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ABSTRACT 37 

In late 2017, the Rapid Intensification Prediction Aid (RIPA) was transitioned to 38 

operations at the Joint Typhoon Warning Center (JTWC).  RIPA probabilistically 39 

predicts seven rapid intensification (RI) thresholds over three separate time periods: 25-40 

, 30-, 35-, and 40-knot increases in 24h (RI25, RI30, RI35, RI40), 45- and 55-knot 41 

increases in 36h (RI45 and RI55) and 70 knot increases in 48h (RI70). RIPA’s 42 

probabilistic forecasts are also used to produce deterministic forecasts when 43 

probabilities exceed 40%, and the latter are included as members of the operational 44 

intensity consensus forecast aid.   45 

RIPA, initially designed for the western North Pacific, performed remarkably well in 46 

all JTWC areas of responsibility (AOR) and is now incorporated into JTWC’s ever 47 

improving suite of intensity forecast guidance.  Even so, making real-time operational 48 

RIPA forecasts exposed some methodological weaknesses such as over prediction of 49 

RI for weak/disorganized (i.e., systems with maximum winds less than 35 knots), 50 

prediction of RI during landfall, input data reliability, and statistical inconsistencies.  51 

Modifications to the deterministic forecasts that address these issues are presented and 52 

newly derived and more statistically consistent models are developed using data from 53 

all of JTWC’s AORs.  The updated RIPA is tested as it would be run in operations and 54 

verified using a two-year (2018 to 2019) independent sample.  The performance from 55 

this test indicates the new RIPA—when compared to its predecessor—has improved 56 
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probabilistic verification statistics, and similar deterministic skill while using fewer 57 

predictors to make forecasts.  58 

  59 
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 60 

1) Introduction 61 

The Joint Typhoon Warning Center (JTWC) provides tactical tropical cyclone (TC) 62 

forecasts for U.S. Department of Defense installations operating in the western North 63 

Pacific, Indian, and South Pacific oceans. These forecasts include position, intensity1, 64 

and the radii of 34-, 50-, and 64-knot [kt; 1 kt =0.514 ms-1] winds through five days. The 65 

last decade or so has seen improvement in JTWC’s intensity forecasts due to the 66 

availability of skillful intensity guidance coming from the Statistical Typhoon Intensity 67 

Prediction Scheme (Knaff et al. 2005), the Statistical Hurricane Prediction Scheme 68 

(DeMaria et al. 2005, transitioned to JTWC in 2013), the Hurricane Weather Research 69 

and Forecast Model (HWRF; Biswas et al. 2018), the Coupled Ocean Atmosphere 70 

Model Prediction System - TC (COAMPS-TC; Doyle et al. 2014), and consensus aids 71 

(Sampson et al. 2008) as discussed in DeMaria et al. (2014).  The improvements, while 72 

incremental, are evident in seasonal error statistics [IHC 2019, JTWC 2018 (cf Fig. 6-4 73 

and 6-8)].   74 

The skillful deterministic statistical models, however, rarely produce forecasts with 75 

intensity changes associated with rapid intensification (RI) events due to the multiple 76 

time and space scales involved in the process (Kaplan et al. 2015, and references 77 

therein).   As model resolutions have steadily increased, numerical weather predictions 78 

are increasingly capable of forecasting rapid changes in TC intensity (see Leroux et al. 79 

2018, and Courtney et al. 2019a;2019b and references therein).  However, concerns 80 

                                                           
1 Operational units for intensity are knots or nautical miles per hour.  For that reason, those units are used 
throughout this manuscript.  
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such as false alarm rates and forecast timing of such events remain a barrier to 81 

operational reliability.   To date, statistical guidance specifically designed to overcome 82 

the noted shortcomings of existing intensity guidance by forecasting probabilities 83 

associated with the occurrence of RI events has been developed on a basin-by-basin 84 

basis (see, Kaplan and DeMaria 2003; Kaplan et al. 2010; Kaplan et al. 2015).   These 85 

efforts have successfully provided guidance methods to anticipated RI events in the 86 

Atlantic and East Pacific that have helped forecasters make deterministic forecast 87 

decisions (see, Gall et al. 2013; Rappaport et al. 2012). Statistics reveal that while the 88 

probability of detection ranges from 35 to 60%, the false alarm rates are 65% to 60% for 89 

forecasts of 30kt changes in 24h in Atlantic and East Pacific (Kaplan et al. 2015); 90 

leaving forecasters with only difficult decisions.   Following those efforts, Knaff et al. 91 

(2018) generated a set of tools to probabilistically predict several RI thresholds and 92 

trigger deterministic forecasts of those thresholds for use in JTWC’s consensus intensity 93 

aids for the western North Pacific basin.  This guidance, known as the Rapid 94 

Intensification Prediction Aid (RIPA), was transitioned to JTWC operations in late 2017.   95 

Although there was a strong desire to test RIPA’s capability and get forecaster 96 

feedback, this late installation provided only limited initial results in the western North 97 

Pacific.   A decision was made to provide this guidance for the 2018 Southern 98 

Hemisphere and North Indian Ocean storms in addition to those that formed in the 99 

western North Pacific. The early verification during this real-time implementation 100 

revealed some performance issues, leading to updates to these tools and modifications 101 

to the way that RIPA tools are used in JTWC operations.  Specifically, the deterministic 102 

aids generally worked well for TCs with initial intensities of 35 kt and above away from 103 
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land; however, these aids had large errors for disturbances with initial intensities less 104 

than 35 kt and for landfall cases.  Also, there appeared to be erratic forecast-to-forecast 105 

behavior for some predictions.  Issues such as these were expected since this was the 106 

first attempt to apply these models to the western North Pacific in real-time. 107 

The purpose of this work is to: 1) evaluate the real-time runs of the methods 108 

presented in Knaff et al. (2018), 2) describe a few engineering solutions that make the 109 

deterministic aids more plausible, and 3) present a re-derivation of the underlying 110 

statistical models using a data set from the entire JTWC AOR (Knaff et al. 2018 used 111 

only western North Pacific data), using more improved statistical assumptions in the 112 

model construction.  The next section reviews the expanded data set and improved 113 

methods to derive the statistical models.  This discussion is followed by our results, 114 

which demonstrate the performance of these new methods using the independent and 115 

real-time information collected during the 2018 and 2019 seasons.   Finally, we close 116 

with a summary of the work and conclusions.  117 

2) Data and methods 118 

 119 

JTWC’s historical best tracks provide quality controlled six-hourly position, intensity, 120 

and radii information for each TC tracked by JTWC.  These data are in the Automated 121 

Tropical Cyclone Forecast system (ATCF; Sampson and Schrader 2000) format 122 

(available at http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/).      Due 123 

to issues such as latency of real-time data and operational resource protection 124 

considerations, “working” best track data may contain biases, whereas the “final” best 125 

tracks have been re-analyzed following the season using all available data and current 126 
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operational practices.  For the RI problem, working best tracks can underestimate 127 

intensity changes during RI events. Both working and final best tracks use units of kt 128 

and nautical miles (n.mi; 1 n.mi = 1.85 km) for intensity and distance, respectively, and 129 

these units will be used throughout to maintain consistency with JTWC operations.      130 

For this work, we also use the SHIPS (2019) developmental dataset (2000-2017) 131 

and large scale diagnostic files (LSDFs).  These datasets have the same format and 132 

contain the same predictors.   The real time LSDFs are different than those in the 133 

developmental dataset in that they are based only on information available in real-time 134 

(i.e., an operational JTWC estimate of location and intensity, a 6-h old2 model forecast 135 

track, and corresponding environmental conditions) and so they provide slightly 136 

degraded information.  For this work, we use the same set of predictors used in Knaff et 137 

al. (2018).  For brevity, their descriptions and acronyms used in our discussion are 138 

provided in Table 1.  Potential predictors are assembled into three groups: a subset of 139 

the environmental condition parameters in the LSDFs, storm-centered infrared (IR) 140 

imagery based initial conditions, and real-time best-track parameters.  A full description 141 

of how these are calculated and their justifications are provided in Knaff et al. (2018) 142 

and SHIPS (2019).   All TCs in best tracks with intensities greater than or equal to 25 kt 143 

that did not make landfall within the forecast period were used for development.  144 

Landfall was determined by a distance to land algorithm that contains continents, and 145 

moderate sized islands, and which has been used with SHIPS development. For 146 

                                                           
2 Current global model output data available for SHIPS is available after the tropical cyclone advisory warning 
package has been written and disseminated.  
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instance, La Reunion, Bali, and Melville Island, Australia are in the dataset, but Guam 147 

and Okinawa are not. 148 

There is however one notable change in Table 1 and in this work.  The initial 149 

intensity predictor (VMAX) is now capped at 75 kt for the following reason.   Scatter 150 

plots of potential intensification (POT) vs. VMAX reveal that the two variables strongly 151 

covary with R2 = 0.78 (Fig. 1a).  However, when POT’s contribution to intensification is 152 

removed via linear regression, the residual 24-h intensity change occurs in two separate 153 

regimes (Fig. 1b) one below 80 kt and before the eye typically forms in infrared imagery 154 

(Vigh et al. 2012) and another at intensities higher when an eye typically exists.  For 155 

weaker TCs intensity change is positively correlated with VMAX, explaining about 5% of 156 

the remaining variance, but for stronger TCs VMAX is only slightly negatively correlated.  157 

Above 75 kt intensity, the intensification rate is mostly related to POT indicated by the 158 

limited scatter at high intensity shown in Fig. 1a.     To address this dilemma simply, we 159 

limited the VMAX term to 75 kt so that RI is more favored as VMAX approaches 75 kt.   160 

As in Knaff et al. (2018), we use two statistical methods for making probabilistic 161 

forecasts.  The first is Linear Discriminant Analysis (LDA), which is a classification 162 

method originally developed in Fisher (1936) and second is Logistic Regression (LRE, 163 

Wilks 2006). 164 

In LDA, a linear combination of variables that best separates two or more groups is 165 

developed.    We assume two groups: those meeting the threshold intensity changes 166 

and those that do not.  Additionally, both groups are assumed to have the same 167 

covariance structure.   The discriminant vector, a, has a direction in n-dimensional 168 

space that maximizes the distance between the means of Group 1 and Group 2 in 169 
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standardized units or the discriminant function, δ.  Thus, δ is the scalar projection of the 170 

data vector, x, in the direction of maximum separation along the discriminant vector, as 171 

shown in equation (1) to be:    172 

𝛿 =  𝒂𝑇𝒙             (1) 173 

We used the International Mathematical and Statistical Libraries (IMSL, 2019) to 174 

make these calculations.  Prior probabilities are calculated from the matching 175 

dependent discriminant functions and a one-dimensional, single-pass Barnes (1964) 176 

analysis windowing procedure relates probabilities to discriminant function values.  In 177 

application, a cubic spline provides a probability given the independent discriminant 178 

function value.  179 

In LRE, the dependent variable is a defined category; “1” for reaching the 180 

intensification threshold and “0” for not having met the intensification threshold.    LRE is 181 

a special generalized linear model, where the logit (i.e., the log of the odds) based on 182 

categorical data is fit to a linear combination of independent predictors (x1, …, xn) with 183 

intercept bo.  The weights (b1 ... bn) in this case, are determined via the method of 184 

maximum likelihood.  Equation (2) shows the logit (left hand side of equation) as a linear 185 

combination of predictors:  186 

ln (
𝑝𝑒

1−𝑝𝑛
) = 𝑏𝑜 + 𝑏1 𝑥1 + ⋯ + 𝑏𝑛𝑥𝑛        (2) 187 

We use logistic regression code (CSIRO 2019) to fit the model by iteratively 188 

reweighted least squares.  Model fit is based on a maximum likelihood criterion. 189 

Forward variable selection with an occasional backward step was used with the 190 

knowledge of the LDA model predictors.  For refined variable selection, we seek a LRE 191 
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model with the best fit while trying to ensure physically consistent and statistically 192 

significant coefficients. The backward step removes predictors that had lost their 193 

statistical significance (99%, chi-squared).  The LRE model has different assumptions 194 

about the relationship between dependent and independent variables when compared 195 

to linear regression. The two primary differences are: 1) since the dependent variable is 196 

binary, the conditional distribution is a Bernoulli distribution (i.e., 1 or 0) rather than a 197 

Gaussian distribution, and 2) the predicted values are probabilities.   Once fitted, the 198 

probability of exceeding the intensification threshold (𝑝𝑅𝐼) takes the form of equation (3) 199 

:   200 

𝑝𝑅𝐼 =
1

(1+𝑒−(𝑏𝑜+𝑏1𝑥1…+𝑏𝑛𝑥𝑛))
                  (3) 201 

The quality of fit metric for logistic regression is called deviance—a generalization of 202 

the idea of using the sum of squares of residuals in ordinary least squares, but where 203 

the model is fit using a maximum likelihood criterion.   Deviance is formally defined as 204 

−2 times the log-likelihood ratio of the fitted model compared to the full (i.e., perfect) 205 

model.  One can also define the percent deviance explained as 1 minus the ratio of the 206 

fitted model deviance to the deviance of a model containing only the intercept, b0 (Knaff 207 

and DeMaria 2017).   208 

Using the LDA and LRE methods described above, we developed algorithms of 209 

weighted combinations of predictors to predict 25-, 30-, 35-, and 40-kt changes in 24 h, 210 

45- and 55-kt changes in 36 h and 70-kt changes in 48 h.  We will refer to these as 211 

RI25, RI30, RI35, RI40, RI45, RI55, and RI70, respectively.   212 
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To determine how well models are fit to the dependent sample, we use the Brier 213 

Score (Brier 1950), the Brier Skill Score and, for just the LRE models the percent 214 

deviance explained.   The Brier Score (BS) is essentially the mean squared error of the 215 

probabilistic forecast: 216 

𝐵𝑆 =  
1

𝑘
∑ (𝑦𝑘 − 𝑜𝑘)2𝑘

𝑘=1   (4) 217 

where yk is the forecast probability and ok is the observed probability (effectively 0 for no 218 

RI or 1 for RI), and k is the number of cases.   A Brier Skill Score (BSS) is formed by 219 

comparing the BS to the BS of a reference forecast (Eq. 5).  For this study, climatology 220 

is used as a reference forecast (see, Wilks 2006).  Here the BSref is equal to the 221 

climatological frequency of each RI threshold.  222 

𝐵𝑆𝑆 = 1 −
𝐵𝑆

𝐵𝑆𝑟𝑒𝑓
  (5) 223 

The BSS answers the question: “Is the forecast is superior to the reference forecast?”. 224 

The answer is “yes” for greater than zero, with a perfect score being equal to one.  225 

BSSs will also be calculated for independent forecasts, and will again answer the same 226 

question.  Engineering fixes related to weak storms are not applied to the probabilistic 227 

forecasts.  There were very few landfalling cases during the period of verification. 228 

Nonetheless, BSSs and reliability diagrams were created without those cases that made 229 

landfall.   230 

Since RIPA output also includes deterministic forecasts, which are produced when 231 

probabilities exceed a threshold of 40%, have initial intensities greater than or equal to 232 

35 kt, and are located further than 60 n mi from land, we will also verify these using 233 
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mean absolute error (MAE) and biases.  Sampson et al. (2011) found that deterministic 234 

forecasts produced with probabilities exceeding 40% were more optimal (lower MAE 235 

and smaller biases) than 30% and 50% when added to the intensity consensus. This 236 

was value has been revisited, but the 40% remains optimal for reducing biases and 237 

MAEs in the consensus intensity forecasts. One of the main motivations for developing 238 

a deterministic RIPA was to address negative biases in the intensity consensus during 239 

RI events, thereby producing improved guidance for operators.  For this reason, the 240 

overall performance of the intensity consensus with and without RIPA deterministic 241 

forecasts will be examined to ensure that this is occurring.  242 

3) Results 243 

a) Operational Performance of RIPA  244 

Early subjective JTWC forecaster analysis of the RIPA tools developed in Knaff et al. 245 

(2018) indicates that collectively, the guidance worked as intended (JTWC, personal 246 

communication). During the remainder of the 2017 western North Pacific season and 247 

the first few TCs in the Southern Hemisphere, we observed that RIPA deterministic 248 

forecasts were often triggered (when the probability of RI exceeded 40%) for weak and 249 

ill-formed disturbances in which TC formation was incomplete.  As a proxy for ensuring 250 

a TC had formed, we implemented a change to require initial intensities of at least 35 kt 251 

to trigger the RIPA deterministic forecasts.  We also observed that RIPA generated 252 

deterministic forecasts for TCs undergoing landfall, which is not only a distraction to 253 

forecasters but an inaccurate forecast as well. To eliminate this quandary, RIPA 254 

deterministic forecasts are now truncated when the TC center is forecasted to be within 255 

60 n mi of land as a proxy for landfall processes in the RIPA deterministic forecast.  256 
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Figure 2 shows the real-time deterministic forecasts for TC Ava, which shows both the 257 

RIPA deterministic forecasts from before its formation and intensification during landfall 258 

at (10:00 UTC 5 January).   Changes were made during the middle of the 2018 259 

Southern Hemisphere season and resulted in deterministic forecasts that appeared 260 

more credible3.  These changes were not prescribed to the probabilistic guidance. 261 

To examine RI forecast trends, we chose two RI thresholds, RI30 and RI45 and 262 

show seasonal MAEs, and Peirce Skill Scores (Peirce 1884, Wilks 2006) for all of 263 

JTWC’s forecast basins combined.  The Peirce Skill Score answers the question of how 264 

well did the forecasts separate the "yes" events from the "no" events?  The year 2005 265 

was chosen for the start year because this is the first year STIPS was run operationally 266 

at JTWC. The results for this analysis are shown in Fig. 3.    The number of cases for 267 

each year indicates that some years had very few RI cases, so the trends are noisy.  268 

For example, there were only 35 cases of RI30 in all of 2017.  Still, some information 269 

can be readily gleaned from these plots.  The red bars in Fig. 3 indicate the percent of 270 

time RI events were forecast by JTWC forecasters.  The percentage has increased 271 

markedly in the last few years as guidance like SHIPS (DeMaria et al. 2005; Kaplan et 272 

al. 2015), HWRF (Biswas et al. 2018), COAMPS-TC (Doyle et al. 2014) and RIPA 273 

improve.  Starting in 2017, the MAEs drop to less than 11 kt at 24 h and less than 13 kt 274 

at 36 h.  The Peirce Skill Scores show trends similar to percent of time RI events were 275 

forecasted, and it is worth mentioning that the highest Pierce Skill Scores have been 276 

                                                           
3 Forecasters were often looking at the deterministic forecasts of RI as a function of time.  Removing the 
deterministic cases for very weak storms produced a time series where the deterministic RI forecasts often 
corresponded to real intensity changes, and thus appeared more credible.   

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-19-0228.1.



 

14 
 

posted in 2018 and 20194.  So, it appears that JTWC is forecasting RI events more 277 

frequently while also reducing their MAEs in those cases.  278 

Other guidance that has been available since 2005 has less skill according to this 279 

metric.  However, to adequately explain the numerous guidance techniques, and their 280 

variations in availability over time is a study in its own and thus will be left to future 281 

research.  It is however noteworthy that mesoscale hurricane models have steadily 282 

improved since 2014 and are catching up, particularly in statistics associated with 2018 283 

and 2019. 284 

Overall, the initial rollout of RIPA in JTWC operations was successful, and the 285 

engineering solutions led to more credible deterministic RIPA forecasts; however, there 286 

were still three issues that required further investigation.  First, the forecasts for the 36- 287 

and 48-h lead times, as well as the higher 24-h intensity change thresholds (RI35 & 288 

RI40), varied widely from one six-hour forecast to the next.  This issue was found to be 289 

related to differences in the high frequency variations in the infrared brightness 290 

temperature standard deviation-based predictor (SDO) from one forecast to another, 291 

and SDO had large weights in both the LDA and LRE prediction models.   Second, 292 

these statistical models had difficulty forecasting RI once a TC had reached an intensity 293 

of about 85 kt.  Further investigation showed that this effect was related to the co-294 

linearity between the VMAX and the POT predictors, which we alluded to earlier.   Both 295 

of the issues outlined above are addressed in the new LDA and LRE models discussed 296 

in the next subsection.  And finally, choice of IR satellite imagery for TC in the Indian 297 

                                                           
4 Only Southern Hemisphere storms from 2019 were evaluated since the season runs July of 2018 thru June 2019. 
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Ocean was a dilemma.  JMA’s Himawari-8 images were available, but were often from 298 

the limb and suffered from limb darkening/cooling and reduced resolution.  This issue is 299 

addressed in the new operational RIPA implementation.  300 

 301 

a) Dependent Results (new models) 302 

The individual LDA and LRE model components of RIPA were refit using 303 

developmental data from all of JTWC’s forecast basins (i.e., western North Pacific, 304 

North Indian Ocean, and Southern Hemisphere) for years 2000-2017.  Models were 305 

also refitted in such a way to remove where possible the dependence on the SDO 306 

predictor that estimates the coherence of the brightness temperatures directly over the 307 

TC and to reduce the colinearity between the VMAX and POT predictors by capping 308 

VMAX at 75 kt (i.e., as shown in Fig. 1).  The latter was thought to be related to storm 309 

organization, specifically the existence of an eyewall structure (cf Vigh et al. 2012).  310 

Figure 4 shows the resulting normalized predictor weights, these can be compared to 311 

Figs. 1 and 2 in Knaff et al. (2018).   It appears that the co-linearity issues have been 312 

resolved except the LDA RI70 model, which still shows evidence of VMAX, POT, and 313 

OHC predictors having coefficients that have signs opposite of what would be expected 314 

in nature; suggesting co-linearity among those three variables.  The remaining models 315 

all have physically consistent coefficients.   316 

The new models also have nearly identical dependent fits to the same components 317 

reported Tables 2 and 3 of Knaff et al. (2018). Figure 5 (top panel) shows the 318 

dependent BSSs for both the LDA and LRE models along with the climatological 319 
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frequency of occurrence of each RI threshold.  The bottom panel of Fig. 5 shows the 320 

goodness of fit provided for the individual LRE models in terms of percent deviance 321 

explained. Again, these fits are nearly identical as those reported in Knaff et al. (2018).   322 

These dependent statistics suggest that both the LDA and LRE models should 323 

outperform climatological frequency forecasts by 10 to nearly 30 percent.  Additionally, 324 

with the new model issues with noisy variables (e.g., SDO) and collinearity (e.g., POT 325 

and VMAX) have been removed while the total number of predictors has been reduced.  326 

This is a preferred result because reducing the number of predictors has been shown to 327 

reduce artificial skill/ability (Mielke et al. 1996; Davis 1979; Knaff and Landsea 1997).  328 

b) Independent results (new models) 329 

i) Probabilistic   330 

Since the individual models were developed using analyses and best tracks from 331 

2000 to 2017, independent analysis of the newly developed LDA and LRE models could 332 

only be accomplished using the tropical cyclones of 2018 and 2019.  These reforecasts 333 

use the LSDFs produced at JTWC in real time during these times and thus introduce 334 

realistic errors caused by the use of working best tracks and 6-h global model forecasts.  335 

Probabilistic verification of results from the newly derived models run on this 336 

independent data set is shown in Fig. 6, Fig. 7, and Fig. 8.   337 

Figure 6 shows the BSS associated with the individual models (the LDA and LRE 338 

models) and the equally weighted average of the two (consensus or CON).  The 339 

verification is done with landfall cases included (LDA, LRE, and CON), and also 340 

removing landfall cases (LDA_NL, LRE_NL, and CON_NL).  Removing the landfalling 341 

cases both improved and degraded BSSs, the former due to the effects of land on the 342 
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intensity and the latter due to removing several correctly forecasted no-RI cases.   In all 343 

but one of the RI thresholds (RI70, which is an extremely rare event), the consensus 344 

shows slightly higher skills.   The highest BSS values are for RI55, but all the models 345 

are skillful compared with climatological forecasts (see top of Fig. 5).  The independent 346 

forecasts have similar BSSs as dependent hindcasts based on the dependent data, 347 

which we would not expect to see if the models were over fitted to the dependent data 348 

(see Mielke et al. 1996, Davis 1979).   In RI25, RI30, & RI70, the forecasts perform 349 

noticeably better for the independent forecasts than for the dependent forecasts.  This 350 

result is likely due to the limited two-year sample and the infrequency of RI events in 351 

general (i.e., by chance).   352 

The reliability diagrams associated with the RI thresholds are shown in Fig. 7 and 353 

Fig. 8.  Reliability diagrams consist of two components that are the calibration function 354 

showing the relationship between binned forecast probabilities and observed 355 

frequencies, and the refinement distribution that shows the number of forecasts 356 

included in each bin and indicates the aggregate forecast model confidence.  These 357 

results are comparable to the independent results presented in Fig. 4 of Knaff et al. 358 

(2018).  It is important to note that there are very few cases at the highest forecast 359 

probabilities and that the inset refinement distributions, which in general would be 360 

considered “high forecast model confidence” as described in Wilks (2006), are 361 

presented as a function of the log of the number of cases (count).  In general, the 362 

independent results presented here show that the new models generally have better 363 

calibration or 1:1 correspondence with the observed frequency and tend to be less 364 

biased when compared to their predecessors.  Fig. 7 shows that RI24, RI30 have good 365 
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calibration, and RI35 and RI45 forecasts tend to slightly overforecast.  Fig. 8 shows that 366 

RI45 and RI55 forecasts also slightly overforecast as well as how the calibration breaks 367 

down for the very rare event of RI70.  The improvements in these new models resulting 368 

from capping VMAX at 75 kt and removing the SDO from the models are particularly 369 

evident at the higher intensity and longer lead RI thresholds.    It is nonetheless 370 

noteworthy that some of the highest forecast probabilities were misses as seen in RI30, 371 

RI35, RI40, and RI45.  All these misses were the same case.  TC Dumazile (2018), 372 

while forecast to have very rapid/explosive intensification, only experienced a 25-kt 373 

increase in intensity.   374 

ii) Deterministic (consensus) 375 

Deterministic RI guidance (RIPA) is evaluated in Fig. 9, which shows the National 376 

Hurricane Center’s RI thresholds of 20 kt intensification in 12h, RI30, and RI45.  Recall 377 

that the threshold used in Knaff et al. (2018) to trigger a RIPA forecast was 40% 378 

probability or greater.  In this effort, we combined the individual deterministic RI aids 379 

(RI25, RI30, RI35, RI40, RI45, RI55, RI70 in the ATCF format) so that the maximum RI 380 

rate for a given time interval is used as the RIPA forecast.  This is done to simplify the 381 

construction of a consensus with (ICNW) and without RIPA (ICNC).   As in Knaff et al. 382 

(2018), the aids that are used to construct the consensus ICNW are Decay SHIPS (see 383 

DeMaria et al. 2005) driven by two different global NWP models [the global forecasting 384 

system (GFS, 2019) and the Navy global environmental model (NAVGEM; Hogan et al. 385 

2014)] DSHA and DSHN in the ATCF format), COAMPS-TC (CTCI in the ATCF format, 386 

see Doyle et al. 2014), H-WRF (HWFI in the ATCF format, see Biswas et al. 2018), a 387 

simplified intensity model (CHII in the ATCF format, see Emanuel et al. 2004) and RIPA.  388 
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The available intensity forecasts for each individual aid are included in the ICNW 389 

average. These error/bias results [Fig. 9 (top)] are comparable to the independent 390 

results presented in Knaff et al. (2018) in that the RIPA bias is generally more positive 391 

than the consensus bias and that adding RIPA to the consensus reduces negative bias 392 

in RI cases.  As seen in the negative biases in the consensus forecasts, RI is still a 393 

challenge for the consensus members as a group and RIPA is a positive contributor in 394 

that regard.  In Fig. 9 (middle), and for RI30 and RI45, RIPA is shown to have a slightly 395 

higher Probability of Detection (POD) and lower False Alarm Rate (FAR) than 396 

consensus without RIPA.  The corresponding Peirce Skill Scores shown in Fig. 9 397 

(bottom) indicate some success at forecasting RI for RI30 and RI45 thresholds, and 398 

thus shows slight positive impact on the consensus in this measure of success. 399 

2) Summary and conclusion 400 

In late 2017, the Rapid Intensification Prediction Aid (RIPA) was transitioned to 401 

operations at the Joint Typhoon Warning Center.  This was the first statistical guidance 402 

developed specifically for predicting the likelihood of RI in the western North Pacific.  403 

RIPA predicts several RI thresholds over three separate time periods and was 404 

described in Knaff et al. (2018). RIPA’s probabilistic forecasts are also used to produce 405 

deterministic forecasts when probabilities exceed 40%.  Deterministic forecasts are then 406 

incorporated into the operational intensity consensus, which effectively reduces 407 

negative biases while not increasing the MAE.  The original RIPA worked surprisingly 408 

well and was incorporated into the operational forecast process.  Nonetheless, running 409 

real-time operational RIPA forecasts exposed some weaknesses.  These included over 410 

prediction of RI for weak and disorganized tropical systems (i.e., systems with maximum 411 
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winds less than 35 kt), prediction of RI during landfall, input data reliability, and 412 

statistical inconsistencies within the models.  All but the last of these were addressed by 413 

simple engineering solutions applied to just the deterministic forecasts triggered by RI 414 

probabilities exceeding 40%.  415 

The last issue (statistical inconsistencies within the models) were traced to two 416 

specific issues: collinearity between the initial intensity (VMAX) and the potential 417 

intensity minus the initial intensity term (POT), and the noisy behavior of the IR 418 

brightness temperature standard deviation term (SDO).  To remove the collinearity 419 

between VMAX and POT, VMAX was capped at 75 kt.  To address the noisy SDO 420 

behavior, the term was removed in the derivation of the new models.   The dependent 421 

results for the new models were nearly identical to those presented in Knaff et al. 422 

(2018), and the independent results appeared to improve reliability and bias (Fig. 7 and 423 

Fig. 8).  These updates were implemented in JTWC’s operations in June 2019 and are 424 

now the operational basis for the RIPA forecasts.  425 

One highlight of our analysis is that JTWC rapid intensification forecasts have 426 

become more frequent while the mean errors have remained near all-time lows  (Fig. 2).  427 

The authors speculate that improvements in NWP and other guidance (e.g., RIPA) have 428 

enhanced JTWC’s ability to forecast RI.  Nonetheless, there is still plenty of room for 429 

improvement.  Forecast busts are often a function of storm structure or unique 430 

environmental features (e.g., the cases discussed in Ryglicki et al. 2018) that are 431 

currently difficult to capture with existing NWP models and certainly statistical aids.  432 

Future work will involve studying false alarm and missed forecast cases for common 433 

features that could aid forecasters and algorithm developers and expanding RIPA 434 
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capabilities to include other thresholds and other TC basins.  The authors expect that 435 

the remaining RI forecast issues are going to be more difficult and time-consuming to 436 

address, but necessary to make further headway on this problem.   437 
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Table 1. Potential predictors for algorithms to predict the probabilities of rapid 557 

intensification at various intensification rate thresholds.  Predictors include forecast 558 

parameters (Environmental Predictors) and initial conditions (IR Predictors and Best 559 

Track/Advisory-based Predictors). Static predictors (i.e. those available only at t=0) are 560 

italicized.  561 

Acronym Description 

Environmental Predictors (time averaged from t=0 to time of the forecast) 

GSHR 850 hPa to 200 hPa generalized wind shear calculated as the mass-

weighted root-mean-square deviations of the winds from the mass-

weighted deep-layer mean winds times a factor of 4 calculated in a 200-

800 km annulus (Knaff et al. 2005) 

OHC Oceanic Heat Content between the surface and the depth of the 26oC 

isotherm (Shay et al. 2000, and references within) 

RHMD 700-500-hPa relative humidity averaged within a 200-800 km annulus 

DIVC 200-hPa divergence following the storm, calculated in a 500 km circle 

centered on the TC 

POT Potential intensification calculated from the potential intensity as a 

function of SST at storm center and the current intensity (at t=0) 

REFC Average relative eddy momentum flux convergence calculated in 100-

600 km annulus (m s-1 day-1 )  

TADV The temperature advection between 850 and 700 hPa averaged from 0 

to 500 km calculated from the geostrophic thermal wind 

IR Predictors 
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PC50 Percentage of IR pixels colder than -50oC within a 50-200 km annulus 

PC60                        Percentage of IR pixels colder than -60oC within a 50-200 km annulus 

SDO Standard Deviation of IR brightness temperatures 100-300 km annulus 

RMNT Radius of minimum brightness temperature (0-150 km) 

FR5 The deviation of IR-based TC size (R5) from the climatological 

population as a function of TC intensity  

Best Track / Advisory-based Predictors 

VMAX Current TC intensity (t=0) up to 75 kt, fixed at 75 kt for all higher 

intensities 

DV 12-hour change in TC intensity, which is limited by the following 

function, 𝐷𝑉 = 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑉𝑀𝐴𝑋 ∗ 0.33, 17.5), DV)     

 562 

  563 
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 564 

Figure 1. (a.) Scatter plots of current intensity (VMAX) vs. potential intensification (POT)  565 

and (b.) VMAX vs. the residual of a POT-based 24-h intensity change, where points with 566 

VMAX values less than 80 kt are shown in blue and those 80 kt and above shown in 567 

red. The trend line and squared correlation coefficients (R2) are provided.  568 
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 569 
Figure 2.   Time series of the intensity of Tropical Cyclone Ava (sh032018) from the best 570 

track (BEST) and deterministic forecasts triggered by RIPA.  Shown are RI25, RI30, 571 

RI35 and RI45, which were all triggered.  Note the number of cases triggered when 572 

Ava’s estimated intensity was less than 35 knots.  Landfall over Madagascar also 573 

occurred at approximately 10 UTC on 5 January, resulting in a rapid decay.  574 
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 575 
Figure 3. JTWC forecast performance for observed RI of 30 kt in 24 h (RI30; top) and 576 

45 kt in 36 h (RI45; bottom) for the years 2005-2018 (All JTWC basins) and 2019 577 

(Southern Hemisphere only).  Red bars indicate percentage of observed RI cases for 578 

which JTWC predicted RI, blue lines indicate MAE for observed RI cases, and yellow 579 

line indicates Peirce Scores.  The number of RI case is listed across the top of each 580 

panel and is displayed with purple text.   581 
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 582 

Figure 4.    (Top) Normalized LDA and (Bottom) LRE model coefficients.  The 583 
magnitude of each coefficient provides an indication of that variable’s relative 584 

importance to predicting the various RI thresholds.   The 24-h, 36-h and 48-h intensity 585 
change thresholds are shown in blue, green and red tones, respectively.   586 
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 587 

Figure 5.  (Top) Brier Skill Scores for the LDA model (blue bars), the LRE model (yellow 588 
bars), and Climatology (red line) for each RI threshold.  (Bottom) Percent deviance 589 
explained by the LRE model for each RI threshold.  All results based on dependent data 590 

from the JTWC 2000-2017 dataset.   591 
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 592 

Figure 6.  BSSs associated with the 2018-2019 independent verification of RI events 593 
associated with 25, 30, 35, and 40 kt changes in 24h (RI25, RI30, RI35, RI40), 45 and 594 

55 kt changes in 36h (RI45 and RI55) and 70 kt changes in 48h (RI70).  Note that final 595 
best tracks were available for 2018 and preliminary best tracks were used for 2019. 596 

There were 2177 forecasts made of which 1994, 1885, and 1788 cases were available 597 
for the no-landfall evaluation at 24, 36 and 48h lead times, respectively. 598 

  599 
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600 
Figure 7. Reliability diagrams for (top left) RI25, (top right) RI30, (bottom left) RI35, 601 

(bottom right).  Accompanying each reliability diagram is the refinement distributions 602 
that show the forecast frequency bins vesus the log of the number of case, which are 603 

inset to the upper left in each panel. Results are based on independent forecasts from 604 
2018 and 2019 in WP, SH, and IO basins, landfalling cases removed.  Final and 605 
preliminary best tracks in 2018 and 2019, respectively, are used for verification. 606 

  607 

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-19-0228.1.



 

36 
 

 608 

Figure 8.  The same as Fig. 7, but for (upper left) RI45, (upper right) RI55, and (lower 609 
left) RI70.  610 

 

 

 611 

 612 
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 613 

Figure 9.  (Top) Mean Forecast Error (MAE, solid lines) and Bias (dotted lines), (Middle) 614 

POD (solid lines) and FAR (dotted lines), and (Bottom) Peirce Scores for RIPA, the 615 
consensus with and without RIPA (ICNW and ICNC, respectively). Evaluation includes 616 
Southern Hemisphere, western North Pacific and Indian Ocean 2018 seasons and 617 
Southern Hemisphere 2019 season.  Total cases/RI cases are shown in parentheses. 618 
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