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ABSTRACT

In 2016, the Joint Typhoon Warning Center extended forecasts of gale-force and other wind radii to

5 days. That effort and a thrust to perform postseason analysis of gale-force wind radii for the ‘‘best tracks’’

(the quality controlled and documented tropical cyclone track and intensity estimates released after the

season) have prompted requirements for new guidance to address the challenges of both. At the same time,

operational tools to estimate and predict wind radii continue to evolve, now forming a quality suite of gale-

force wind radii analysis and forecasting tools. This work provides an update to real-time estimates of gale-

force wind radii (a mean/consensus of gale-force individual wind radii estimates) that includes objective

scatterometer-derived estimates. The work also addresses operational gale-force wind radii forecasting in

that it provides an update to a gale-force wind radii forecast consensus, which now includes gale-force wind

radii forecast error estimates to accompany the gale-force wind radii forecasts. The gale-force wind radii

forecast error estimates are computed using predictors readily available in real time (e.g., consensus

spread, initial size, and forecast intensity) so that operational reliability and timeliness can be ensured.

These updates were all implemented in operations at the Joint Typhoon Warning Center by January 2018,

and more updates should be expected in the coming years as new and improved guidance becomes

available.

1. Introduction

Forecasting tropical cyclone (TC; see Table 1 for this

and other acronyms used in this paper) surface wind

structure has been one of the challenges of the forecast

process at the Joint TyphoonWarning Center (JTWC).

Wind structure analyses and forecasts are provided in

terms of the ‘‘wind radii’’.1 Wind radii are defined as

the maximum extent of 34- (R34), 50-, and 64-kt winds

in the four compass quadrants (northeast, southeast,

southwest, and northwest) surrounding the TC. In op-

erations, an intense TC can require up to 12 estimates

(four quadrants for each of the three radii thresholds)

for an analysis (0 h) and then 12 estimates for each of

the seven forecast periods (12, 24, 36, 48, 72, 96, and

Denotes content that is immediately available upon publica-

tion as open access.

Corresponding author: Buck Sampson, buck.sampson@nrlmry.

navy.mil

1 The operational units for wind radii distance andwind speeds at

JTWC are specified in nautical miles (1 n mi 5 1.85 km) and knots

(1kt5 0.514m s21), respectively, so these units will be used for the

remainder of this paper.
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120 h) for a total of 96 wind radii. Production of such a

large number of estimates in real time can become a

time-consuming task. Nonetheless, wind radii esti-

mates are important to postprocessed guidance such as

wind speed probabilities (DeMaria et al. 2013), storm

surge forecasts for the National Hurricane Center

(NHC 2016), wave forecasts (Sampson et al. 2010),

modeling of potential infrastructure damages (e.g.,

Quiring et al. 2014), wind and wave/surge damage po-

tential (Powell and Reinhold 2007), andDepartment of

Defense danger swaths and Tropical Cyclone Condi-

tions of Readiness (see Sampson et al. 2012). They are

also used to initialize numerical weather prediction with

some benefit in forecast error reduction (Tallapragada

et al. 2015; Kunii 2015; Bender et al. 2017).

Postseason reanalysis of JTWC western North Pacific

TC wind radii (see Sampson et al. 2017) has recently

become available (JTWC2017), and can serve as ‘‘ground

truth’’ for developing and updating guidance, includ-

ing satellite-based estimates of wind radii/surface winds

(Demuth et al. 2004, 2006;Mueller et al. 2006;Kossin et al.

2007; Knaff et al. 2011; Knaff et al. 2016; Dolling et al.

2016;Meissner et al. 2017; Reul et al. 2017), the wind radii

climatology and persistence model (Knaff et al. 2007),

and consensus forecasts (Sampson and Knaff 2015,

hereafter SK15). Errors in the best-track R34 have been

estimated in the past to be as high as 10%–40% (Knaff

and Harper 2010; Landsea and Franklin 2013; Knaff

and Sampson 2015), depending on the quality and

quantity of the available observational data.

Forecasts of R34 have been improving as well, and

skill has been found in individual forecast models (e.g.,

Tallapragada et al. 2014; Cangialosi and Landsea 2016;

Knaff et al. 2017), consensus forecasts (SK15), and fore-

casts from the operational centers (Knaff and Sampson

2015). As real-time forecaster estimates of R34 become

TABLE 1. List of acronyms used in this paper.

Acronym Definition

AMSU Advanced Microwave Sounding Unit

ASCII American Standard Code for Information Exchange

ASCT Objective R34 scatterometer fixes

ATCF Automated Tropical Cyclone Forecast System

AVNO/AHNI Global Forecast System (GFS) model radii analyses/interpolated forecasts

CHTI COAMPS-TC model radii/interpolated forecast

CIRW Cooperative Institute for Research in the Atmosphere (CIRA) wind radii estimates

COAMPS Coupled Ocean–Atmosphere Mesoscale Prediction System

COAMPS-TC COAMPS Tropical Cyclone model

DSHA Statistical–dynamical wind radii forecasts based on GFS model data

DVRK Dvorak wind radii

EMXI European Centre for Medium-Range Weather Forecasts model R34 interpolated forecast

GFDL Geophysical Fluid Dynamics Laboratory

GFDT/GFTI GFDL model radii/interpolated forecast

GPCE Goerss-predicted consensus error

HWRF/HHNI Hurricane Weather Research and Forecasting Model radii/interpolated forecast

INTF Official intensity forecast (kt), 6 h old interpolated or consensus

JTWC Joint Typhoon Warning Center

JTWI JTWC interpolated forecast

LATC Forecast latitude change (8)
MetOp Meteorological Operational satellite

NHC The National Hurricane Center

NOAA National Oceanic and Atmospheric Administration

NWP Numerical weather prediction

NRL Naval Research Laboratory

OBTK Objective R34, an equally weighted average of R34 estimates

RVCN R34 forecast consensus

RVCN 2014 Original version of RVCN 5 AHNI 1 HHNI 1 GFTI 1 EMXI

RVCN 2017 New version of RVCN 5 AHNI 1 HHNI 1 EMXI 1 CHTI 1 DSHA

R34 Radii of 34-kt winds, also known as gale-force wind radii

SHIPS Statistical Hurricane Intensity Prediction System

SK15 Sampson and Knaff (2015)

SPRD Average spread of nonzero R34 estimates (n mi)

TC Tropical cyclone

WRE Wind radius predicted error (n mi)

WRCHG Wind radius change (n mi)
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more accurate, they contribute to improvements in real-

time intensity and structure guidance forecasts [Bender

et al. (2017) and Knaff et al. (2017), respectively], which

then contribute to official forecasts and postprocessed

guidance that are so critical for emergency managers and

ships at sea.

The goals of this work are to 1) document updates to an

objective method that provides R34 estimates for use in

real-time and postseason analyses with comments on the

observation error, 2) describe a forecast consensus in use

at the JTWC, and 3) describe a new real-time estimate of

consensus forecast error based on parameters readily

available in theAutomated Tropical Cyclone Forecasting

system (ATCF; Sampson and Schrader 2000). The data-

sets and processes used to create R34 estimates are de-

scribed in section 2. Results for the 2014–16 western

North Pacific R34 analyses, R34 forecast consensus, and

R34 predicted consensus error are discussed in section 3.

Finally, we summarize our findings and provide needs

and suggestions for future development in section 4.

2. Data and methods

The wind radii best tracks and forecasts used in this

work are derived from the databases of the ATCF (see

https://www.nrlmry.navy.mil/atcf_web/docs/database/

new/database.html for formats). The database used for

analysis includes the 2014, 2015, and 2016 western North

Pacific TC seasons. As with other studies (e.g., SK15;

Bender et al. 2017; Sampson et al. 2017), this study will

focus on R34 verification since R34 values are the most-

often analyzed and likely the best-observed wind radii.

Scatterometry is used extensively for verification as it is

one of the best methods to construct wind radii analyses

around TCs, especially when aircraft-based data are not

available. Bentamy et al. (2008), Brennan et al. (2009),

and Chou et al. (2013) all suggest that scatterometer

winds can be used specifically for R34 analysis. The

scatterometer passes cover large areas of the ocean and

generally provide high quality estimates of wind speeds

less than approximately 50 kt when they are available.

a. Ground truth

Two different ground truth estimates of R34 are used

in this study. The first are subjective estimates con-

structed by forecasters as described in appendix B of

Sampson et al. (2017). The procedure for producing

postseason subjective estimates is relatively new to

JTWC, so the authors also use a set of objectively de-

termined R34 values from an average of up to four

satellite-based and three model-based estimates (OBTK;

Sampson et al. 2017) as a second source of ground truth.

The availability of two estimates of R34 (subjective and

objective) also provides an opportunity to comment

further on the uncertainty in R34 estimates discussed in

Sampson et al. (2017).

The first satellite-based method used in the OBTK

algorithm employs data from the Advances Microwave

Sounding Unit (AMSU) instrument on NOAA and

European satellites (hereafter referred to as the AMSU

method) and is described in Demuth et al. (2006). The

second satellite method (hereafter referred to as DVRK)

uses Dvorak (1984) satellite intensity, position, and mo-

tion estimates along with matching digital storm infrared

imagery and a climatological estimate of the radius of

maximum winds to create estimates of wind radii, as de-

scribed in detail in Knaff et al. (2016). A third satellite-

based estimate is the multiplatform TC surface wind

analysis described in Knaff et al. (2011) and hereafter

referred to as CIRW. The satellite-based technique esti-

mates are supplemented by 6-hourly R34model forecasts

provided by the Geophysical FluidDynamics Laboratory

(GFDL) Vortex Tracker (Marchok 2002, 2016). The R34

forecasts are currently limited to the Global Forecasting

System (named AVNO in the ATCF files) and the Hur-

ricaneWeatherResearch and ForecastingModel (named

HWRF in the ATCF files), and the GFDL Hurricane

Model (named GFDT in the ATCF files).

A new addition for this study are objective R34 esti-

mates from scatterometer wind swaths over the TCs

(referred to hereafter as ASCT; see Fig. 1) since they are

derived from the Advanced Scatterometer sensor on the

European Space AgencyMetOp satellites. These ASCT

R34 estimates are computed for our entire 2014–16

dataset (782 cases), as described in the appendix. Since

the scatterometer estimates are considered to be

‘‘ground truth’’ by forecasters, they are given approxi-

mately 30 times (the maximum available with the cur-

rent algorithm) the weight of the others (all of which are

equal weight). Individual estimates available 63 h from

the synoptic times (0000, 0600, 1200, and 1800 UTC) are

used in the average.Although theASCT fixes are a great

addition to the OBTK, their frequency does not warrant

use on their own as a ground truth dataset even with the

3-yr record. The 782 cases are mostly off synoptic time,

are partial passes, and are frequently grouped into pe-

riods of frequent (dependent) observations followed by

long gaps without any observations. The 782 cases rep-

resent only 291 passes. In addition, many of the TCs

have no ASCT fixes, which means they would be pruned

from an evaluation using only ASCT. Finally, the center

of the fix is assigned using bilinear interpolation of the

best track, which is sometimes misaligned with the

ASCT wind centers. Given the issues with ASCT de-

scribed above, the authors chose to use the ASCT fixes

in OBTK rather than as its own dataset.
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A three-point center-weighted binomial filter is ap-

plied 10 times on the resultant R34OBTK to smooth the

R34 values through time. This smoothing is especially

important for the times when a TC’s intensity is near

34 kt or the TC is becoming extratropical, as it provides

stability in the R34 estimates through time. The filter

also reduces real variability in the R34 estimates, so the

filter should be adjusted to suit the operational needs at

the centers.

b. Forecast consensus and forecast consensus
verification

Consensus forecasts are constructed by averaging

forecasts from available NWP models as described in

SK15. Results of NWP model forecasts for a given start

time are delayed so as not to be available for the official

forecast at that start time; thus, they are considered ‘‘late

models’’ by the operational centers. The NWP model

forecast output is generally delayed by 6–12h, and so

they are ‘‘interpolated’’ [a process that relabels the

output to appear to be at the current forecast time and

bias corrects part of the forecast; see Goerss et al. (2004)

for more information] to produce guidance that is ready

for use in operations. SK15 found that most of the fore-

cast wind radii in theNHCbasins can be bias corrected so

that the initial wind radii match the current analysis but

that in most cases this bias correction should be phased

out within 12h. An exception is made for wind radii es-

timates from the European Centre for Medium-Range

Weather Forecasts model (EMXI), which tended to be

smaller than the verification R34 through the entire

forecast. For EMXI, the bias correction is applied

throughout the entire forecast. The equally weightedR34

consensus forecast defined in SK15, RVCN 5 AHNI 1
HHNI1GFTI1EMXI (this RVCN is hereafter named

RVCN 2014; see Table 1 for definitions), is applied un-

altered in this work so that we avoid tuning our data and

maintain independence in the evaluation.As in SK15, the

consensus average only includes nonzero wind radii es-

timates for each forecast time with a minimum of one

forecast value per quadrant per forecast time.

In our verification statistics, values of R34 in each

quadrant are compared to the best-track values for each

estimated value. The occurrence of zero-valued wind

FIG. 1. R34 estimates for the northwest quadrant as a function of time for Chan-Hom, the

15th tropical cyclone of the 2015 western North Pacific season. Dark blue squares are NRL

objective ASCT estimates, purple squares are real-time JTWC estimates, the dashed line is the

average of many estimates (OBTK), and the solid line is a subjective reanalysis based on

scatterometry, imagery, and OBTK. The best-track intensity is shown at the top of the chart.
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radii in one or more of the storm quadrants introduces

an added complication when verifying wind radii. Zero-

valued R34 values typically occur when the maximum

wind speeds in storms are near the 34-kt intensity

threshold or when storm translation speeds are large

(i.e., greater than 8m s21). The following verification

strategy is adopted: if a quadrant in the best track has a

nonzero wind radius, any model or consensus with a

nonzero value is verified. Using this strategy, we average

the error values from quadrants with nonzero wind radii

to form a singlemeasurement of themean absolute error

and bias. The authors define mean bias as the average of

an estimated value minus the ground truth. To keep the

verification brief, we present the statistics for combined

quadrants (i.e., the errors in all quadrants are averaged).

Errors are also calculated in homogeneous sets (i.e.,

they include the same cases). The R34 probability of

detection and false alarm results are not presented here.

In SK15 we found the consensus probability of detection

to be nearly 100% (as we designed it to be by requiring

only one nonzero radius value to produce a forecast).

Also following SK15, we consider false alarms to be

beneficial as they provide additional information on TC

size to the forecaster. For example, the forecaster would

be informed of the approximate size of the wind radii

ahead of its intensification to 35kt.

c. Goerss-predicted consensus error

As is the case with the track or intensity Goerss-

predicted consensus error (GPCE; Goerss 2007; Goerss

and Sampson 2014), predictors of wind radii GPCE are

limited to parameters available in the real-time ATCF

files at operational centers for use in the operational

forecast. This is a practical consideration to avoid

complexity (a sure way to generate support issues) and

ensure that the algorithm can be executed in real time

with success. Consensus model spread is defined to be

the average of the absolute differences between the

nonzero member R34 forecasts and RVCN. The pre-

dictors examined in this study are latitude and longitude,

current TC intensity, forecast TC intensity and intensity

change, TC speed of motion, R34 forecast and R34

forecast change from the initial R34 estimate, average

R34 spread from the consensusmean, and the number of

model members available. Forecast TC intensity and

intensity change are determined using the interpolated

official forecasts (JTWI). All cases where an official in-

tensity forecast was made and verified against best-track

values were used in the GPCE analysis.

After regression analysis of the abovementioned

predictors, we used stepwise linear regression (Draper

and Smith 1966) and the pool of predictors from the

2015 western North Pacific basins regression models to

predict the RVCN absolute forecast error at each fore-

cast period.We required that a predictor explain at least

3% of the variance before allowing it to be used by the

final regression equation in order to avoid overfitting.

All of the final regression coefficients were found to be

significantly different from zero at well above the 99%

level using an F test.

d. Development sets and independent data

Questions frequently arise regarding how best to de-

velop and evaluate tropical cyclone forecast products

(e.g., the RVCN and RVCN absolute forecast error

described in this manuscript) that are intended for use in

real-time operations. Cross validation is one option, but

there are many obstacles that must be avoided in order

to choose samples for cross validation. If information

from the omitted dependent dataset is used at any

point in the procedure that selects the rule used in

hindcasting, then the algorithm is not truly cross vali-

dated and forecast skill will be overestimated (Elsner

and Schmertmann 1994). One way to avoid these ob-

stacles is to apply the development and evaluation as

will be done in real time, developing on past data and

withholding the future data for independent evaluation

(Von Storch and Zwiers 1999). Doing this not only en-

sures that the evaluation does not overestimate the skill,

but also tests the viability of the implementation in

operations. As such, the authors elect to develop in

this manner.

3. Results

Figure 2 shows an evaluation of a 3-yr dataset of

western North Pacific TCs for individual R34 estimates

and the OBTK against the subjective best tracks. The

evaluation is limited to data coincident with scatter-

ometer passes, as those are considered to be of the

highest quality available in the westernNorth Pacific. By

design, the OBTK availability is nearly 100% and is

higher than for any of the individual estimates. This

availability is preferable for JTWC operations, since

they most always have guidance even if they decide not

to assign a particular radius. All the estimates have av-

erage errors of 20–40 n mi, which equates to approxi-

mately 15%–30% of the climatological mean R34

(130n mi) for this dataset. The ASCT estimates are

nearly zero biased, and the mean error relative to the

subjective best tracks is 26n mi. The OBTK has a slightly

high bias and has estimates closest to the subjective best-

track estimates. All three NWPmodel estimates are high

biased for this dataset, which is different than in Sampson

et al. (2017) in that the GFDT biases in that study were

near zero and slightly negative. The high bias is expected
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since the 2016 Geophysical Fluid Dynamics Laboratory

model had been modified to compensate for small-biased

R34 estimates from JTWC (M. Bender 2017, personal

communication), a modification that was subsequently

removed for 2017 when the JTWC estimates were found

to have become nearly zero biased.

To answer questions about the independence of the

R34 in subjective best tracks, theOBTK, and the objective

ASCT fixes, we computed correlation coefficients be-

tween the three datasets. We find the correlation co-

efficient between the subjectiveR34 andOBTK to be 0.84

using the 578 individual radii in the 2014–16 western

North Pacific seasons available from threemethods, which

is high but certainly not perfect. We find the correlation

between the subjective R34 and the objective ASCT fixes

to be 0.76. These are well correlated but certainly less

correlated than the subjective best track and the OBTK

wind radii. The correlation between the OBTK and the

ASCTfixes is found to be 0.92, which is high and expected

since the OBTK is largely influenced by these fixes. There

are several reasons the two best-track datasets are not

perfectly correlated with the ASCT fixes including time

windows (theASCTfixes are producedwith amoving63-h

window of data around the synoptic time, which can in-

clude multiple passes), subjective analysis, and different

scatterometer data processing and display formats. The

above discussion and the display of results from the three

different methods shown in Fig. 1 illustrate uncertainty in

where the R34 should be located. Both the subjective

analysis and the OBTK smoothly transition from small

to large and back again, which is a desirable quality

in operational forecasting where these changes can impact

emergency planning and ship-routing decisions as well as

the credibility of the warning agency. Smoothing is also

employed for determining position and intensity at the

operational centers. For example, neither the subjective

nor OBTK analysis strictly adheres to the ASCT fixes

in the northwest quadrant in Fig. 1. These traces should

instead reflect gradual changes in time, which are more

acceptable to end users.

If the OBTK and subjective best track are assumed to

be of equal quality, we can estimate the uncertainty in

R34. In themean, the estimates arewithin 21nmi of each

other. But it is the standard deviation of the errors,

considered in Torn and Snyder (2012) to be a measure of

uncertainty in track and intensity, that can be used on our

dataset to estimate R34 uncertainty. The standard de-

viation of the errors for OBTK using the subjective best

tracks as ground truth is 18n mi and is larger than the

14n mi estimate Sampson et al. (2017) found for the

2014–15NHCdata; however, the estimates as a percentage

of the climatological sizes are both approximately 15%.

Now that we have R34 estimates that can serve as

ground truth (the objective best-track OBTK or the

subjective postseason analyses), we can evaluate the

performance of the R34 forecasts and the equally

weighted average of the consensus (RVCN). Figure 3

shows the mean forecast errors and biases of the indi-

vidual members and the consensus using the subjective

postseason analyses as ground truth. There are two

consensus forecasts shown: the first (RVCN 2014) is the

consensus described in SK15 with the four input fore-

casts (AHNI 1 HHNI 1 GFTI 1 EMXI) and the sec-

ond (RVCN 2017) includes guidance that was made

available since, namely SHIPS-based wind radii based

on the National Centers for Environment Prediction

Global Forecast System dynamic input and tracks

(DSHA; see Knaff et al. 2017) and the COAMPS-TC

FIG. 2. The 34-kt wind radii fix absolutemean errors (brown) and biases (blue) relative to JTWC

2014–16 best tracks coincident with ASCT. OBTK has the lowest mean error of all estimates. The

standard error of themean is shown as the black bars and whiskers; the number of cases is shown in

parentheses. Acronyms are as defined in Table 1.
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forecasts (CHTI; Doyle et al. 2012, 2014) run with U.S.

Navy global model initial and boundary conditions. As

was the case in SK15, the consensus forecasts have

among the smallest mean forecast errors and biases

when compared to their member aids. The initial

forecast bias for individual and consensus aids is ap-

proximately 26 n mi too small. All these aids begin as

the JTWC real-time estimate so the small bias is an

artifact of the real-time JTWC estimates being small

compared to the subjective best tracks. Again, with

most individual aids the real-time JTWC estimate is

phased out by 12 h, so the negative bias is diminished

over time. The exceptions are EMXI and DSHA.

EMXI shows bias throughout its forecast, as pre-

scribed by the interpolator described in SK15. The

DSHA aid retains part of the initial bias throughout

the forecast as the model predicts changes in TC size

from the initial conditions. The low bias in EMXI is

also expected as it was present in the NHC basins

(SK15). The large negative biases in DSHA at 96 and

120 h are likely compounded by negative forecast in-

tensity biases in the SHIPS (DeMaria et al. 2005)

dataset used for the computation of the DSHA wind

radii. Although unintentional, these biases offset the

gradual increase in the bias of the remaining members

with forecast time, which are possibly related to an

overdeepening of TCs in the subtropics, as discussed

by Heming (2016). Finally, errors and biases com-

puted using the OBTK as ground truth (not shown)

appear similar to those shown in Fig. 3, but with 5 n mi

more negative initial biases and 5 n mi higher initial

errors. Since the OBTKR34 is somewhat independent

of the subjective best tracks (correlation coefficient of

0.84), it provides us with more confidence in the

results.

Since we have the R34 forecasts with verification, we

can also attempt to estimate errors associated with the

forecasts, as is done with track consensus forecasts in

Goerss (2007) and with intensity consensus forecasts in

Goerss and Sampson (2014). First, we illustrate the re-

lationships between some of the possible predictors and

the RVCN forecast error. For RVCN in the 2015 west-

ern North Pacific basin, the consensus absolute forecast

wind radius change (WRCHG) is found to be positively

correlated with the consensus model TC wind radius

absolute forecast error for all forecast lengths. This re-

lationship is illustrated in the scatterplot in Fig. 4 (top

left), where we see that, in general, there is a positive

correlation between consensus forecast absolute wind

radius error and consensus absolute forecast wind radius

change. The correlation betweenWRCHGand absolute

wind radius forecast error ranges from 0.71 for the 12-h

RVCN forecasts (Fig. 4, top left) to 0.32 for the 96-h

RVCN forecasts (not shown). WRCHG is chosen as the

leading predictor for the 12–72-h forecasts with corre-

lations ranging from 0.71 to 0.38 and is chosen as the

second leading predictor for the 96- and 120-h forecasts

with correlations of 0.32 and 0.36, respectively. One

caveat, which will be seen in the evaluation below, is that

theWRCHG is computed frompostseasonR34 analyses

rather than those estimated in real time. This is done

because changes are being implemented in operational

procedures that adheremore closely with the postseason

tracks than the real-time tracks from our sample.

FIG. 3. RVCN 34-kt wind radii forecast performance using reanalyzed JTWC best tracks as

ground truth for 2014–16 western North Pacific seasons. Solid lines show mean absolute error,

and dashed lines show bias. Acronyms are as defined in Table 1.
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Examples of the other leading predictors are shown in

the other scatterplots in Fig. 4. The consensus model

spread (SPRD; Fig. 4, top right) and the forecast change

in TC latitude (LATC; Fig. 4, bottom left) are found to

be positively correlated with forecast absolute wind ra-

dius error while the forecast TC intensity (INTF; Fig. 4,

bottom right) is found to be negatively correlated.

Consensus model spread is chosen as the leading pre-

dictor for the 96- and 120-h RVCN forecasts. The cor-

relations between SPRD and forecast absolute wind

radius error range from 0.34 for the 72-h RVCN fore-

casts to 0.51 for the 120-h RVCN forecasts. Forecast

latitude change is chosen as the third leading predictor

for the 24- and 36-h RVCN forecasts with correlations of

0.25 at 24 h and 0.26 at 36 h. Forecast TC intensity is

chosen as the second-leading predictor for the 24–72-h

RVCN forecasts and the third-leading predictor for the

96- and 120-h RVCN forecasts with correlations ranging

from 20.31 at 48 h to 20.17 at 96 h.

Next, we want to translate these results into a form

that has meaning to the NHC and JTWC forecasters. To

do so, we construct ranges centered on the consensus

wind radius forecasts that contain the verifying TC wind

radius roughly 67% of the time. For the 2015 western

North Pacific season, which we consider the dependent

data, ranges are determined by trial and error, adding a

constant at each forecast length to the predicted RVCN

TC absolute wind radius forecast error derived from the

linear regression. The constants computed are 9, 22, 31,

37, 30, 29, and 31n mi at 12, 24, 36, 48, 72, 96, and 120 h,

respectively. The final regression equations describing

the relationship between RVCN absolute wind radius

forecast error and predicted error for all forecast lengths

are shown in Table 2. The correlation coefficients range

FIG. 4. R34 error vs top GPCE predictors at the forecast lead time shown at the top left of each panel for the 2015

western North Pacific season. Correlation coefficients are shown in the top-right corner of each panel.
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from a low of 0.298 at 12 h (expected as the equations

were derived from best tracks) to a high of 0.642 at 120 h.

Despite using real-time estimates of R34 instead of

postseason best tracks, the percent variance explained

is still in the 9%–41% range. This is more variance ex-

plained than was found in the original track GPCE

(Goerss 2007) and intensity GPCE (Goerss and

Sampson 2014).

Tests on independent 2016 data also shown in Table 2

indicate that the correlation coefficients at the shortest

forecast periods have increased. We suspect that this is

partly due to ongoing improvements in operational real-

time R34 estimates at JTWC and is why we decided to

train the algorithm on best-track R34 data rather than

the real-time forecaster estimates when we developed

the algorithm. The number of cases in the independent

sample drops under 300 for the 48–120-h forecast pe-

riods, which is not optimal, and could be responsible for

the wide variation in correlation coefficients for those

forecast periods. Performance of the GPCE for RVCN

2017 on the same dataset was similar to that of RVCN

2014 shown in Table 2, with lower correlation co-

efficients for the 12-, 24-, 36-, and 48-h forecasts and

higher correlation coefficients for the 72-, 96-, and 120-h

forecasts. This is without any tuning to the addition of

new models and provides an indication that the algo-

rithm is useable even if models are added, removed,

or changed. Finally, we expect the coefficients to be

recomputed with more data before the start of each

new season similar to what is done for the track and

intensity GPCEs.

For further verification of the wind radii GPCE, we

choose to compute the predicted average half-range

(two half-ranges equals one confidence range), the

minimum and maximum half-ranges, the percent of the

time that the verifying R34 is included within the con-

fidence range centered on the RVCN forecast wind ra-

dius, and the number of forecasts (Table 3). We can see

that, for the 24-h wind radius forecasts for example, the

size of the confidence ranges vary from611 to676n mi

rather than a fixed or climatological confidence interval

based on the average error for the 2015 season (29n mi).

Variable confidence ranges allow a forecaster to place

more or less confidence on the RVCN wind radius

forecasts. Independent results for the 2016 season are

also shown at the bottom of Table 3.Most important, the

performance on the independent data is similar to that

of the dependent data. Finally, the performance of the

RVCN 2017 was similar to that of RVCN 2014. The

percent of forecast wind radii included in the half-range

jumps 2%–12%, the average half-range is 0–2nmi

larger, the minimum half-ranges are 0–5 n mi larger, and

TABLE 2. Regression equations derived for the 2015 western North Pacific season with variance explained for dependent (2015) and

independent (2016) data. Acronyms are defined in Table 1.

Wind radii forecast error equation

Cases

(2015)

Variance explained

(2015)

Cases

(2016)

Variance explained

(2016)

WRE12 5 (0.581 3 WRCHG) 1 9 630 0.089 372 0.171

WRE24 5 (0.307 3 WRCHG) 2 (0.107 3 INTF)

1 (2.22 3 LATC) 1 22

603 0.140 347 0.197

WRE36 5 (0.205 3 WRCHG) 2 (0.161 3 INTF)

1 (2.09 3 LATC) 1 31

569 0.137 315 0.161

WRE485 (0.2373WRCHG)2 (0.2133 INTF)1 37 531 0.125 278 0.118

WRE72 5 (0.4413 SPRD)1 (0.2173WRCHG)

2 (0.238 3 INTF) 1 30

443 0.236 206 0.076

WRE96 5 (0.4893 SPRD)1 (0.2233WRCHG)

2 (0.274 3 INTF) 1 29

366 0.341 143 0.068

WRE1205 (0.5423 SPRD)1 (0.2493WRCHG)

2 (0.310 3 INTF) 1 31

288 0.412 93 0.262

TABLE 3. GPCE verification for the 2015 and 2016 western

North Pacific seasons.Average,min, andmax are for half-ranges so

the percentages included are computed using the RVCN value plus

or minus the half-range.

Forecast (h) 12 24 36 48 72 96 120

Dependent data (2015)

Average (n mi) 30 29 30 33 34 36 45

Min (n mi) 9 11 13 12 6 9 9

Max (n mi) 128 76 61 71 81 93 109

Percentage included 67 69 69 69 68 66 66

No. of forecasts 649 619 575 535 442 367 288

Independent data (2016)

Average (n mi) 32 31 33 35 37 40 53

Min (n mi) 9 9 11 6 5 16 24

Max (n mi) 119 70 63 71 70 73 113

Percentage included 60 62 67 65 66 68 73

No. of forecasts 372 347 315 278 206 143 93
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themaximumhalf-ranges are asmuch as 14 nmi smaller.

Our hope is that the RVCN 2017 performance can be

improved further as we gather enough data to derive

new regression coefficients, specifically for that suite of

models and its consensus.

4. Conclusions and recommendations

In this paper, we updated our equally weighted R34

estimates (OBTK; Sampson et al. 2017) to include ob-

jectively analyzed scatterometer fixes. For a 3-yr dataset

of global scatterometer wind observations, we were able

to locate and estimate R34 for 782 cases for TCs in the

NHC and JTWC archives. Since R34 estimates from the

scatterometer are considered to be of high quality and

are often used as ground truth, they were given extra

weight in the OBTK algorithm. Somewhat indepen-

dently (i.e., not beholden to OBTK estimates), Sampson

et al. (2017) developed a subjective analysis of R34 for

the western North Pacific 2014–16 seasons. We used

both datasets for RVCNevaluation, and the results were

similar and provided us with a degree of confidence that

RVCN performs well. When compared to its members,

the RVCN consensus was the top performer in both

mean forecast error and bias. One concern for the future

is that the experimental GFDL model run as part of

the Hurricane Forecast Improvement Project was dis-

continued on 16 July 2017. Consensus forecasts become

erratic when there are few member model forecasts,

so we are constantly looking for more consensus mem-

bers to add to the suite. RVCN 2014 was implemented

at JTWC in 2015, andOBTKwas implemented at JTWC

in 2016. Both were updated (the OBTK to include

scatterometer fixes and the RVCN to RVCN 2017) at

the end of the 2017 season and will continue to be up-

graded as improvements are made. The RVCN error

estimates were implemented at the end of the 2017

season, and graphical display for forecasting will follow

in 2018.

We can also use the two sets of estimates to provide a

rough estimate of uncertainty by calculating the stan-

dard deviation of the differences between the two. This

uncertainty estimation follows the calculations used in

Torn and Snyder (2012). The standard deviation for

OBTK relative to the subjective R34 is 18 n mi for the

estimates coincident with objective scatterometer fixes

and represents estimated uncertainty for the best-

observed cases. This is higher than the 14n mi esti-

mate we found for the 2014–15 NHC data; however, the

estimates as a percentage of climatological R34 in the

datasets are both approximately 15%.

This work used existing operational real-time datasets

for the ground truth, which could be further improved

with more independent estimates using data from

recently launched satellites (Morris and Ruf 2017;

Meissner et al. 2017; Reul et al. 2017) and other obser-

vations. The improved ground truth could in turn be

employed to improve guidance, either actively [e.g.,

redeveloping the Wind Radii Climatology and Persis-

tence Model of Knaff et al. (2007)] or passively [e.g.,

using R34 from the OBTK, as in Bender et al. (2017)].

OBTK can and is being deployed for other basins and is

expected to be especially useful in areas with few in situ

observations (e.g., most of the Southern Hemisphere

and Indian Ocean). RVCN has already been employed

with success in the NHCbasins and is also now being run

for the Southern Hemisphere and Indian Ocean. The

addition of other skillful models to the suite will be

pursued as this not only potentially adds skill but also

reduces the erratic behavior between quadrants and

with respect to time that is present in a consensus of few

models. The authors intend to investigate if the wind

radii GPCE can be applied to other basins with existing

coefficients or if new coefficients are required in

each basin.

The TC community continues to address issues with

R34 estimates, but attention has shifted to the more

difficult problem of ascertaining the inner-core structure

of TCs. Although this is an inherently difficult problem

for several reasons (e.g., sparse observations and in-

sufficient NWPmodel resolution), efforts to observe and

explore the inner core are already yielding results, and

hopes are even higher for the future as costs for ob-

serving platforms such as microsatellites and remotely

piloted vehicles drop and capabilities improve.
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APPENDIX

NRL Monterey Objective Scatterometer Fix
Algorithm

The NRL Monterey objective scatterometer fix algo-

rithm was originally developed as a part of a structure
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analysis for use in COAMPS-TC initial conditions;

however, parts of the algorithm were also applicable to

an objective scheme to find R34 in scatterometer

passes. The scheme was developed using four years of

scatterometer passes over tropical cyclones in the

Atlantic and the entire North Pacific basins. Each R34

fix was individually inspected and the algorithm ad-

justed to avoid assigning extremely large (greater than

240 nmi) or extremely small (smaller than 40 nmi) es-

timates, as well as estimates that appeared to be sepa-

rated from the TC flow. The algorithm was designed to

make estimates only in cases where we had confidence

that those estimates were comparable to available sub-

jective estimates from NHC and/or passed visual in-

spection. The following is the resulting algorithm. It

misses many of the fixes, but we have confidence in its

results:

d Read in best track.
d Read in scatterometer wind observations for the

entire day; select a 63-h window.
d Move wind observations to best-track time using

current TC movement.
d Find data that is within 330n mi of the estimated

center of the TC.
d Divide area up into 8 n mi wide annuli, then quarter

using compass directions.
d Find maximum wind speed in each quarter annulus.
d Start R34 search algorithm.

d Search from 40 to 240 n mi using the 8 n mi quarter

annuli from above.
d Find where observations cross the 34-kt threshold.
d Only retain locations where the slope is negative

(i.e., from high to low).
d The 34-kt winds cannot have gaps . 75n mi going

out from center.A1

d First wind speed. 33kt needs to be at r, 120 n mi.
d Write scatterometer fix in ATCF ASCII format and

ingest into ATCF.

We diagnosed a total of 1037 cases using the 2013–16

best tracks from the Atlantic and North Pacific and

scatterometer fixes, many of those fixes having multiple

R34 estimates (up to four per fix). We also scrutinized

fixes in near–real time in 2017 and found it produced

R34 estimates that were generally similar to the sub-

jective estimates from NHC.
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