get_dimensions, 539
xvt_image_get_format, 540
xvt_image_get_from_pmap, 540
xvt_image_get_ncolors, 542
xvt_image_get_pixel, 543
xvt_image_get_resolution, 544
xvt_image_get_scanline, 545
xvt_image_read, 547
xvt_image_read_*, 546
xvt_image_read_bmp, 548, 551, 555
xvt_image_read_bmp_from_iostr, 550, 553, 556
xvt_image_read_macpict, 558
xvt_image_read_macpict_from_iostr, 559
xvt_image_read_xbm, 560
xvt_image_read_xbm_from_iostr, 561
xvt_image_read_xpm, 563
xvt_image_read_xpm_from_iostr, 564
xvt_image_set_clut, 565
xvt_image_set_ncolors, 566
xvt_image_set_pixel, 567
xvt_image_set_resolution, 568
xvt_image_transfer, 569
xvt_image_write_bmp_to_iostr, 571
xvt_image_write_macpict_to_iostr, 572
XVT_IOSTR_CONTEXT, 156
xvt_iostr_create_fread, 575
xvt_iostr_create_fwrite, 576
xvt_iostr_create_read, 577
xvt_iostr_create_write, 578
xvt_iostr_destroy, 579
xvt_iostr_get_context, 580
XVT_IOSTR_RWFUNC, 156
XVT_IOSTR_SZFUNC, 157
XVT_IOSTREAM, 157
xvt_list_add, 581
xvt_list_clear, 583
xvt_list_count_all, 584
xvt_list_count_sel, 584
xvt_list_get_all, 585
xvt_list_get_elt, 587
xvt_list_get_first_sel, 589
xvt_list_get_sel, 590
xvt_list_get_sel_index, 591
xvt_list_is_sel, 592
xvt_list_rem, 593

Index
xvt_list_resume, 594
xvt_list_set_sel, 595
xvt_list_suspend, 597
XVT_MAKE_COLOR, 241
XVT_MAX_MB_SIZE, 242
XVT_MAX_WINDOW_RECT, 242
XVT_MEM, 158
xvt_mem_alloc, 598
xvt_mem_free, 599
xvt_mem_realloc, 600
xvt_mem_rep, 601
xvt_mem_zalloc, 602
xvt_menu_get_font_sel, 603
xvt_menu_get_tree, 604
xvt_menu_popup, 605
xvt_menu_set_font_sel, 608
xvt_menu_set_item_checked, 610
xvt_menu_set_item_enabled, 611
xvt_menu_set_item_title, 613
xvt_menu_set_tree, 614
xvt_menu_update, 617
XVT_MOD_KEY, 243
XVT_NAV, 159
xvt_nav_*, 618
xvt_nav_add_win, 618
xvt_nav_create, 620
xvt_nav_destroy, 622
XVT_NAV_INSERTION, 244
xvt_nav_list_wins, 623
xvt_nav_rem_win, 623
xvt_notebk_add_page, 625, 675
xvt_notebk_add_tab, 627, 677
xvt_notebk_create_face, 628, 678
xvt_notebk_create_face_def, 629, 679
xvt_notebk_create_face_res, 631, 681
XVT_NOTEBK_ENUM_PAGES, 159
xvt_notebk_enum_pages, 632, 682
xvt_notebk_get_face, 633, 683
xvt_notebk_get_front_page, 634, 684
xvt_notebk_get_num_pages, 635, 685
xvt_notebk_get_num_tabs, 636, 686
xvt_notebk_get_page_data, 636, 686
xvt_notebk_get_page_from_face, 637, 687
xvt_notebk_get_page_title, 638, 688
xvt_notebk_get_tab_image, 639, 689

xvt_notebk_get_tab_title, 640, 690
xvt_notebk_rem_page, 641, 691
xvt_notebk_rem_tab, 642, 692
xvt_notebk_set_front_page, 644, 694
xvt_notebk_set_page_data, 642, 692
xvt_notebk_set_page_title, 643, 693
xvt_notebk_set_tab_image, 645, 695
xvt_notebk_set_tab_title, 646, 696
xvt_palet_add_colors, 647
xvt_palet_add_colors_from_image, 648
xvt_palet_create, 649
xvt_palet_default, 650
xvt_palet_destroy, 651
xvt_palet_get_colors, 652
xvt_palet_get_ncolors, 653
xvt_palet_get_size, 654
xvt_palet_get_tolerance, 654
xvt_palet_get_type, 655
xvt_palet_set_tolerance, 656
XVT_PALETTE, 161
XVT_PALETTE_ATTR, 161
XVT_PALETTE_SIZE, 246
XVT_PALLETE_* values, 244
XVT_PATTERN, 162
xvt_pattern_create, 657
xvt_pattern_destroy, 662
xvt_pattern_format_string, 664
xvt_pattern_match, 663
xvt_perr.h, 429
XVT_PG_ORIENT, 162
XVT_PG_SIZE, 163
XVT_PG_UNITS, 163
xvt_pict_create, 666
xvt_pict_destroy, 667
xvt_pict_lock, 668
xvt_pict_unlock, 669
XVT_PIXMAP, 164
XVT_PIXMAP_* values, 246
XVT_PIXMAP_ATTR, 166
xvt_plat.h, 237
xvt_plxs.h, 237
xvt_pmap_create, 670
xvt_pmap_destroy, 673
XVT_POPUP_ALIGNMENT, 166
xvt_print_* functions, 697

XVT Portability Toolkit Reference
xvt_print_close, 697
xvt_print_close_page, 698
xvt_print_create, 699
xvt_print_create_win, 700
xvt_print_destroy, 702
XVT_PRINT_FUNCTION, 167
xvt_print_get_next_band, 703
xvt_print_is_valid, 705
xvt_print_open, 706
xvt_print_open_page, 707
xvt_print_set_page_orient, 708
xvt_print_set_page_size, 708
xvt_print_start_thread, 709
xvt_rect_* functions, 713
xvt_rect_get_height, 713
xvt_rect_get_pos, 714
xvt_rect_get_width, 714
xvt_rect_has_point, 715
xvt_rect_intersect, 716
xvt_rect_is_empty, 717
xvt_rect_offset, 718
xvt_rect_set, 719
xvt_rect_set_empty, 720
xvt_rect_set_height, 720
xvt_rect_set_pos, 721
xvt_rect_set_width, 722
xvt_res_* functions, 723
xvt_res_add_res, 723
xvt_res_free_menu_tree, 724
xvt_res_free_win_def, 725
xvt_res_get_* functions, 727
xvt_res_get_dlg_data, 727
xvt_res_get_dlg_def, 729
xvt_res_get_font, 730
xvt_res_get_image, 730
xvt_res_get_image_data, 731
xvt_res_get_menu, 732
xvt_res_get_menu_data, 733
xvt_res_get_str, 735
xvt_res_get_str_list, 736
xvt_res_get_win_data, 737
xvt_res_get_win_def, 739
xvt_res_remove_res, 740
xvt_res_use_res, 741
xvt_sbar_* functions, 742

xvt_sbar_get_pos, 742
xvt_sbar_get_proportion, 743
xvt_sbar_get_range, 744
xvt_sbar_set_pos, 746
xvt_sbar_set_proportion, 747
xvt_sbar_set_range, 748
xvt_scr_* functions, 750
xvt_scr_beep, 750
xvt_scr_get_focus_topwin, 750
xvt_scr_get_focus_vobj, 751
xvt_scr_hide_cursor, 752
xvt_scr_launch_browser, 753
xvt_scr_list_wins, 753
xvt_scr_set_busy_cursor, 755
xvt_scr_set_focus_vobj, 756
xvt_slist_* functions, 759
xvt_slist_add_at_elt, 759
xvt_slist_add_at_pos, 761
xvt_slist_add_sorted, 762
xvt_slist_count, 763
xvt_slist_create, 764
xvt_slist_debug, 765
xvt_slist_destroy, 765
xvt_slist_get, 766
xvt_slist_get_data, 767
xvt_slist_get_elt, 768
xvt_slist_get_first, 769
xvt_slist_get_next, 770
xvt_slist_is_valid, 771
xvt_slist_rem, 772
xvt_str_* functions, 773
xvt_str_collate, 774
xvt_str_collate_ignoring_case, 775
xvt_str_compare, 776
xvt_str_compare_ignoring_case, 776
xvt_str_compare_n_char, 777
xvt_str_concat, 778
xvt_str_concat_n_char, 779
xvt_str_convert_mb_to_wc, 779
xvt_str_convert_mbs_to_wcs, 780
xvt_str_convert_to_lower, 781
xvt_str_convert_to_upper, 782
xvt_str_convert_wc_to_mb, 783
xvt_str_convert_wchar_to_lower, 784
xvt_str_convert_wchar_to_upper, 784

Index
xvt_str_convert_wcs_to_mbs, 785
xvt_str_copy, 786
xvt_str_copy_n_char, 786
xvt_str_copy_n_size, 787
xvt_str_create_codeset_map, 788
xvt_str_destroy_codeset_map, 789
xvt_str_duplicate, 790
xvt_str_find_char_set, 790
xvt_str_find_eol, 791

terminator found by, 185
xvt_str_find_first_char, 793
xvt_str_find_last_char, 794
xvt_str_find_not_char_set, 795
xvt_str_find_substring, 796
xvt_str_find_token, 796
xvt_str_get_byte_count, 798
xvt_str_get_char_count, 799
xvt_str_get_char_size, 799
xvt_str_get_n_char_count, 800
xvt_str_get_n_char_size, 801
xvt_str_get_next_char, 802
xvt_str_get_prev_char, 802
xvt_str_is_* functions, 803
xvt_str_is_alnum, 803
xvt_str_is_alpha, 804
xvt_str_is_digit, 805
xvt_str_is_equal, 806
xvt_str_is_invariant, 806
xvt_str_is_lower, 807
xvt_str_is_space, 808
xvt_str_is_upper, 808
xvt_str_is_xdigit, 809
xvt_str_match, 810
xvt_str_parse_double, 812
xvt_str_parse_long, 813
xvt_str_parse_ulong, 814
xvt_str_sprintf, 815
xvt_str_translate_codeset, 817
xvt_str_vsprinf, 815
XVT_STRING_RES_BASE, 247
xvt_timer_* functions, 818
xvt_timer_create, 818
xvt_timer_destroy, 819
XVT_TIMER_ERROR, 247
XVT_TPC_* constants, 248

xvt_tx_* funtions, 853
xvt_tx_add_par, 853
xvt_tx_append, 855
xvt_tx_clear, 856
xvt_tx_create, 857

failure return constant for, 204
xvt_tx_create_def, 859
xvt_tx_destroy, 861
xvt_tx_get_attr, 862
xvt_tx_get_limit, 863
xvt_tx_get_line, 863

command for, 172
xvt_tx_get_margin, 865
xvt_tx_get_next_tx, 866
xvt_tx_get_num_chars, 867
xvt_tx_get_num_lines, 868
xvt_tx_get_num_par_lines, 868
xvt_tx_get_num_pars, 869
xvt_tx_get_origin, 870
xvt_tx_get_sel, 871
xvt_tx_get_tabstop, 873
xvt_tx_get_view, 873
xvt_tx_rem_par, 874
xvt_tx_reset, 875
xvt_tx_resume, 876
xvt_tx_scroll_hor, 877
xvt_tx_scroll_vert, 878
xvt_tx_set_* functions, 879
xvt_tx_set_attr, 880
xvt_tx_set_limit, 881
xvt_tx_set_margin, 881
xvt_tx_set_par, 882
xvt_tx_set_scroll_callback, 883
xvt_tx_set_sel, 886
xvt_tx_set_tabstop, 887
xvt_tx_suspend, 888
xvt_type.h, 30
XVT_UBYTE, 169
xvt_vobj_* functions, 889
xvt_vobj_destroy, 889
xvt_vobj_get_attr, 891
xvt_vobj_get_client_rect, 892
xvt_vobj_get_data, 894
xvt_vobj_get_flags, 895
xvt_vobj_get_formatter, 896

XVT Portability Toolkit Reference
xvt_vobj_get_outer_rect, 897
xvt_vobj_get_palet, 898
xvt_vobj_get_parent, 899
xvt_vobj_get_title, 900
xvt_vobj_get_type, 902
xvt_vobj_is_focusable, 903
xvt_vobj_is_valid, 903
xvt_vobj_move, 904
xvt_vobj_raise, 905
xvt_vobj_set_attr, 906
xvt_vobj_set_data, 908
xvt_vobj_set_enabled, 910
xvt_vobj_set_formatter, 911
xvt_vobj_set_palet, 912
xvt_vobj_set_title, 913
xvt_vobj_set_visible, 914
xvt_vobj_translate_points, 915
XVT_WCHAR, 169
xvt_win_* functions, 917
xvt_win_create, 918

child windows, 1031
top-level windows, 1031

xvt_win_create_def, 921
xvt_win_create_res, 925
xvt_win_dispatch_event, 927
xvt_win_enum_wins, 928

functions prototype, 142
xvt_win_get_ctl, 929
xvt_win_get_ctl_color_component, 930
xvt_win_get_ctl_colors, 931
xvt_win_get_ctl_font, 933
xvt_win_get_cursor, 934
xvt_win_get_cxo, 935
xvt_win_get_event_mask, 936
xvt_win_get_handler, 937
xvt_win_get_nav, 938
xvt_win_get_tx, 939
xvt_win_has_menu, 941
xvt_win_list_cxos, 942
xvt_win_list_wins, 943
xvt_win_process_modal, 944
xvt_win_release_pointer, 945
xvt_win_set_caret_pos, 945
xvt_win_set_caret_size, 947
xvt_win_set_caret_visible, 949

xvt_win_set_ctl_color_component, 952
xvt_win_set_ctl_colors, 953
xvt_win_set_ctl_font, 954
xvt_win_set_cursor, 955
xvt_win_set_doc_title, 957
xvt_win_set_event_mask, 958
xvt_win_set_handler, 959
xvt_win_trap_pointer, 960
xvt_win_unset_ctl_color_component, 962
XVT/Win32

task window variants for, 1033
XVTWS Values, 249

	XVT Portability Toolkit Reference
	Conventions Used in This Reference
	General Conventions
	Tip: This marks the beginning of a procedure having one or more steps. Tips can help you quickly locate “how-to” information.
	Code Conventions

	XVT Portable Attributes
	ATTR_APP_CTL_COLORS
	Description
	See Also

	ATTR_APP_CTL_FONT_RID
	Description
	See Also

	ATTR_APPL_NAME_RID
	Description
	See Also

	ATTR_BACK_COLOR
	Description
	See Also
	Example

	ATTR_COLLATE_HOOK
	Description
	See Also

	ATTR_CTL_BUTTON_HEIGHT
	Description
	See Also

	ATTR_CTL_CHECK_BOX_HEIGHT
	Description
	See Also

	ATTR_CTL_EDIT_TEXT_HEIGHT
	Description
	See Also

	ATTR_CTL_HORZ_SBAR_HEIGHT
	Description
	See Also

	ATTR_CTL_RADIOBUTTON_HEIGHT
	Description
	See Also

	ATTR_CTL_STATIC_TEXT_HEIGHT
	Description
	See Also

	ATTR_CTL_VERT_SBAR_WIDTH
	Description
	See Also

	ATTR_DBLFRAME_HEIGHT
	Description
	See Also

	ATTR_DBLFRAME_WIDTH
	Description
	See Also

	ATTR_DEBUG_FILENAME
	Description
	See Also

	ATTR_DEFAULT_PALETTE_TYPE
	Description
	See Also

	ATTR_DISPLAY_TYPE
	Description
	See Also

	ATTR_DOC_STAGGER_HORZ
	Description
	See Also

	ATTR_DOC_STAGGER_VERT
	Description
	See Also

	ATTR_DOCFRAME_HEIGHT
	Description
	See Also

	ATTR_DOCFRAME_WIDTH
	Description
	See Also

	ATTR_ERRMSG_FILENAME
	Description
	See Also

	ATTR_ERRMSG_HANDLER
	Description
	See Also

	ATTR_EVENT_HOOK
	Description
	See Also

	ATTR_FONT_CACHE_SIZE
	Description
	See Also

	ATTR_FONT_DIALOG
	Description
	See Also

	ATTR_FONT_MAPPER
	Description
	See Also

	ATTR_FRAME_HEIGHT
	Description
	See Also

	ATTR_FRAME_WIDTH
	Description
	See Also

	ATTR_HAVE_MOUSE
	Description
	See Also

	ATTR_HELP_CONTEXT
	Description
	See Also

	ATTR_HELP_HOOK
	Description
	See Also

	ATTR_ICON_HEIGHT
	Description
	See Also

	ATTR_ICON_WIDTH
	Description
	See Also

	ATTR_KEY_HOOK
	Description
	See Also

	ATTR_MEMORY_MANAGER
	Description
	See Also
	Example

	ATTR_MENU_HEIGHT
	Description
	See Also

	ATTR_MULTIBYTE_AWARE
	Description
	See Also

	ATTR_NATIVE_GRAPHIC_CONTEXT
	Description
	See Also

	ATTR_NATIVE_WINDOW
	Description
	See Also

	ATTR_NUM_TIMERS
	Description
	See Also

	ATTR_PRINTER_HEIGHT
	Description
	See Also

	ATTR_PRINTER_HRES
	Description
	See Also

	ATTR_PRINTER_VRES
	Description
	See Also

	ATTR_PRINTER_WIDTH
	Description
	See Also

	ATTR_PROPAGATE_NAV_CHARS
	Description
	SeeAlso

	ATTR_RESOURCE_FILENAME
	Description
	See Also

	ATTR_R40_TXEDIT_BEHAVIOR
	Description
	See Also

	ATTR_SCREEN_HEIGHT
	Description
	See Also

	ATTR_SCREEN_HRES
	Description
	See Also

	ATTR_SCREEN_VRES
	Description
	See Also

	ATTR_SCREEN_WIDTH
	Description
	See Also

	ATTR_SCREEN_WINDOW
	Description
	See Also

	ATTR_SUPPRESS_UPDATE_CHECK
	Description
	See Also

	ATTR_TASK_WINDOW
	Description
	See Also

	ATTR_TASKWIN_TITLE_RID
	Description
	See Also

	ATTR_TITLE_HEIGHT
	Description
	See Also

	ATTR_XVT_CONFIG
	Description
	See Also

	XVT Events
	EVENT_TYPE
	Event-Type
	Summary
	Description
	Implementation Note
	See Also
	Example

	E_CHAR
	Keyboard-Character Event
	Summary
	Description
	Processing Characters
	Modifier Keys
	Virtual Keys
	Key Hook Attribute

	Implementation Note
	See Also
	Example

	E_CLOSE
	Close-Window Event
	Summary
	Description
	Implementation Note
	See Also
	Example

	E_COMMAND
	Menu-Command Event
	Summary
	Description
	Implementation Note
	See Also
	Example

	E_CONTROL
	Control Activation Event
	Summary
	Description
	Implementation Note
	See Also

	E_CREATE
	Window Creation Event
	Summary
	Description
	Implementation Note
	See Also

	E_CXO
	Container Extension Object Event
	Summary
	Description
	Implementation Note
	See Also

	E_DESTROY
	Window Destruction Event
	Summary
	Description
	See Also

	E_FOCUS
	Window Focus Gain or Loss Event
	Summary
	Description
	Implementation Note
	See Also
	Example

	E_FONT
	Font/StyleMenu or Font-Selection-Dialog Event
	Summary
	Description
	See Also
	Example

	E_HELP
	Help-Request Event
	Summary
	Description
	Implementation Note
	See Also

	E_HSCROLL
	Horizontal Scrollbar Events
	Summary
	Description
	See Also

	E_MOUSE_DBL
	Mouse Double-Click Event
	Summary
	Description
	Double-Click Definition

	Implementation Note
	See Also
	Example:

	E_MOUSE_DOWN
	Mouse-Down Event
	Summary
	Description
	Implementation Note
	See Also

	E_MOUSE_MOVE
	Mouse-Movement Event
	Summary
	Description
	Implementation Note
	See Also

	E_MOUSE_UP
	Mouse-Up Event
	Summary
	Description
	Implementation Note
	See Also

	E_QUIT
	Quit-Application Event
	Summary
	Description
	Implementation Note
	See Also
	Example

	E_SIZE
	Resize-Window Event
	Summary
	Description
	See Also
	Example

	E_TIMER
	Interval-Elapsed Event
	Summary
	Description
	Implementation Note
	See Also

	E_UPDATE
	Window-Update Event
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	E_USER
	Application-Generated Event
	Summary
	Description
	See Also

	E_VSCROLL
	Vertical Scrollbar Event
	Summary
	Description
	See Also

	XVT Data Types
	far
	Global-Pointer Keyword
	Description
	See Also

	huge
	Global-Pointer Keyword
	Description
	See Also

	near
	Global-Pointer Keyword
	Description
	See Also

	ACCESS_CMD
	CMD Parameter to xvt_tx_get_line
	See Also

	ASK_RESPONSE
	Response From xvt_dm_post_ask
	See Also

	BOOLEAN
	Boolean
	Summary
	Description
	See Also
	Example

	CB_FORMAT
	Clipboard Format
	See Also

	CBRUSH
	Color Brush Tool
	Summary
	Description
	See Also
	Example

	COLOR
	Color
	Summary
	Description
	See Also

	CONTROL_INFO
	Information About Activated Control
	Summary
	Description
	See Also

	CPEN
	Color Pen Tool
	Summary
	Description
	Implementation Note
	See Also
	Example

	CURSOR
	Cursor Type
	Summary
	Description
	See Also

	DATA_PTR
	Pointer to Arbitrary Data
	Summary
	Description
	See Also
	Example

	DIRECTORY
	Directory
	Summary
	Description
	Implementation Note
	See Also
	Example

	DRAW_CTOOLS
	Color Drawing Tool Set
	Summary
	Description
	See Also
	Example

	DRAW_MODE
	Drawing Mode
	See Also

	EOL_FORMAT
	Terminator found by xvt_str_find_eol
	See Also

	EVENT
	Event Prototype
	Summary
	Description
	See Also

	EVENT_HANDLER
	Window Event Handler Function Prototype
	Summary
	Description
	Implementation Note
	See Also

	EVENT_MASK
	Event Mask
	Summary
	Description
	See Also

	EVENT_TYPE
	Event Type
	See Also

	FILE_SPEC
	Filename Specification
	Summary
	Description
	Implementation Note
	See Also

	FL_STATUS
	File Dialog Result
	See Also

	GHANDLE
	Global Memory Handle
	Summary
	Description
	Implementation Note
	See Also

	MENU_ITEM
	Menu Item
	Summary
	Description
	See Also

	MENU_TAG
	Menu-Item Tag
	Summary
	Description
	See Also
	Example

	PAT_STYLE
	Pattern Style
	See Also

	PEN_STYLE
	Pen Style
	See Also

	PICTURE
	Encapsulated Picture
	Summary
	Description
	Implementation Note
	See Also

	PNT
	Point
	Summary
	Description
	Implementation Note
	See Also

	PRINT_RCD
	Print Record
	Summary
	Description
	See Also

	RCT
	Rectangle
	Summary
	Description
	See Also

	SCROLL_CALLBACK
	Text Edit Scroll Callback Function Prototype
	Summary
	Description
	Implementation Note
	See Also

	SCROLL_CONTROL
	Scrollbar Component
	See Also

	SCROLL_TYPE
	Type of Scrollbar
	See Also

	SLIST
	String List
	Summary
	Description
	See Also

	SLIST_ELT
	String List Element
	Summary
	Description
	See Also

	T_CNUM
	Text Edit Character Number
	Summary
	Description
	See Also

	T_CPOS
	Text Edit Character Position
	Summary
	Description
	See Also

	T_LNUM
	Text Edit Line Number
	Summary
	Description
	See Also

	T_PNUM
	Text Edit Paragraph Number
	Summary
	Description
	See Also

	TXEDIT
	Text Edit Object
	Summary
	Description
	See Also

	UNIT_TYPE
	Identify Coordinate System used for WIN_DEF Elements
	See Also

	WIN_DEF
	Specify Window, Dialog, and Control Creation
	Summary
	Description
	Implementation Note
	See Also

	WIN_TYPE
	Window-Type

	WINDOW
	Window Descriptor
	Summary
	Description
	Implementation Note
	See Also

	XVT_BYTE
	Arbitrary Data
	Summary
	Description
	See Also

	XVT_CODESET_MAP
	Character Codeset Mapping Descriptor
	Summary
	Description
	See Also
	XVT_COLLATE_FUNCTION
	Application-supplied String Collation Function Prototype
	Summary
	Description
	Implementation Note
	See Also

	XVT_COLOR_ACTION
	Color Setting Action
	Summary
	Description
	See Also

	XVT_COLOR_COMPONENT
	Color Component Types
	Summary
	Description
	See Also

	XVT_COLOR_TYPE
	Control Color Component
	Summary
	Description
	See Also

	XVT_CONFIG
	System-Initialization Structure
	Summary
	Description
	Implementation Note
	See Also

	XVT_CXO
	Container Extension Object
	Summary
	Description
	Implementation Note
	See Also

	XVT_CXO_EVENT_HANDLER
	Container Extension Object Event Handler Function Prototype
	Summary
	Description
	Implementation Note
	See Also

	XVT_CXO_INSERTION
	Insertion Location for Container Extension Objects
	See Also

	XVT_DISPLAY_TYPE
	Value for ATTR_DISPLAY_TYPE
	See Also

	XVT_ENUM_CHILDREN
	Prototype for Application-supplied Functions Passed to xvt_win_enum_wins
	Summary
	Description
	Return Value
	See Also

	XVT_ERRID
	Error Message Identifier
	Summary
	Description
	See Also

	XVT_ERRMSG
	Error Message Object
	Summary
	Description
	See Also

	XVT_ERRMSG_HANDLER
	Error Message Handler Function Prototype
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	XVT_ERRSEV
	Error Severity Type
	See Also

	XVT_FNTID
	Object That Identifies a Logical Font
	Summary
	Description
	Implementation Note
	See Also

	XVT_FONT_ATTR_MASK
	Logical Font Attribute Type
	Summary
	Description
	See Also

	XVT_FONT_DIALOG
	Application-Supplied Font Selection Dialog Function Prototype
	Summary
	Description
	Implementation Note
	See Also

	XVT_FONT_MAPPER
	Application-Supplied Font Mapper Function Prototype
	Summary
	Description
	Implementation Note
	See Also

	XVT_FONT_STYLE_MASK
	Logical Font Style Type
	Summary
	Description
	See Also

	XVT_FORMAT_HANDLER
	Prototype for Application-Supplied Functions for String Formatting
	Summary
	Description
	Return Value
	See Also
	XVT_HELP_FLAVOR
	Configuration of the Help Viewer
	See Also

	XVT_HELP_INFO
	Help File Information Handle
	Summary
	Description
	See Also

	XVT_HELP_TID, NULL_TID
	Help Topic Identifier
	Summary
	Description
	See Also

	XVT_HTML_XRC_INTERCEPT_HANDLER
	Prototype for XRC Intercept Handler for HTML Control
	Summary
	Description
	Return Value
	See Also
	Example

	XVT_IMAGE
	Image Data Object
	Summary
	Description
	See Also

	XVT_IMAGE_ATTR
	Attribute used in Image Object Creation
	Summary
	Description
	See Also

	XVT_IMAGE_FORMAT
	Color Format Enumerated Type for Images
	See Also

	XVT_IOSTR_CONTEXT
	Opaque Type for Pointer to Stream Data Encapsulation
	Summary
	Description
	See Also

	XVT_IOSTR_RWFUNC
	Function Signature for Stream Read/Write Functions
	Summary
	Description
	See Also

	XVT_IOSTR_SZFUNC
	Function Signature for Stream Size Function
	Summary
	Description
	See Also

	XVT_IOSTREAM
	Input/Output Stream Object
	Summary
	Description
	See Also

	XVT_MEM
	Structure of Memory Manager Functions
	Summary
	Description
	See Also

	XVT_NAV
	Navigation Object
	Summary
	Description
	See Also

	XVT_NOTEBK_ENUM_PAGES
	Callback Function Prototype for xvt_notebk_enum_pages
	Summary
	Description
	Return Value
	Implementation Note
	See Also
	Example

	XVT_PALETTE
	Color Palette Object
	Summary
	Description
	See Also

	XVT_PALETTE_ATTR
	Attribute used in Palette Object Creation
	Summary
	Description
	See Also

	XVT_PALLET_TYPE
	Color Palette Types
	See Also

	XVT_PATTERN
	Complex String Pattern Descriptor
	Summary
	Description
	See Also

	XVT_PG_ORIENT
	Page Orientation
	Summary
	Description
	See Also

	XVT_PG_SIZE
	Page Dimensions
	Summary
	Description
	See Also

	XVT_PG_UNITS
	Page Units
	Summary
	Description
	XVT_PIXMAP
	Color Image Object
	Summary
	Description
	See Also

	XVT_PIXMAP_ATTR
	Attribute used in Pixmap Object Creation
	Summary
	Description
	See Also

	XVT_PIXMAP_FORMAT
	Color Image Types
	See Also

	XVT_POPUP_ALIGNMENT
	Aligns Popup Window
	Summary
	Description
	See Also

	XVT_PRINT_FUNCTION
	Application-Supplied Printing Function Prototype
	Summary
	Description
	Implementation Note
	See Also

	XVT_RES
	Resource ID
	Summary
	Description
	Implementation Note
	See Also

	XVT_TREEVIEW_NODE
	Treeview node
	Summary
	Description
	Implementation Note
	See Also

	XVT_UBYTE
	Non-string Unsigned One-byte Storage
	Summary
	Description
	See Also

	XVT_WCHAR
	Wide Character Type
	Summary
	Description
	See Also

	XVT Constants
	A_* Values for ACCESS_CMD
	CMD Parameter to xvt_tx_get_line
	Summary
	Description
	See Also

	CB_* Values for CB_FORMAT
	Clipboard Format
	Summary
	Description
	See Also
	Example

	CHAR_MAX
	Maximum char Value
	Summary
	Description
	See Also

	COLOR_*, COLOR_INVALID Constants
	Predefined Colors
	Summary
	Description
	Implementation Note
	See Also

	CTL_FLAG_* Options
	Control Flags
	Summary
	Description
	See Also

	CURSOR_* Options
	Cursor Shape
	Summary
	Description
	See Also
	Example

	DEFAULT_*_MENU Values
	Standard Menu XRC Constants
	Summary
	Description
	Implementation Note
	See Also
	Example

	DIR_TYPE
	File Type for Directories
	Summary
	Description
	See Also

	DLG_* Control IDs
	Predefined Control Ids
	Summary
	Description
	Implementation Note
	See Also
	Example

	DLG_FLAG_* Options
	Dialog Option Flags
	Summary
	Description
	See Also

	EM_* Constants
	Event Mask Constants
	Summary
	Description
	See Also

	EOL_* VALUES for EOL_FORMAT
	Terminator Found by xvt_str_find_eol
	Summary
	Description
	See Also

	EOL_SEQ
	Local End-of-Line Sequence Constant
	Summary
	Description
	Implementation Note
	See Also
	Example

	FALSE
	False Value
	Summary
	Description
	See Also
	Example

	FL_* Values for FL_STATUS
	File Dialog Result
	Summary
	Description
	See Also
	Example

	FONT_MENU_TAG
	Identifier for Entire Font/Style Menu
	Summary
	Description
	See Also

	HSF_* Option Flags
	Help System Flags
	Summary
	Description
	See Also

	INT_MAX
	Maximum int Value
	Summary
	Description
	See Also

	K_* Key Codes
	Virtual Key Codes
	Summary
	Description
	Implementation Note
	See Also

	LONG_MAX
	Maximum long Value
	Summary
	Description
	See Also

	M_* Values for DRAW_MODE
	Drawing Mode
	Summary
	Description
	Implementation Note
	See Also
	Example

	M_EDIT_*, M_FILE_*, M_HELP_* Menu Tags
	Predefined Menu Tags
	Summary
	Description
	Implementation Note
	See Also

	M_FONT and M_STYLE
	Predefined Menu Tags
	Summary
	Description
	See Also

	MAX_MENU_TAG
	Upper Bound of Application Menu Tag Values
	Summary
	Description
	See Also

	NO_STD_ABOUT_BOX
	Standard About Box Removal Constant for XRC
	Summary
	Description
	Example

	NO_STD_*_MENU Values
	Standard Menu Removal Constants for XRC
	Summary
	Description
	See Also
	Example

	NULL Constants
	NULL
	NULL Value Macro
	Summary
	Description
	See Also
	Example

	NULL_FNTID
	NULL Font ID Macro
	Summary
	Description
	See Also

	NULL_IMAGE
	NULL Image Macro
	Summary
	Description
	See Also
	Example

	NULL_PALETTE
	NULL Palette Macro
	Summary
	Description
	See Also
	Example

	NULL_PICTURE
	NULL Picture Macro
	Summary
	Description
	See Also
	Example

	NULL_PIXMAP
	NULL Pixmap Macro
	Summary
	Description
	See Also
	Example

	NULL_TXEDIT
	NULL Text Edit Object
	Summary
	Description
	See Also

	NULL_WIN
	NULL Appropriate for Window Checks
	Summary
	Description
	See Also

	P_* Values for PEN_STYLE
	Pen Style
	Summary
	Description
	Implementation Note
	See Also

	PAT_* Values for PAT_STYLE
	Pattern Style
	Summary
	Description
	See Also

	RESP_* Values for ASK_RESPONSE
	Response from xvt_dm_post_ask
	Summary
	Description
	See Also

	SC_* Values for SCROLL_CONTROL
	Scrollbar Component
	Summary
	Description
	See Also

	SCREEN_WIN
	Application Container Window
	Summary
	Description
	Implementation Note
	See Also

	*SCROLL Values for SCROLL_TYPE
	Type of Scrollbar
	Summary
	Description
	See Also

	SEV_* Values for XVT_ERRSEV
	Error Severity Type
	Summary
	Description
	See Also

	SHRT_MAX
	Maximum Short Value
	Summary
	Description
	See Also

	Software Identifiers
	Software Version Identifiers

	SZ_CLASS_NAME
	Maximum Length of a Class Name
	Summary
	Description

	SZ_FNAME
	Maximum Size of Filename
	Summary
	Description
	See Also

	SZ_LEAFNAME
	Maximum Size of Directory or Filename
	Summary
	Description
	See Also
	Example

	TASK_WIN
	Task Container Window
	Summary
	Description
	Implementation Note
	See Also

	TL_* Constants
	Standard Tool Constants
	Summary
	Description
	See Also

	TRUE
	True Value
	Summary
	Description
	See Also
	Example

	TX_* Attributes
	Text Edit Attributes
	Summary
	Description
	See Also
	Example

	U_* Values for UNIT_TYPE
	Identify Coordinate System used for WIN_DEF Elements
	Summary
	Description
	See Also

	UCHAR_MAX
	Max Unsigned Char Value
	Summary
	Description
	See Also

	UNIT_MAX
	Max Unsigned int Value
	Summary
	Description
	See Also

	ULONG_MAX
	Max Unsigned Long Value
	Summary
	Description
	See Also

	USHRT_MAX
	Max Unsigned Short Value
	Summary
	Description
	See Also

	W_*, WC_*, WD_*, Values for WIN_TYPE
	Window-Type
	Summary
	Description
	See Also

	WSF_* Options Flags
	Window-Creation Flags
	Summary
	Description
	See Also
	Example

	XVT_CALLCONV*
	Linkage Macros
	Summary
	Description
	See Also
	Example

	XVT_CLUT_SIZE
	Maximum Size of an Image Object Color Look-Up Table
	Summary
	Description
	See Also

	XVT_COLOR_*
	Color Constants
	Summary
	Description
	See Also

	XVT_COLOR_GET_BLUE
	Returns the Blue Component of a Color
	Summary
	Description
	See Also

	XVT_COLOR_GET_GREEN
	Returns the Green Component of a Color
	Summary
	Description
	See Also

	XVT_COLOR_GET_RED
	Returns the Red Component of a Color
	Summary
	Description
	See Also

	XVT_CTOOLS_*
	User-Modifiable Drawing Tool Constants
	Summary
	Description

	XVT_CXO_*_MSG
	Container Extension Object Message Constants
	Summary
	Description
	Implementation Note
	See Also
	Example

	XVT_CXO_POS_* Values for XVT_CXO_INSERTION
	Container Extension Object Insertion Type
	Summary
	Description
	Implementation Note
	See Also

	XVT_DISPLAY_* Values
	Value for ATTR_DISPLAY_TYPE
	Summary
	See Also

	XVT_ESC_*
	XVT Escape Codes
	Description
	See Also

	XVT_FA_* Constants
	Logical Font Attribute Constants
	Summary
	Description
	See Also
	Example

	XVT_FAST_WIDTH
	Fastest Pen Width For CPEN’s
	Summary
	Description
	Implementation Note
	See Also

	XVT_FFN_* Constants
	Logical Font Family Name Constants
	Summary
	Description
	See Also

	XVT_FILE_ATTR_* Constants
	XVT File Attribute Constants
	Summary
	Description
	See Also
	Example

	XVT_FILESYS_* Values
	File System Macros
	Summary
	Description
	Implementation Note
	See Also
	Example

	XVT_FS_* Constants
	Logical Font Style Constants
	Summary
	Description
	See Also

	XVT_HELP_* Values for XVT_HELP_FLAVOR
	Configuration of the Help Viewer
	Summary
	Description
	See Also

	XVT_IMAGE_* Values for XVT_IMAGE_FORMAT
	Color Format Enumerated Type for Images
	Summary
	Description
	See Also

	XVT_MAKE_COLOR
	Create a Color
	Summary
	Description
	Return Value
	See Also
	Example

	XVT_MAX_MB_SIZE
	Maximum Size of the Largest Multibyte Character
	Summary
	Description
	Example

	XVT_MAX_WINDOW_RECT
	Maximum Window Size Constant
	Summary
	Description
	See Also

	XVT_MOD_KEY
	Modify Keys
	Summary
	Description
	See Also

	XVT_NAV_INSERTION
	Navigation Object Insertion Flag
	Summary
	Description
	See Also

	XVT_PALLETE_* Values
	Color Pallet Types
	Summary
	Description
	See Also

	XVT_PALETTE_SIZE
	Maximum of a Pallette Object
	Summary
	Description
	See Also

	XVT_PIXMAP_* Values
	Color Image Types
	Summary
	Description
	See Also

	XVT_STRING_RES_BASE
	Start of XVT String Constants
	Summary
	Description

	XVT_TIMER_ERROR
	Timer Error
	Summary
	Description
	See Also

	XVT_TPC_* Constants
	Help System Macros
	Summary
	Description
	See Also

	XVTWS, *WS Values
	Windowing System Macros
	Summary
	Description
	Implementation Note
	See Also

	XVT Functions
	Listed by Object

	Miscellaneous Functions
	max
	Get Maximum of Two Quantities
	Summary
	Description
	Return Value
	See Also
	Example

	min
	Get Minimum of Two Quantities
	Summary
	Description
	Return Value
	See Also
	Example

	NOREF
	Avoid "Unused Argument" Warning
	Summary
	Description
	Example

	PTR_LONG
	Cast Pointer to Long
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_app_*
	Application Objects (Global Executable Context)

	xvt_app_allow_quit
	Agree to Termination of Application
	Summary
	Description
	Implementation Note
	See Also
	Example

	xvt_app_create
	Initiate and Initialize System
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_app_destroy
	Terminate Execution
	Summary
	Description
	See Also
	Example

	xvt_app_escape
	Perform Platform-Specific Action
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_app_get_default_ctools
	Get Normal Color Drawing Tools
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_app_get_file
	Get Next File to be Printed or Opened
	Summary
	Description
	Return Value
	Implementation Note
	See Also
	Example

	xvt_app_get_files_count
	Get Count of Files to be Printed or Opened
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_app_process_pending_events
	Process Pending Events
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_app_set_file_processed
	Indicate that File has been Processed
	Summary
	Description
	Implementation Note
	See Also
	Example

	xvt_cb_*
	Clipboard Objects

	xvt_cb_alloc_data
	Allocate Memory for Clipboard Data
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_cb_close
	Close the Clipboard
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_cb_free_data
	Free Memory for Clipboard Data
	Summary
	Description
	See Also
	Example

	xvt_cb_get_data
	Get Data from Clipboard
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_cb_has_format
	Test If Format is on Clipboard
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_cb_open
	Open Clipboard for Reading or Writing
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_cb_put_data
	Put Data on Clipboard
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_ctl_*
	Control Functions

	xvt_ctl_check_radio_button
	Check a Radio Button in a Window
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_ctl_create
	Create a Control in a Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_ctl_create_def
	Create a Control from a Data Structure
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_ctl_get_color_component
	Get the Control Color for a Color Type From a Single Control
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also
	xvt_ctl_get_colors
	Get the Colors From a Single Control
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also

	xvt_ctl_get_font
	Get the Logical Font from a Single Control
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also

	xvt_ctl_get_id
	Get a Control ID
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also

	xvt_ctl_get_native_color_component
	Get the Native Control Color for a Control Type From a Single Control Component
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also
	xvt_ctl_get_native_colors
	Get the Native Default Colors for a Control Type
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also

	xvt_ctl_get_text_sel"
	Get Text Selection in Edit Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_ctl_is_checked
	Get Checked State of Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_ctl_set_checked
	Check a Check Box Control
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_ctl_set_color_component
	Sets the Control Color for a Color Type Used by a Single Control
	Summary
	Description
	Parameter and Validity Conditions
	See Also
	xvt_ctl_set_colors
	Changes Control Colors Used by a Single Control
	Summary
	Description
	Parameter and Validity Conditions
	See Also

	xvt_ctl_set_font
	Changes a Single Control’s Logical Font
	Summary
	Description
	Parameter and Validity Conditions
	See Also

	xvt_ctl_set_text_sel
	Select Text in Edit Control
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_ctl_unset_color_component
	Unsets the Control Color for a Color Type Used by a Single Control
	Summary
	Description
	Parameter and Validity Conditions
	See Also
	xvt_cxo_*
	Container Extension Object Functions

	xvt_cxo_call_next
	Call the Next CXO in the Chain
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also
	Example

	xvt_cxo_create
	Create a CXO
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also
	Example

	xvt_cxo_destroy
	Destroy a CXO
	Summary
	Description
	Parameter and Validity Conditions
	See Also
	Example

	xvt_cxo_dispatch_msg
	Send a Message to a CXO
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also
	Example

	xvt_cxo_get_class_name
	Get the Class Name of a CXO
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_cxo_get_data
	Get State Data Associated With a CXO
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_cxo_get_event_handler
	Retrieve Event Handling Function for a CXO
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_cxo_get_event_mask
	Get Event Mask for a CXO
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_cxo_get_win
	Get Window Associated With a CXO
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_cxo_is_valid
	Check the Validity of a CXO
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_cxo_set_data
	Associate State Data With a CXO
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_cxo_set_event_handler
	Set CXO Event Handler
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_cxo_set_event_mask
	Specify Event Restrictions For a CXO
	Summary
	Description
	Implementation Note
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_debug_*
	Debug Functions

	xvt_debug
	Conditionally Append Debugging Information to File
	Summary
	Description
	Implementation Note
	See Also
	Example

	xvt_debug_printf
	Append Debugging Information to File
	Summary
	Description
	See Also
	Example

	xvt_dlg_*
	Dialog Functions

	xvt_dlg_create_def
	Create a Dialog and Controls from a Data Structure
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_dlg_create_res
	Creates a Dialog from a Resource Definition
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_dm_*
	Dialog Management Functions

	xvt_dm_post_about_box
	Display About Box
	Summary
	Description
	See Also

	xvt_dm_post_ask
	Ask User a Question
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_dm_post_color_sel
	Post Standard Dialog to Select a Color
	Summary
	Description
	Return Value

	xvt_dm_post_ctools_sel
	Set a DRAW_TOOLS struct in a Standard Modal Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dm_post_dir_sel
	Post Standard Dialog to Select a Directory
	Summary
	Description
	Return Value
	See Also

	xvt_dm_post_error
	Display Alert Box with Error Icon
	Summary
	Description
	See Also
	Example

	xvt_dm_post_fatal_exit
	Display Error Message and Terminate
	Summary
	Description
	See Also
	Example

	xvt_dm_post_file_open
	Get File to Open with Standard Dialog
	Summary
	Description
	Return Value
	Implementation Note
	See Also
	Example

	xvt_dm_post_file_save
	Post Standard Dialog to get Filename for Saving
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_dm_post_font_sel
	Call the XVT Native Font Selection Dialog
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_dm_post_message
	Output Emergency Message
	Summary
	Description
	See Also

	xvt_dm_post_note
	Display Alert Box with Note Icon
	Summary
	Description
	See Also
	Example

	xvt_dm_post_page_setup
	Display Standard Page Setup Dialog
	Summary
	Description
	Return Value
	Implementation Note
	See Also
	Example

	xvt_dm_post_string_prompt
	Put Up a Text-response Dialog
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_dm_post_warning
	Display Alert Box with Warning Icon
	Summary
	Description
	See Also
	Example

	xvt_dwin_*
	Drawable Window Functions

	xvt_dwin_clear
	Clear a Window’s Client Area
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_dwin_close_pict
	Finish an Encapsulated Picture
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_dwin_draw_aline
	Draw Line with Arrows at Ends
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_draw_arc
	Draw the Arc of an Oval
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_draw_icon
	Draw an Icon
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_draw_image
	Draw an Image in a Window or Pixmap
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_draw_line
	Draw Line from Current Position to Point
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_draw_oval
	Draw Oval
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_draw_pict
	Draw Encapsulated Picture
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_draw_pie
	Draw a Pie Section of an Oval
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_draw_pmap
	Draw a Pixmap in a Window or Pixmap
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_draw_polygon
	Draw a Polygon
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_draw_polyline
	Draw a Polyline
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_draw_rect
	Draw a Rectangle
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_draw_roundrect
	Draw a Rectangle with Rounded Corners
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_draw_set_pos
	Move Pen Position to Point
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_draw_text
	Draw Text String
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_get_clip
	Get a Clipping Rectangle for a Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_dwin_get_draw_ctools
	Get Color Drawing Tools
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_get_font*
	xvt_dwin_get_font* Funtions

	xvt_dwin_get_font
	Get Logical Font Information for a Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_get_font_app_data
	Get the Application Data From a Window’s Font
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_get_font_family
	Get the Family from a Window’s Font
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_get_font_family_mapped
	Get the Mapped Family from a Window’s Font
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_get_font_metrics
	Get Mapped Logical Font Metrics for a Window
	Summary
	Description
	Implementation Note
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_dwin_get_font_native_desc
	Get The Native Font Descriptor from a Window’s Font
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_get_font_size
	Get the Size from a Window’s Font
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_get_font_size_mapped
	Get the Mapped Size from a Window’s Font
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_get_font_style
	Get the Style from a Window’s Font
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_get_font_style_mapped
	Get the Mapped Style from a Window’s Font
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_get_text_width
	Get Width of Text String
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_invalidate_rect
	Schedule a Rectangular Area for Updating
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_dwin_is_update_needed
	Test if a Rectangle Requires Updating
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_dwin_open_pict
	Prepare to Encapsulate Picture
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_scroll_rect
	Scroll a Window’s Pixels
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_dwin_set_back_color
	Set Background Color
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_dwin_set_cbrush
	Set Color Brush Tool
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_set_clip
	Set a Clipping Rectangle for Window
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_set_cpen
	Set Color Pen Tool
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_dwin_set_draw_ctools
	Set the Color Drawing Tools
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_set_draw_mode
	Set the Current Drawing Mode
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_dwin_set_font*
	xvt_dwin_set_font_* Functions

	xvt_dwin_set_font
	Set Logical Font Information for a Window
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_set_font_app_data
	Set Application Data for a Logical Font in a Window
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_set_font_family
	Set Logical Font Family for a Window
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_set_font_native_desc
	Set Logical Font Native Descriptor for a Window
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_set_font_size
	Set Logical Font Size for a Window
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_set_font_style
	Set Logical Font Style for a Window
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_set_fore_color
	Set Foreground Color
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_dwin_set_std_cbrush
	Set a Standard Brush
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_set_std_cpen
	Set a Standard Pen Tool
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_dwin_update
	Force Update Events to be Processed
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_errid_*
	Error Message Identifiers

	xvt_errid_create_*
	Generate Error Message Identifiers
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_errid_get_*
	Access Error Identifier Components
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_errid_is_*
	Compare Error Message Identifier Components
	Summary
	Description
	Return Value
	TRUE if a given field matches; FALSE otherwise.

	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_errmsg_*
	Error Handling Functions

	xvt_errmsg_def_*
	Predefine Error Messages for errscan
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example
	ERRCODES.TXT:
	xvt_perr.h:

	xvt_errmsg_get_*
	Get Information About a Signaled Error
	Summary
	Description
	Implementation Note
	Parameter Validity and Error Conditions
	See Also

	xvt_errmsg_get_text
	Get a Message from the Error Message File
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_errmsg_pop_handler
	Remove a Temporary Error Handler
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_errmsg_push_handler
	Establish a Temporary Error Handler
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_errmsg_sig
	Signal an Error
	Summary
	Description
	Return Value
	See Also

	xvt_errmsg_sig_if
	Conditionally Signal an Error
	Summary
	Description
	Return Value
	See Also

	xvt_errmsg_sig_std
	Signal an Error with a Predefined Error Message
	Summary
	Description
	Return Value
	See Also

	xvt_errmsg_sig_std_if
	Conditionally Signal an Error with a Predefined Error Message
	Summary
	Description
	Return Value
	See Also

	xvt_event_*
	Event Access Functions

	xvt_event_get_font
	Get XVT_FNTID Contained In E_FONT Event
	Summary
	Description
	Parameter Validity and Error Conditions
	Return Value
	See Also

	xvt_event_is_virtual_key
	Check Virtual Key
	Summary
	Description
	Return Value
	See Also

	xvt_event_set_font
	Set Logical Font Data in the E_FONT Structure
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_fmap_*
	Font Mapper Functions

	xvt_fmap_get_families
	List All Logical Font Families
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_fmap_get_family_sizes
	List Available Sizes for a Logical Font Family
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_fmap_get_family_styles
	List Available Styles for a Logical Font Family
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_fmap_get_familysize_styles
	List Available Styles for a Logical Font Family and Size
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_fmap_get_familystyle_sizes
	List Available Sizes for a Logical Font Family and Style
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_font_*
	Font Functions

	xvt_font_copy
	Copy a Logical Font
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_font_create
	Create a Logical Font
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_font_deserialize
	Deserialize a Previously Serialized Logical Font
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_font_destroy
	Destroy a Logical Font
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_font_get_app_data
	Get Logical Font Application Data
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_font_get_family
	Get Logical Font Family
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_font_get_family_mapped
	Get Mapped Logical Font Family
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_font_get_metrics
	Get a Logical Font’s Leading, Ascent, and Descent
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_font_get_native_desc
	Get Native Font Descriptor
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_font_get_size
	Get Logical Font Size
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_font_get_size_mapped
	Get Mapped Logical Font Size
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_font_get_style
	Get Logical Font Style
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_font_get_style_mapped
	Get Mapped Logical Font Style
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_font_get_win
	Get Window Associated With a Logical Font
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_font_has_valid_native_desc
	Determine if Native Font Descriptor Is Valid
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_font_is_mapped
	Determine if a Logical Font is Mapped
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_font_is_print
	Determine if a Logical Font is Mapped to a Print Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_font_is_scalable
	Determine if a Mapped Logical Font can be Scaled
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_font_is_valid
	Determine if Font ID is Defined
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_font_map
	Map a Logical Font in the Context of a Window
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_font_map_using_default
	Invoke XVT Default Font Mapper
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_font_serialize
	Serialize a Logical Font
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_font_set_app_data
	Set Application Data for a Logical Font
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_font_set_family
	Set Logical Font Family
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_font_set_native_desc
	Set Native Font Descriptor
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_font_set_size
	Set Logical Font Size
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_font_set_style
	Set Logical Font Style
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_font_unmap
	Unmap a Logical Font
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_fsys_*
	File System Functions

	xvt_fsys_build_pathname
	Construct a Native Pathname
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_fsys_convert_dir_to_str
	Convert Directory to String Form
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_fsys_convert_str_to_dir
	Convert String Path to Directory
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_fsys_get_default_dir
	Get Default Directory
	Summary
	Description
	Return Value
	Implementation Note
	See Also
	Example

	xvt_fsys_get_dir
	Get Current Directory
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_fsys_get_file_attr
	Get a File Attribute
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_fsys_list_files
	List Filenames
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_fsys_parse_pathname
	Parse Multibyte String into Pathname Components
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_fsys_rem_file
	Delete a File from the System
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_fsys_restore_dir
	Restore Saved Directory
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_fsys_save_dir
	Save Current Directory
	Summary
	Description
	See Also
	Example

	xvt_fsys_set_dir
	Change Current Directory
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_fsys_set_dir_startup
	Change to Startup Directory
	Summary
	Description
	See Also
	Example

	xvt_fsys_set_file_attr
	Set the File Attribute
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_gmem_*
	Global Memory Management (Mac relocatable)

	xvt_gmem_alloc
	Allocate Global Memory Block
	Summary
	Description
	Return Value
	Implementation Note
	See Also

	xvt_gmem_free
	Free Global Memory Block
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_gmem_get_size
	Get Size of Global Memory Block
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_gmem_lock
	Lock Global Memory Block
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_gmem_realloc
	Reallocate Global Memory Block
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_gmem_unlock
	Unlock Global Memory Block
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_help_*
	Help Functions

	xvt_help_assoc_all
	Associate Help Topics with all Objects
	Summary
	Description
	Parameter Validity and Error Conditions
	Return Value
	See Also

	xvt_help_begin_objclick
	Begin Object-Click Help Mode
	Summary
	Description
	Return Value
	Parameter Validy and Error Conditions
	See Also

	xvt_help_close_helpfile
	Close an Open Help File
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_help_disassoc_all
	Remove Help Topic Associations from all Objects
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_help_display_topic
	Display a Help Topic
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also
	Example

	xvt_help_end_objclick
	Cancel Object-Click Help Mode
	Summary
	Description
	See Also

	xvt_help_get_flavor
	Get Help Viewer Flavor to be Used by the Application
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_help_get_menu_assoc
	Get Help Topic Associated with a Menu Item
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also

	xvt_help_get_win_assoc
	Retrieve the Help Topic Associated with an Object
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also

	xvt_help_open_helpfile
	Load a Help File
	Summary
	Description
	Return Value
	Implementation Note
	See Also
	Example

	xvt_help_process_event
	Pass Event to Help Event Handler
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also
	Example

	xvt_help_search_topic
	Display a Help Topic and Begin a Keyword Search
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also

	xvt_help_set_menu_assoc
	Associate a Help Topic with a Menu Item
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also
	Example

	xvt_help_set_win_assoc
	Associate a Help Topic with a Window, Dialog, or Control
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also
	Example

	xvt_html_*
	HTML Control Functions

	xvt_html_get_url
	Get url of HTML Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_html_set_url
	Set url of HTML Control
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_html_get_url_intercept
	Retrieve URL Intercept Handler for HTML Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_html_set_url_intercept
	Set url Intercept Handler for HTML Control
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_*
	Image Functions

	xvt_image_create
	Create a New Image
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_duplicate
	Make a copy of an image
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_image_destroy
	Destroy an Image
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_fill_rect
	Fill a Rectangular Area of an Image
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_image_get_clut
	Get a Color Entry Look-up Table
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_get_dimensions
	Get an Image’s Width and Height
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_get_format
	Get an Image’s Format Type
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_get_from_pmap
	Transfer a Pixmap to an Image
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_image_get_ncolors
	Get the Number of Colors in an Image
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_get_pixel
	Get the Color of a Pixel in an Image
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_get_resolution
	Get the Horizontal and Vertical Resolution of an Image
	Summary
	Description
	Return value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_image_get_scanline
	Get a Pointer to a Scanline in an Image
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_image_read_*
	Image Read Functions

	xvt_image_read
	Read an Image from a File
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_read_bmp
	Create an Image Read from a Named BMP File
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_image_read_bmp_from_iostr
	Create an Image Read from an Input Stream of BMP Data
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_image_read_gif
	Create an Image Read from a Named GIF File
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_image_read_gif_from_iostr
	Create an Image Read from an Input Stream of GIF Data
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_image_read_jpg
	Create an Image Read from a Named JPEG File
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_image_read_jpg_from_iostr
	Create an Image Read from an Input Stream of JPEG Data
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_image_read_macpict
	Create an Image Read from a Named Macintosh PICT File
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_image_read_macpict_from_iostr
	Create an Image Read from an Input Stream of Macintosh PICT Data
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_image_read_xbm
	Create an Image Read from a Named XBM File
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_read_xbm_from_iostr
	Create an Image Read from an Input Stream of XBM Data
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_image_read_xpm
	Create an Image from a Named XPM File
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_read_xpm_from_iostr
	Create an Image Read from an Input Stream of XPM Data
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_image_set_clut
	Set a Color Look-up Table Entry
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_set_ncolors
	Set the Number of Colors Used by an Image
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_set_pixel
	Set the Value of a Pixel In an Image
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_image_set_resolution
	Set the Horizontal and Vertical Resolution of an Image
	Summary
	Description
	Return value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_image_transfer
	Copy a Portion of One Image to Another Image
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_write_bmp_to_iostr
	Write an Image in MS-Windows BMP Format to an I/O Stream
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_image_write_macpict_to_iostr
	Write an Image in Macintosh PICT Format to an Output Stream
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_iostr_*
	Input/Output Byte Stream Functions

	xvt_iostr_create_fread
	Create an I/O Stream for Reading Data from a File
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_iostr_create_fwrite
	Create an I/O Stream for Writing Data to a File
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_iostr_create_read
	Create an I/O Stream for Reading Data
	Summary
	Description
	Return Value
	See Also

	xvt_iostr_create_write
	Create an I/O Stream for Writing Data
	Summary
	Description
	Return Value
	See Also

	xvt_iostr_destroy
	Destroy an I/O Stream Object
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_iostr_get_context
	Returns the Context of a Stream Object
	Summary
	Description
	See Also

	xvt_list_*
	List Functions

	xvt_list_add
	Add String or Slist to a List Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_list_clear
	Clear List Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_list_count_all
	Count Items in List Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_list_count_sel
	Count Selected Items in List Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_list_get_all
	Get All Items in List Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_list_get_elt
	Get Indexed Item in List Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_list_get_first_sel
	Get First Selected Item in List Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_list_get_sel
	Get Selected Items in List Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_list_get_sel_index
	Get Index of First Selected Item in List
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_list_is_sel
	Test if Item is Selected in List Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_list_rem
	Delete Item in List Box
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_list_resume
	Resume List Control Updating
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_list_set_sel
	Set Selection State of Item in List Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_list_suspend
	Suspend Updating of List Control
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_mem_*
	Memory Allocation Functions

	xvt_mem_alloc
	Allocate Memory
	Summary
	Description
	Return Value
	See Also

	xvt_mem_free
	Free Memory
	Summary
	Description
	Parameter and Validity Conditions
	See Also

	xvt_mem_realloc
	Resize Memory
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_mem_rep
	Repeat Block of Data
	Summary
	Description
	Parameter and Validity Conditions
	Return Value
	See Also
	Example

	xvt_mem_zalloc
	Allocate Zeroed Memory
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_menu_*
	Menu Functions

	xvt_menu_get_font_sel
	Get the State of the Font/Style Selection Menu or Dialog
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_menu_get_tree
	Get Entire Menu
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_menu_popup
	Display Popup Menu Over a Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_menu_set_font_sel
	Set the State of the Font/Style Selection Menu or Dialog
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_menu_set_item_checked
	Check Menu Item
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_menu_set_item_enabled
	Enable Menu Item
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_menu_set_item_title
	Set Text of Menu Item
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_menu_set_tree
	Set Entire Menu
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_menu_update
	Display Menubar Changes
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_nav_*
	Navigation Functions

	xvt_nav_add_win
	Adds a Control or Child Window to a Navigation Object
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_nav_create
	Create a Navigation Object
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_nav_destroy
	Destroys a Navigation Object
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_nav_list_wins
	Retrieves the List of Controls or Child Windows from a Navigation Object
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_nav_rem_win
	Removes a Control or Child Window from the Navigation Object
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_notebk_*
	Notebook Functions

	xvt_notebk_add_page
	Add a Page to a Specific Tab in a Notebook Control
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_notebk_add_tab
	Add a Tab to a Notebook Control
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_notebk_create_face
	Create a Face for a Page
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_create_face_def
	Create a Face with Controls from an Array of Data Structures
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_create_face_res
	Create a Face from a Resource File
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_enum_pages
	Enumerate through All Pages and Apply the Function to Each Page
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_face
	Get the Face in the Notebk at Tab and Page
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_front_page
	Get the Current Front Page
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_num_pages
	Get the Number of Pages in the Specified Tab
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_num_tabs
	Get the Number of Tabs in a Notebk
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_page_data
	Get the Data Associated with a Page and Tab in a Notebk
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_page_from_face
	Get the Page, Tab, and Notebk Associated with a Specific Face
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_page_title
	Get the Page Title in a Notebk for Tab and Page
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_tab_image
	Get the Image for a Tab in a Notebk
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_notebk_get_tab_title
	Get the Title for a Tab in a Notebk
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_rem_page
	Remove a Page Attached to a Tab from the Notebk
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_rem_tab
	Remove a Tab in a Notebk
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_set_page_data
	Sets the Data for a Page
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_set_page_title
	Set the Title for a Page
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_set_front_page
	Set the Front Page
	Summary
	Description
	Parameter Validity and Error Conditions

	xvt_notebk_set_tab_image
	Set the Tab Image
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_set_tab_title
	Set the Tab Title
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_palet_*
	Palette Functions

	xvt_palet_add_colors
	Add Colors to a Palette
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_palet_add_colors_from_image
	Add Colors from an Image to a Palette
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_palet_create
	Create a New Palette
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_palet_default
	Get the Default Palette
	Summary
	Description
	Return Value
	See Also

	xvt_palet_destroy
	Destroy a Palette
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_palet_get_colors
	Get the Colors in a Palette
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_palet_get_ncolors
	Get the Number of Colors in a Palette
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_palet_get_size
	Get the Size of a Palette
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_palet_get_tolerance
	Get the Color-Match Tolerance of a Palette
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_palet_get_type
	Get the Type of a Palette
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_palet_set_tolerance
	Set the Color-Match Tolerance of a Palette
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_pattern_*
	Complex String Pattern Facility

	xvt_pattern_create
	Creates an XVT_PATTERN From a Pattern String
	Summary
	Description
	Caveats and Limitations

	Return Value
	Parameter and Validity Conditions
	See Also
	Examples

	xvt_pattern_destroy
	Destroys an XVT_PATTERN and Frees Associated Memory
	Summary
	Description
	Parameter and Validity Conditions
	See Also

	xvt_pattern_match
	Matches a String Against an XVT_PATTERN
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also

	xvt_pattern_format_string
	Matches and Transforms a String According to an XVT_PATTERN
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also
	xvt_pict_*
	Picture Objects

	xvt_pict_create
	Make Encapsulated Picture from Data
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_pict_destroy
	Free Encapsulated Picture
	Summary
	Description
	See Also
	Example

	xvt_pict_lock
	Get Pointer to Encapsulated Picture
	Summary
	Description
	Implementation Note
	Return Value
	See Also

	xvt_pict_unlock
	Unlock Picture
	Summary
	Description
	See Also

	xvt_pmap_*
	Pixmap Objects

	xvt_pmap_create
	Create a New Pixmap
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_pmap_destroy
	Destroy a Pixmap
	Summary
	Description
	See Also
	Example

	xvt_notebk_*
	Notebook Functions

	xvt_notebk_add_page
	Add a Page to a Specific Tab in a Notebook Control
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_notebk_add_tab
	Add a Tab to a Notebook Control
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_notebk_create_face
	Create a Face for a Page
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_create_face_def
	Create a Face with Controls from an Array of Data Structures
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_create_face_res
	Create a Face from a Resource File
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_enum_pages
	Enumerate through All Pages and Apply the Function to Each Page
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_face
	Get the Face in the Notebk at Tab and Page
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_front_page
	Get the Current Front Page
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_num_pages
	Get the Number of Pages in the Specified Tab
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_num_tabs
	Get the Number of Tabs in a Notebk
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_page_data
	Get the Data Associated with a Page and Tab in a Notebk
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_page_from_face
	Get the Page, Tab, and Notebk Associated with a Specific Face
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_page_title
	Get the Page Title in a Notebk for Tab and Page
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_get_tab_image
	Get the Image for a Tab in a Notebk
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_notebk_get_tab_title
	Get the Title for a Tab in a Notebk
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_rem_page
	Remove a Page Attached to a Tab from the Notebk
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_rem_tab
	Remove a Tab in a Notebk
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_set_page_data
	Sets the Data for a Page
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_set_page_title
	Set the Title for a Page
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_set_front_page
	Set the Front Page
	Summary
	Description
	Parameter Validity and Error Conditions

	xvt_notebk_set_tab_image
	Set the Tab Image
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_notebk_set_tab_title
	Set the Tab Title
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_print_*
	Printing Functions

	xvt_print_close
	Terminate Printing Manager
	Summary
	Description
	See Also
	Example

	xvt_print_close_page
	Finish Printer Page
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_print_create
	Get Printing Record
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_print_create_win
	Create Printing Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_print_destroy
	Free Print Record
	Summary
	Description
	See Also
	Example

	xvt_print_get_next_band
	Get Coordinates of next Printing Band
	Summary
	Description
	Return Value
	Implementation Note
	See Also
	Example

	xvt_print_is_valid
	Check Print Record
	Summary
	Description
	Return Value
	Implementation Note
	See Also
	Example

	xvt_print_open
	Initialize Printing Manager
	Summary
	Description
	Return Value
	Implementation Note
	See Also
	Example

	xvt_print_open_page
	Start New Page
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_print_set_page_orient
	Set the Orientation of the Printed Page
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_print_set_page_size
	Change the Printer Paper Size
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_print_start_thread
	Start Printing
	Summary
	Description
	Return Value
	Implementation Note
	See Also
	Example

	xvt_rect_*
	xvt_rect_get_height
	Get the Height of a Rectangle
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_rect_get_pos
	Get the Position of a Rectangle
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_rect_get_width
	Get the Width of a Rectangle
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_rect_has_point
	Test Whether a Point is Inside a Rectangle
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_rect_intersect
	Check if Rectangles Intersect
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_rect_is_empty
	Check for Empty Rectangle
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_rect_offset
	Offset Rectangle’s Coordinates
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_rect_set
	Set a Rectangle’s Coordinates
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_rect_set_empty
	Set Rectangle to Empty
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_rect_set_height
	Set the Height of a Rectangle
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_rect_set_pos
	Set the Position of a Rectangle
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_rect_set_width
	Set the Width of a Rectangle
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_res_*
	Resource Management Functions

	xvt_res_add_res
	Add a resource file to the application
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_res_free_menu_tree
	Free MENU_ITEM Tree
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_res_free_win_def
	Free WIN_DEF Array
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_res_get_*
	Get Resource File Functions

	xvt_res_get_dlg_data
	Get User Data String for Dialog Control
	Summary
	Description
	Return Value
	See Also

	xvt_res_get_dlg_def
	Load Dialog Definition from a Resource File
	Summary
	Description
	Return Value
	See Also

	xvt_res_get_font
	Get an XVT_FNTID from a Resource File
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_res_get_image
	Get an Image from a Resource File
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_res_get_image_data
	Get User Data String for an Image
	Summary
	Description
	Return Value
	See Also

	xvt_res_get_menu
	Load Menu Definition from a Resource File
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_res_get_menu_data
	Get User Data String for Menu
	Summary
	Description
	Return Value
	See Also

	xvt_res_get_str
	Get String Resource
	Summary
	Description
	Return Value
	Implementation Note
	See Also
	Example

	xvt_res_get_str_list
	Get List String Resources
	Summary
	Description
	Return Value
	Implementation Note
	See Also
	Example

	xvt_res_get_win_data
	Get User Data String for Window Control
	Summary
	Description
	Return Value
	See Also

	xvt_res_get_win_def
	Load Window Definition from a Resource File
	Summary
	Description
	Return Value
	See Also

	xvt_res_remove_res
	Remove Resource from Use
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_res_use_res
	Set Current Resource
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_sbar_*
	Scrollbar Functions

	xvt_sbar_get_pos
	Get Scrollbar’s Thumb Position
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_sbar_get_proportion
	Get Scrollbar’s Thumb Proportion
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_sbar_get_range
	Get Scrollbar’s Range Values
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_sbar_set_pos
	Set Position of a Scrollbar’s Thumb
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_sbar_set_proportion
	Set Scrollbar’s Thumb Proportion
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_sbar_set_range
	Set a Scrollbar’s Range
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_scr_*
	Screen Objects

	xvt_scr_beep
	Beep at User
	Summary
	Description

	xvt_scr_get_focus_topwin
	Get Top-Level Window with the Focus
	Summary
	Description
	Return Value
	See Also

	xvt_scr_get_focus_vobj
	Get Window with Focus
	Summary
	Description
	Return Value
	Implementation Note
	See Also

	xvt_scr_hide_cursor
	Temporarily Hide Cursor
	Summary
	Description
	Implementation Note
	See Also

	xvt_scr_launch_browser
	Launch the OS Default Web Browser
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_scr_list_wins
	List Window Titles
	Summary
	Description
	Return Value
	Implementation Note
	See Also
	Example

	xvt_scr_set_busy_cursor
	Change Cursor to Waiting Shape
	Summary
	Description
	Implementation Note
	See Also

	xvt_scr_set_focus_vobj
	Set Window Focus
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_slist_*
	List of Tagged Strings

	xvt_slist_add_at_elt
	Add String or SLIST to SLIST
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_slist_add_at_pos
	Add to an SLIST at a Given Position
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_slist_add_sorted
	Add String to Sorted SLIST
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_slist_count
	Count Elements in SLIST
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_slist_create
	Create New SLIST
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_slist_debug
	Append Dump of SLIST to File
	Summary
	Description
	See Also
	Example

	xvt_slist_destroy
	Free SLIST Storage
	Summary
	Description
	See Also
	Example

	xvt_slist_get
	Get String and Data from SLIST Element
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_slist_get_data
	Get Data Associated with SLIST Element
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_slist_get_elt
	Get String and Data from SLIST Element
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_slist_get_first
	Get First Element in SLIST
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_slist_get_next
	Get Next Element of SLIST
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_slist_is_valid
	Test if SLIST Reference is Valid
	Summary
	Description
	Return Value
	See Also

	xvt_slist_rem
	Remove Element of SLIST
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_str_*
	String Operations

	xvt_str_collate
	Compare Multibyte Strings
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_str_collate_ignoring_case
	Compare Multibyte Strings Ignoring Case of Character Set
	Summary
	Description
	Return Value
	See Also

	xvt_str_compare
	Compare Numeric Value of Multibyte String Characters
	Summary
	Description
	Return Value
	See Also

	xvt_str_compare_ignoring_case
	Compare Numeric Value of Multibyte String Characters Ignoring Case of Character Set
	Summary
	Description
	Return Value
	See Also

	xvt_str_compare_n_char
	Compare n Characters of Multibyte String
	Summary
	Description
	Return Value
	See Also

	xvt_str_concat
	Append Multibyte Strings
	Summary
	Description
	Return Value
	See Also

	xvt_str_concat_n_char
	Append n Characters of Multibyte Strings
	Summary
	Description
	Return Value
	See Also

	xvt_str_convert_mb_to_wc
	Convert First Character of Multibyte String to Wide Character
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_str_convert_mbs_to_wcs
	Convert Multibyte Character String to Wide Character String
	Summary
	Description
	Return Value
	See Also

	xvt_str_convert_to_lower
	Convert First n Bytes in Multibyte String to Lowercase Characters
	Summary
	Description
	Return Value
	See Also

	xvt_str_convert_to_upper
	Convert First n Bytes in Multibyte String to Uppercase Characters
	Summary
	Description
	Return Value
	See Also

	xvt_str_convert_wc_to_mb
	Convert Wide Character to Multibyte Character
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_str_convert_wchar_to_lower
	Convert Wide Character to Lowercase Wide Character
	Summary
	Description
	Return Value
	See Also

	xvt_str_convert_wchar_to_upper
	Converts Wide Character to Uppercase Wide Character
	Summary
	Description
	Return Value
	See Also

	xvt_str_convert_wcs_to_mbs
	Converts Wide Character String to Multibyte String
	Summary
	Description
	Return Value
	See Also

	xvt_str_copy
	Copies One Multibyte String into Another
	Summary
	Description
	Return Value
	See Also

	xvt_str_copy_n_char
	Copies n Characters from One Multibyte String into Another
	Summary
	Description
	Return Value
	See Also

	xvt_str_copy_n_size
	Copy n Bytes from one Multibyte String to Another
	Summary
	Description
	Return Value
	See Also
	Creates an xvt_codeset_map From Two Codeset Map Files

	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also
	Destroys an XVT_CODESET_MAP and Frees Associated Memory

	Summary
	Description
	Parameter and Validity Conditions
	See Also

	xvt_str_duplicate
	Duplicate Multibyte String and Allocate New Memory
	Summary
	Description
	Return Value
	See Also

	xvt_str_find_char_set
	Search Multibyte String for Character
	Summary
	Description
	Return Value
	See Also

	xvt_str_find_eol
	Find End-of-Line Character in Multibyte String
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_str_find_first_char
	Find First Character in Multibyte String
	Summary
	Description
	Return Value
	See Also

	xvt_str_find_last_char
	Find Last Character in Multibyte String
	Summary
	Description
	Return Value
	See Also

	xvt_str_find_not_char_set
	Search Multibyte String for Character not in Set
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_str_find_substring
	Find Substring
	Summary
	Description
	Return Value
	See Also

	xvt_str_find_token
	Separate Multibyte String into Tokens
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_str_get_byte_count
	Count Bytes in Multibyte String
	Summary
	Description
	See Also

	xvt_str_get_char_count
	Count Characters in Multibyte String
	Summary
	Description
	Return Value
	See Also

	xvt_str_get_char_size
	Count Number of Bytes in Multibyte Character
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_str_get_n_char_count
	Count Characters in n Bytes of Multibyte String
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_str_get_n_char_size
	Counts Bytes in n Characters of Multibyte String
	Summary
	Description
	Return Value
	See Also

	xvt_str_get_next_char
	Get Next Character in a Multibyte String
	Summary
	Description
	Return Value
	See Also

	xvt_str_get_prev_char
	Get Preceding Character in a Multibyte String
	Summary
	Description
	Return Value
	See Also

	xvt_str_is_*
	xvt_str_is_* Functions

	xvt_str_is_alnum
	Check if Multibyte Character is Alphanumeric
	Summary
	Description
	Return Value
	See Also

	xvt_str_is_alpha
	Check if Multibyte Character is Alphabetic
	Summary
	Description
	Return Value
	See Also

	xvt_str_is_digit
	Check if Multibyte Character is a Decimal
	Summary
	Description
	Return Value
	TRUE if the first character is a decimal; FALSE otherwise.

	See Also

	xvt_str_is_equal
	Check if Strings are Equal
	Summary
	Description
	Return Value
	See Also

	xvt_str_is_invariant
	Check if Multibyte Character is Invariant
	Summary
	Description
	Return Value
	See Also

	xvt_str_is_lower
	Check if First Multibyte Character is Lowercase
	Summary
	Description
	Return Value
	See Also

	xvt_str_is_space
	Check if First Multibyte Character is a Space
	Summary
	Description
	Return Value
	See Also

	xvt_str_is_upper
	Check if First Multibyte Character is Uppercase Alphabetic
	Summary
	Description
	Return Value
	See Also

	xvt_str_is_xdigit
	Check if First String Character is a Hexadecimal Digit
	Summary
	Description
	Return Value
	See Also

	xvt_str_match
	Match Multibyte Pattern Against String
	Summary
	Description
	Return Value
	Implementation Note
	See Also
	Example

	xvt_str_parse_double
	Convert Multibyte String to Double-Precision Floating Point Value
	Summary
	Description
	Return Value
	See Also

	xvt_str_parse_long
	Convert a Multibyte String to a Long Integer Value
	Summary
	Description
	Return Value
	See Also

	xvt_str_parse_ulong
	Convert Multibyte String to an Unsigned Long Integer Value
	Summary
	Description
	Return Value
	See Also

	xvt_str_sprintf and xvt_str_vsprinf
	Process Formats
	Summary
	Description
	Return Value
	See Also
	Example
	Translates a Text String According to the XVT_CODESET_MAP

	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also

	xvt_timer_*
	Timer Objects

	xvt_timer_create
	Start Generation of Timer Events
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_timer_destroy
	Turn Off Timer
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_treeview_add_child_node
	Add a child treeview node to existing treeview node
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_collapse_node
	Collapses node
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_create
	Creates treeview control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_create_node
	Creates a treeview node
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_destroy_node
	Destroys treeview node
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_expand_node
	Expands node
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_get_attributes
	Get the attributes for the treeview control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_get_child_node
	Get a child node from a parent node
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_get_line_height
	Get line height of treeview node
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_get_node_callback
	Get the node call back function
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_get_node_data
	Get the node data
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_get_node_image_collapsed
	Get the collapsed image for a node
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_get_node_image_expanded
	Get the expanded image for a node
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_get_node_image_item
	Get the item image for a node
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_get_node_num_children
	Get the number of child nodes for a node
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_get_node_num_vis_children
	Get the number of visible child nodes for a node
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_get_node_string
	Get the item text for a node
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_get_node_type
	Get node type
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_get_parent_node
	Get parent node
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_get_root_node
	Get root node form treeview control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_node_selected
	Get node selection state
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_remove_child_node
	Remove child node from list
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_resume
	Resume updating of treeview control
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_set_attributes
	Set the attributes for treeview control
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_set_line_height
	Set line height for a node
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_set_node_callback
	Set the node call back function
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_set_node_data
	Set the node data
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_set_node_image_collapsed
	Set the collapsed image for a node
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_set_node_image_expanded
	Set the expanded image for a node
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_set_node_image_item
	Set the item image for a node
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_set_node_string
	Set the item text for a node
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_set_node_type
	Set node type
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_suspend
	Suspend updating of treeview control
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_treeview_update
	Force update of treeview control
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_tx_*
	Text Edit Functions

	xvt_tx_add_par
	Add Paragraph to Text Edit Object
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_tx_append
	Add to Text Edit Paragraph
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_tx_clear
	Clear Text Edit Object
	Summary
	Description
	Return Value
	See Also

	xvt_tx_create
	Create Text Edit Object
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_tx_create_def
	Create a Text Edit Object from a Data Structure
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_tx_destroy
	Destroy Text Edit Object
	Summary
	Description
	Return Value
	See Also

	xvt_tx_get_attr
	Get Text Edit Attributes
	Summary
	Description
	Return Value
	See Also

	xvt_tx_get_limit
	Get Text Edit Character Limit
	Summary
	Description
	Return Value
	See Also

	xvt_tx_get_line
	Get Line from Text Edit Object
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_tx_get_margin
	Get Text Edit Margin
	Summary
	Description
	Return Value
	See Also

	xvt_tx_get_next_tx
	Get Next Text Edit Object
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_tx_get_num_chars
	Get Number of Characters in Text Edit Line
	Summary
	Description
	Return Value
	See Also

	xvt_tx_get_num_lines
	Get Number of Lines in Text Edit Object
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_tx_get_num_par_lines
	Get Number of Lines in Text Edit Paragraph
	Summary
	Description
	Return Value
	See Also

	xvt_tx_get_num_pars
	Get Number of Paragraphs in Text Edit Object
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_tx_get_origin
	Get Top Paragraph and Line of View Rectangle
	Summary
	Description
	See Also
	Example

	xvt_tx_get_sel
	Get Text Edit Selection
	Summary
	Description
	See Also
	Example

	xvt_tx_get_tabstop
	Get Text Edit Tabstop
	Summary
	Description
	Return Value
	See Also

	xvt_tx_get_view
	Get Text Edit View Rectangle
	Summary
	Description
	Return Value
	See Also

	xvt_tx_rem_par
	Delete Text Edit Paragraph
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_tx_reset
	Reset Text Edit Object
	Summary
	Description
	See Also

	xvt_tx_resume
	Resume Text Edit Screen Updating
	Summary
	Description
	See Also
	Example

	xvt_tx_scroll_hor
	Scroll Text Edit Object Horizontally
	Summary
	Description
	See Also
	Example

	xvt_tx_scroll_vert
	Scroll Text Edit Object Vertically
	Summary
	Description
	See Also
	Example

	xvt_tx_set*
	xvt_tx_set_* Functions

	xvt_tx_set_attr
	Change Text Edit Attributes
	Summary
	Description
	See Also

	xvt_tx_set_limit
	Change Text Edit Character Limit
	Summary
	Description
	See Also

	xvt_tx_set_margin
	Change Text Edit Margin
	Summary
	Description
	See Also

	xvt_tx_set_par
	Change Text Edit Paragraph
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_tx_set_scroll_callback
	Set Text Edit Scroll Callback Function
	Summary
	Description
	See Also
	Example

	xvt_tx_set_sel
	Set Text Edit Selection
	Summary
	Description
	See Also

	xvt_tx_set_tabstop
	Change Text Edit Tabstop
	Summary
	Description
	See Also

	xvt_tx_suspend
	Suspend Text Edit Screen Updating
	Summary
	Description
	See Also
	Example

	xvt_vobj_*
	Visible Object Functions

	xvt_vobj_destroy
	Close And Destroy Window
	Summary
	Description
	See Also
	Example

	xvt_vobj_get_attr
	Retrieve Attribute Value
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_vobj_get_client_rect
	Get the Client Rectangle for a Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_vobj_get_data
	Get Application Data Associated with a Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_vobj_get_flags
	Get Current State of the Creation Flags
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_vobj_get_formatter
	Get the Format Callback Function for a Window, Dialog, Or Control
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also
	xvt_vobj_get_outer_rect
	Get Bounding Rectangle for Window
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_vobj_get_palet
	Get a Visible Object’s Palette
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_vobj_get_parent
	Get Parent of Window, Dialog, or Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_vobj_get_title
	Get Title of Window or Control
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_vobj_get_type
	Get Type of Window
	Summary
	Description
	Return Value
	See Also
	Example

	xvt_vobj_is_focusable
	Check if Visible Object Can Receive Focus
	Summary
	Description
	Return Value
	See Also

	xvt_vobj_is_valid
	Check Whether a Window Handle is a Valid Window, Dialog, or Control
	Summary
	Description
	Return Value
	See Also

	xvt_vobj_move
	Move and Resize Window
	Summary
	Description
	Implementation Note
	See Also
	Example

	xvt_vobj_raise
	Raise the Given Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also

	xvt_vobj_set_attr
	Set a Value in the System Attribute Table
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_vobj_set_data
	Associate Application Data with Window
	Summary
	Description
	See Also
	Example

	xvt_vobj_set_enabled
	Enable or Disable Window
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_vobj_set_formatter
	Set the Format Callback Function for a Window, Dialog, or Control
	Summary
	Description
	Parameter and Validity Conditions
	See Also
	xvt_vobj_set_palet
	Set a Visible Object’s Palette
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_vobj_set_title
	Set Title of Window or Control
	Summary
	Description
	See Also

	xvt_vobj_set_visible
	Show or Hide Window or Control
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_vobj_translate_points
	Translate Window Coordinates
	Summary
	Description
	Parameter Validity And Error Conditions
	See Also
	Example

	xvt_win_*
	Window Functions

	xvt_win_create
	Create a Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_win_create_def
	Create a Window with Controls from an Array of Data Structures
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_win_create_res
	Create a Window from a Resource File
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_win_dispatch_event
	Send an Event to a Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_win_enum_wins
	List Windows and Controls
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_win_get_ctl
	Retrieve Control Window Based on ID
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_win_get_ctl_color_component
	Gets the Control Color for a Color Type From a Single Control
	Summary
	Description
	Return Value
	Parameter and Validity Conditions
	See Also
	xvt_win_get_ctl_colors
	Get Default Container Control Colors
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_win_get_ctl_font
	Get Logical Font of Controls
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_win_get_cursor
	Get the Cursor Shape
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_win_get_cxo
	Retrieve a CXO
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_win_get_event_mask
	Get Event Mask for Window
	Summary
	Description
	Return Value
	Parameter Validity And Error Conditions
	See Also
	Example

	xvt_win_get_handler
	Retrieve Event Handling Function for Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_win_get_nav
	Retrieves the Navigation Object Associated with a Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_win_get_tx
	Get Text Edit Object from ID
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_win_has_menu
	Determine if the Window has a Menubar
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_win_list_cxos
	List All CXO’s Associated With a Window
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_win_list_wins
	List Titles
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	See Also

	xvt_win_process_modal
	Sets the Control Color for a Color Type Used by a Single Control
	Summary
	Description
	Parameter and Validity Conditions
	See Also
	xvt_win_release_pointer
	Release Trapped Mouse
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_win_set_caret_pos
	Reposition the Caret
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_win_set_caret_size
	Set Caret’s Width and Height
	Summary
	Description
	Return Value
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_win_set_caret_visible
	Change the Position of the Caret
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_win_set_ctl_color_component
	Sets the Control Color for a Color Type Used by all Controls in a Window
	Summary
	Description
	Parameter and Validity Conditions
	See Also
	xvt_win_set_ctl_colors
	Set Control Colors
	Summary
	Description
	Parameter and Validity Conditions
	Implementation Note
	See Also

	xvt_win_set_ctl_font
	Set Logical Control Font
	Summary
	Description
	Parameter and Validity Conditions
	See Also

	xvt_win_set_cursor
	Set Window’s Cursor Shape
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_win_set_doc_title
	Set Document Window’s Title
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also

	xvt_win_set_event_mask
	Specify Event Restrictions
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_win_set_handler
	Set Window or Dialog Event Handler
	Summary
	Description
	Parameter Validity and Error Conditions
	See Also
	Example

	xvt_win_trap_pointer
	Take Control of the Mouse
	Summary
	Description
	Parameter Validity and Error Conditions
	Implementation Note
	See Also
	Example

	xvt_win_unset_ctl_color_component
	Unsets the Control Color for a Color Type Used by all Controls in a Window
	Summary
	Description
	Parameter and Validity Conditions
	See Also
	XRC Statements
	Universal Resource Language Statements

	Bounding Rectangle
	XRC Statement Component

	Resource ID
	XRC Statement Component
	See Also

	Text Strings
	XRC Statement Component

	userdata
	XRC Statement Component
	Summary
	Description
	See Also

	accel
	XRC Statement
	Summary
	Description
	Example
	See Also

	button Control
	XRC Statement
	Summary
	Description
	See Also

	checkbox Control
	XRC Statement
	Summary
	Description
	See Also

	dialog"
	XRC Statement
	Summary
	Description
	See Also

	edit Control
	XRC statement
	Summary
	Description
	See Also

	font
	XRC Statement
	Summary
	Description
	Example
	See Also

	font_map
	XRC Statement
	Summary
	Description
	Example
	See Also

	groupbox Control
	XRC Statement
	Summary
	Description
	See Also

	icon Control
	XRC Statement
	Summary
	Description
	See Also

	image
	XRC Statement
	Summary
	Description
	Tip: To get an image from a resource file:

	See Also

	listbox Control
	XRC Statement
	Summary
	Description
	Implementation Note
	See Also

	listbutton Control
	XRC Statement
	Summary
	Description
	Implementation Note
	See Also

	listedit Control
	XRC Statement
	Summary
	Description
	Implementation Note
	See Also

	menu and menubar
	XRC Statement
	Summary
	Description
	See Also

	radiobutton Control
	XRC Statement
	Summary
	Description
	See Also

	scrollbar Control
	XRC Statement
	Summary
	Description
	See Also

	string
	XRC Statement
	Summary
	Description
	Implementation Note
	See Also

	text Control
	XRC Statement
	Summary
	Description
	See Also

	textedit Object
	XRC statement
	Summary
	Description
	See Also

	units
	XRC Statement
	Summary
	Implementation Note
	See Also

	window
	XRC Statement
	Summary
	Description
	See Also

	# define
	xrc Resource Compiler Preprocessor Directive
	Summary
	Description
	See Also

	#include
	xrc Resource Compiler Preprocessor Directive
	Summary
	Description
	Implementation Note
	See Also

	#if, #elif, #else, and #endif
	xrc Resource Compiler Preprocessor Directives
	Summary
	Description
	See Also

	#ifdef and #ifndef
	xrc Resource Compiler Preprocessor Directives
	Summary
	Description
	See Also

	#scan
	xrc Resource Compiler Preprocessor Directive
	Summary
	Description
	See Also

	#transparent
	xrc Resource Compiler Preprocessor Directive
	Summary
	Description
	See Also

	#undef
	xrc Resource Compiler Preprocessor Directive
	Summary
	Description
	See Also

	Help File Statements
	Comments
	Help File Source Statement
	Description
	See Also

	BODYSTANZA
	Help File Source Section
	Summary
	Description
	See Also

	BROWSE
	Help File Source Section
	Summary
	Description
	Example
	See Also

	FONT
	Help File Source Statement
	Summary
	Description
	Example
	See Also

	HEADER, VERSION, APPNAME
	Help File Source Statements
	Summary
	Description
	Example
	See Also

	HTOPIC and BTOPIC
	Help File Source Statements
	Summary
	Description
	See Also

	#define
	helpc Help File Preprocessor Directive
	Summary
	Description
	Summary
	Description
	See Also

	#if, #elif, #else, and #endif
	helpc Help File Preprocessor Directives
	Summary
	Description
	See Also

	#ifdef and #ifndef
	helpc Help File Compiler Preprocessor Directives
	Summary
	Description
	See Also

	#include
	helpc Help File Compiler Preprocessor Directive
	Summary
	Description
	See Also

	#scan
	helpc Help File Compiler Preprocessor Directive
	Summary
	Description
	See Also

	Bitmap (P)
	Help File Format Code
	Summary
	Description
	See Also

	Font Change (F)
	Help File Format Code
	Summary
	Description
	Example
	See Also

	Hanging Indentation (I)
	Help File Format Code
	Summary
	Description
	See Also

	Horizontal Line (V)
	Help File Format Statement
	Summary
	Description
	See Also

	Hot Button (B)
	Help File Format Code
	Summary
	Description
	See Also
	Example

	Hyperlink (L)
	Help File Format Code
	Summary
	Description
	See Also
	Example

	Margin (M)
	Help File Format Code
	Summary
	Description
	See Also

	No Word Wrap (N)
	Help File Format Code
	Summary
	Description
	See Also

	Paragraph (A)
	Help File Format Code
	Summary
	Description
	See Also

	Reserved (S) Format Code
	Help File Format Code
	Summary
	Description

	Word Wrap (W)
	Help File Format Code
	Summary
	Description
	See Also

	Predefined Help IDs
	Reserved Topic Identifiers
	Description
	See Also

	Predefined Help Topics
	Help Topic Text
	Tip: To include all of the XVT-provided topics in xvt_help.csh, add this line to the end of your help source file:
	Tip: To include some, but not all, of the topics in xvt_help.csh:
	Example
	See Also

	Tools
	xrc
	XVT resource compiler
	Summary
	Command Line Options
	Resource types
	Preprocessor Symbol Definition
	Tip: To define a symbol:
	Tip: To define a symbol with substitution text:

	Units Conversion
	Default Character Cell Dimensions
	Non-portable Constructs
	See Also
	Example

	errscan
	XVT Error Code Scan Tool
	Summary
	Command Line Options
	See Also

	helpc
	Help Compiler
	Summary
	Command Line Options
	Tip: To run the help compiler, use the following command-line format:

	Using the Preprocessor Option
	Manifest Constants
	GUI Application
	Implementation Note
	See Also
	Example
	XVT Character Codeset Map Table Compiler

	Summary
	1. '#' begins a comment that continues to the end of the line.
	2. A mapping line consists of three tab- or space-separated columns.
	These files are provided:

	Command Line Options
	GUI Application
	See Also

	Window/Dialog/Control Creation Function Parameters
	WIN_TYPE vs. WSF_* and CTL_FLAG_* Options

	Top Level Windows - All Platforms
	Child Windows - All Platforms
	Window Controls - All Platforms
	Task Window Variants - XVT/Win32 Only

	Index

